Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7
.
Los Lactobacillus inhiben múltiples agentes patógenos causales de toxiinfecciones alimentarias, relacionándose su mecanismo de acción con la modulación del sistema inmune. Por su parte, E. coli O157:H7 es considerado un microorganismo causal de alteraciones, principalmente, a nivel intestinal y renal y es encontrado, por lo general, en matrices alimentarias contaminadas o en mal estado. La incidencia de este tipo de problemática se ha relacionado a la resistencia a los antibióticos, que limita su control y mitigación de manera eficaz. Por lo tanto, el objetivo del trabajo fue evaluar el efecto inhibitorio de Lactobacillus plantarum microencapsulado in vitro sobre Escherichia coli O157:H7, con el fin de encontrar estrategias inocuas para el... Ver más
0123-4226
2619-2551
24
2021-06-30
Catalina Fajardo-Argoti, Henry Jurado-Gámez, Jaime Parra-Suescún - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1733 |
---|---|
record_format |
ojs |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 |
spellingShingle |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 Fajardo-Argoti, Catalina Jurado-Gámez, Henry Parra-Suescún, Jaime Sanidad animal Probiótico Lactobacillus Patógeno Animal health Probiotic Lactobacillus Pathogen |
title_short |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 |
title_full |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 |
title_fullStr |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 |
title_full_unstemmed |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 |
title_sort |
viabilidad de lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre escherichia coli o157:h7 |
title_eng |
Viability of microencapsulated Lactobacillus plantarum under simulated gastrointestinal conditions and inhibition against Escherichia coli O157:H7 |
description |
Los Lactobacillus inhiben múltiples agentes patógenos causales de toxiinfecciones alimentarias, relacionándose su mecanismo de acción con la modulación del sistema inmune. Por su parte, E. coli O157:H7 es considerado un microorganismo causal de alteraciones, principalmente, a nivel intestinal y renal y es encontrado, por lo general, en matrices alimentarias contaminadas o en mal estado. La incidencia de este tipo de problemática se ha relacionado a la resistencia a los antibióticos, que limita su control y mitigación de manera eficaz. Por lo tanto, el objetivo del trabajo fue evaluar el efecto inhibitorio de Lactobacillus plantarum microencapsulado in vitro sobre Escherichia coli O157:H7, con el fin de encontrar estrategias inocuas para el control de agentes patógenos. Se determinó la cinética de fermentación, evaluando variables, como consumo de azúcar, producción de proteínas, acidez, pH y fase logarítmica (UFC/mL). La microencapsulación, se realizó mediante la técnica de spray drying, utilizando inulina y maltodextrina, como materiales encapsulantes. Se determinó la viabilidad de L. plantarum bajo condiciones gastrointestinales simuladas. Además, se evaluaron las características físicas del microorganismo microencapsulado y el efecto inhibitorio de L. plantarum y su sobrenadante sobre E. coli O157:H7. Posteriormente, se valoró la susceptibilidad de ambas cepas a diferentes antibióticos. Como resultado, se encontró resistencia de ambas cepas a algunos antibióticos evaluados, como penicilina. La cepa láctica y el sobrenadante inhibieron el crecimiento de E. coli O157:H7. L. plantarum presentó una viabilidad óptima a condiciones gastrointestinales simuladas después de 45 días de almacenamiento (1,4x107-3,0x1010UFC/150µL). La microencapsulación incrementa su vialidad y su establecimiento en el huésped.
|
description_eng |
Lactobacillus inhibit multiple pathogens that cause food poisoning, and their mechanism of action is related to the modulation of the immune system. E. coli O157:H7 is considered a causal microorganism of alterations, mainly at intestinal and renal level, and is generally found in contaminated or spoiled food matrices. The incidence of this type of problem has been related to antibiotic resistance, which limits its effective control and mitigation. Therefore, the objective of this work was to evaluate the inhibitory effect of microencapsulated Lactobacillus plantarum in vitro on Escherichia coli O157:H7, in order to find innocuous strategies for the control of pathogens. Fermentation kinetics were determined by evaluating variables such as sugar consumption, protein production, acidity, pH and logarithmic phase (CFU/mL). Microencapsulation was performed by spray drying, using inulin and maltodextrin as encapsulating materials. The viability of L. plantarum was determined under simulated gastrointestinal conditions. In addition, the physical characteristics of the microencapsulated microorganism and the inhibitory effect of L. plantarum and its supernatant on E. coli O157:H7 were evaluated. Subsequently, the susceptibility of both strains to different antibiotics was evaluated. As a result, resistance of both strains to some of the antibiotics evaluated, such as penicillin, was found. The lactic strain and the supernatant inhibited the growth of E. coli O157:H7. L. plantarum showed optimal viability at simulated gastrointestinal conditions after 45 days of storage (1.4x107-3.0x1010CFU/150µL). Microencapsulation increases its viability and establishment in the host.
|
author |
Fajardo-Argoti, Catalina Jurado-Gámez, Henry Parra-Suescún, Jaime |
author_facet |
Fajardo-Argoti, Catalina Jurado-Gámez, Henry Parra-Suescún, Jaime |
topicspa_str_mv |
Sanidad animal Probiótico Lactobacillus Patógeno |
topic |
Sanidad animal Probiótico Lactobacillus Patógeno Animal health Probiotic Lactobacillus Pathogen |
topic_facet |
Sanidad animal Probiótico Lactobacillus Patógeno Animal health Probiotic Lactobacillus Pathogen |
citationvolume |
24 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1733 |
language |
spa |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Catalina Fajardo-Argoti, Henry Jurado-Gámez, Jaime Parra-Suescún - 2021 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ABRAMOV, V.; KHLEBNIKOV, V.; KOSAREV, I.; BAIRAMOVA, G.; VASILENKO, R.; SUZINA, N.; MACHULIN, A.; SAKULIN, V.; KULIKOVA, N.; VASILENKO, N.; KARLYSHEV, A.; UVERSKY, V.; CHIKINDAS, M.; MELNIKOV, V. 2014. Probiotic Properties of Lactobacillus crispatus 2,029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens. Probiotics and Antimicrobial Proteins. 6(3-4):165-176. https://doi.org/10.1007/s12602-014-9164-4 2. AGUDELO, C.; ORTEGA, R.; HOYOS, J. 2010. Determination of kinetic parameters of two lactic inoculums: Lactobacillus plantarum A6 and Lactic Acid bacterias of yogurt. Ciencias Agropecuarias. 8(2):8-16. 3. BAUER, A.W.; KIRBY, W.M.; SHERRIS, J.C.; TURCK, M. 1966. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology. 45(4):493–496. 4. BETANCUR, H.C.; RODRÍGUEZ, B.R.; MARTÍNEZ, Y.; ROMERO C., O.; RUGELES, C.C. 2020. La administración oral de un biopreparado con Lactobacillus plantarum CAM-6 mejoró el comportamiento productivo y el rendimiento de la canal de cerdos en crecimiento. Revista de Producción Animal. 32(2):64-73. 5. CASTELLANO, P.; PÉREZ IBARRECHE, M.; BLANCO MASSANI, M.; FONTANA, C.; VIGNOLO, G.M. 2017. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms. 38(5):1-25. https://doi.org/10.3390/microorganisms5030038 6. CHARTERIS, W.P.; KELLY, P.M.; MORELLI, L.; COLLINS, K. 1998. Antibiotic susceptibility of potential probiotic Lactobacillus species. J. Food Protect. 61(12):1636-1643. https://doi.org/10.4315/0362-028x-61.12.1636 7. COSSIO, D.S.; HERNÁNDEZ, Y.G.; MENDOZA, J.D. 2018. Development of probiotics for animal production. Experiences in Cuba Desarrollo de probióticos destinados a la producción animal: experiencias en Cuba. Cuban Journal of Agricultural Science. 52(4):1. 8. CRUEGER, W.; CRUEGER, A. 1993. Biotecnología: Manual de Microbiología Industrial. 3°ed. Ed. Acribia (España). 432p. 9. CUETO, C.; ARAGÓN, S. 2012. Evaluación del potencial probiótico de bacterias ácido lácticas para reducir el colesterol in vitro. Scientia Agropecuaria. 3(1):45-50. https://doi.org/10.17268/sci.agropecu.2012.01.06 10. CUETO-VIGIL, M.C.; ACUÑA-MONSALVE, Y.; VALENZUELA-RIAÑO, J. 2010. Evaluación in vitro del potencial probiótico de bacterias ácido lácticas aisladas de suero costeño. Actualidades biológicas. 32(93):129-138. 11. DUAR, R.M.; LIN, X.B.; ZHENG, J.; MARTINO, M.E.; GRENIER, T.; PÉREZ-MUÑOZ, M.E.; LEULIER, F.; GÄNZLE, M.; WALTER, J. 2017. Estilos de vida en transición: evolución e historia natural del género Lactobacillus. FEMS Microbiol. Rev. 41(Supl. 1):S27-S48. https://doi.org/10.1093/femsre/fux030 12. DUBOIS, M.; GILES, K.A.; HAMILTON, J.K.; REBERS, P.A.; SMITH, F. 1956. Colorimetric method for determination of sugar and related substances. Anal Chem. 28(3):350-356. 13. EGAN, K.; FIELD, D.; REA, M.C.; ROSS, R.P.; HILL, C.; COTTER, P.D. 2016. Bacteriocins: Novel Solutions to Age Old Spore Related Problems? Frontiers in Microbiology. 7(461):1-21. https://doi.org/10.3389/fmicb.2016.00461 14. ELINALVA MACIEL, P.; VASCONCELOS, M.P.; OLIVEIRA, I.S.; AFFE, H.M.D.J.; NASCIMENTO, R.; MELO, I.S.D.; ROQUE, M.R.A.; ASSIS, S.A.D. 2012. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology. 32(4):710-714. https://dx.doi.org/10.1590/S0101-20612012005000094 15. EUROPEAN FOOD SAFETY AUTHORITY, EFSA; EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL, ECDC. 2018. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal. 16(2):e05182. https://doi.org/10.2903/j.efsa.2018.5182 16. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS-FAO; WORLD HEALTH ORGANIZATION- WHO. 2002. Guidelines for the evaluation of probiotics in food. Available from Internet in: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf 17. FREUDIG, B.; HOGEKAMP, S.; SCHUBERT, H. 1999. Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing. 38:525–532. 18. FRITZEN-FREIRE, C.; PRUDÊNCIO, E.S.; AMBONI, R.D.; PINTO, S.S.; NEGRÃO-MURAKAMI, A.N.; MURAKAMI, F.S. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International. 45:306e312. 19. GARCÍA, Y.; PÉREZ, T.; BOUCOURT, R.; BALCÁZAR, J.L.; NICOLI, J.R.; MOREIRA, J.; RODRÍGUEZ, Z.; FUERTES, H.; NUÑEZ, O.; ALBELO, N.; HALAIHEL, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science. 108:125-132. https://doi.org/10.1016/j.rvsc.2016.08.009 20. GONZÁLEZ, R.E.; MENDOZA, J.; MORÓN, L.B. 2015. Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados. Inf Tecnol. 26(5):11-16. http://dx.doi.org/10.4067/S0718-07642015000500003 21. GUIMARÃES, D.P.; COSTA, F.A.A.; RODRIGUES, M.I.; MAUGERI, F. 1999. Optimización de la síntesis de dextrano e hidrólisis ácida mediante análisis de respuesta de superficie. Revista Brasileña de Ingeniería Química. 16(2):129-139. http://dx.doi.org/10.1590/S0104-66321999000200004 22. GUTIÉRREZ-SARMIENTO, W.; VENTURA-CANSECO, L.M.; GUTIÉRREZ-MICELI, F.A.; LUJÁN-HIDALGO, M.C.; ABUD-ARCHILA, M.; RUÍZ-VALDIVIEZO, V.M. 2020. Optimización de producción de biomasa, ácido láctico y supervivencia a simulación gastrointestinal de Lactobacillus plantarum BAL-03-ITTG cultivado en biorreactor de tanque agitado. Agrociencia. 54(2):147-162. 23. HEREDIA-CASTRO, P.; HÉRNÁNDEZ-MENDOZA, A.; GONZÁLEZ-CÓRDOVA, A.; VALLEJO-CORDOBA, B. 2017. Bacteriocinas de bacterias ácido lácticas: mecanismos de acción y actividad antimicrobiana contra patógenos en quesos. Interciencia. 42(6):340-346. https://doi.org/10.1093/ajcp/45.4_ts.493 24. JURADO GÁMEZ, H.; SINSAJOA TEPUD, M.; NARVÁEZ RODRÍGUEZ, M. 2019. Evaluación de Lactobacillus plantarum microencapsulado y su viabilidad bajo condiciones gastrointestinales simuladas e inhibición frente a Escherichia coli O157:H7. Revista de la Facultad de Medicina Veterinaria y de Zootecnia. 66(3):231-244. https://doi.org/10.15446/rfmvz.v66n3.84260 25. JURADO, H.; CALPA, F.; CHASPUENGAL, A. 2014. Determinación in vitro de la acción probiótica de Lactobacillus plantarum sobre Yersinia pseudotuberculosis aislada de Cavia porcellus. Rev Fac Med Vet Zoot. 61(3):241-257. http://dx.doi.org/10.15446/rfmvz.v61n3.46872 26. JURADO, H.; JARRÍN, V.; PARREÑO, J. 2015. Crecimiento de L. plantarum y efecto sobre E. coli, S. typhimurium, S. aureus y C. perfringens. Biotecnología en el Sector Agropecuario y Agroindustrial. 13(2):57-66. 27. JURADO-GÁMEZ, H.; ZAMBRANO-MORA, E. 2020. Efecto de Lactobacillus casei microencapsulado sobre la salud intestinal y parámetros bioquímicos y productivos en pollo de engorde. Revista U.D.C.A Actualidad & Divulgación Científica. 23(2):e1480. https://doi.org/10.31910/rudca.v23.n2.2020.1480 28. KINGWATEE, N.; APICHARTSRANGKOON, A.; CHAIKHAM, P.; WORAMETRACHANON, S.; TECHARUNG, J.; PANKASEMSUK, T. 2015. Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT - Food Science and Technology. 62:847-853. https://doi.org/10.1016/j.lwt.2014.12.007 29. LANARA, L. 1981. Métodos microbiológicos. 3ªed. Ministerio de Agricultura (Brasilia). 30. LOWRY, O.; ROSEBROUG, N.; FAR, A.; RANDALL, R. 1951. Protein measurement with the folin phenol reagent. J. Biol Chem. 193(1):265-275. 31. MCLINDEN, T.; SARGEANT, J.M.; THOMAS, M.K.; PAPADOPOULOS, A.; FAZIL, A. 2014. Component costs of foodborne illness: a scoping review. BMC Public Health. 14:509. https://doi.org/10.1186/1471-2458-14-509 32. MONTALBAN-ARQUES, A.; DE SCHRYVER, P.; BOSSIER, P.; GORKIEWICZ, G.; MULERO, V.; GATLIN, D.M.; GALDINO-VILLEGAS, J. 2015. Selective manipulation of the gut microbiota improves immune status in vertebrates. Front. Immunol. 6:512. http://dx.doi.org/10.3389/fimmu.2015.00512 33. MONTEAGUDO-MERA, A.; RODRÍGUEZ-APARICIO, L.; RÚA, J.; MARTÍNEZ-BLANCO, H.; NAVASA, N.; GARCÍA-ARMESTO, M.R.; FERRERO, M.Á. 2012. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods. 4:531-541. https://doi.org/10.1016/j.jff.2012.02.014 34. NÁCHER VÁZQUEZ, M.; LÓPEZ, I.I.; NOTARARIGO, S.; FERNÁNDEZ, P.; FERNÁNDEZ, P. DE P.D.; AZNAR NOVELLA, R.; DUEÑAS CHASCO, M.T.; LÓPEZ GARCIA, P. 2016. Aplicaciones de los exopolisacáridos producidos por bacterias lácticas en la calidad y funcionalidad de los alimentos. En: Drider, D.; Rivera, V. Bacterias ácido lácticas. Fundamentos y aplicaciones. Alfaomega México. p.295-310. 35. PAIM, D.; COSTA, S.D.; WALTER, E.H.; TONON, R.V. 2016. Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT. 74:21-25. https://doi.org/10.1016/j.lwt.2016.07.022 36. PULIDO, A.; BERISTAIN, C.I. 2010. Encapsulación de ácido ascórbico mediante secado por aspersión, utilizando quitosano como material de pared. Revista Mexicana de Ingeniería Química. 9(2):189-195. 37. RODRÍGUEZ, R.Y.A.; ROJAS, G.A.F.; RODRÍGUEZ, B.S. 2016. Encapsulación de probióticos para aplicaciones alimenticias. Biosalud. 15(2):106-115. https://doi.org/10.17151/biosa.2016.15.2.10 38. RODRÍGUEZ, S.; MONTES, L.; RAMÍREZ, D. 2012. Microencapsulación de probióticos mediante secado por aspersión en presencia de prebióticos. VITAE. 19(1):186-188. 39. RODRIGUEZ-BARONA, S.; GIRALDO, G.; MONTES, L. 2016. Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebióticos. Inf. tecnol. La Serena. 27(6):135-144. http://dx.doi.org/10.4067/S0718-07642016000600014 40. RUIZ, M.; COLELLO, R.; PADOLA, N.; ETCHEVERRÍA, A. 2017. Efecto inhibitorio de Lactobacillus spp. sobre bacterias implicadas en enfermedades transmitidas por alimentos, Revista Argentina de Microbiología. 49(2):174-177. https://doi.org/10.1016/j.ram.2016.10.005 41. SÁNCHEZ DE RAMOS, M.; DE DÍAZ, C.G.; MORÁN, A.E. 2011. Identificación de Escherichia coli O157: H7 en muestras de heces de pacientes con enfermedad diarreica aguda y en muestras de carne comercializadas en supermercados de San Salvador, El Salvador. Minerva Revista en Línea CIC-UES. 2(1):28-34. 42. SÁNCHEZ, L.; OMURA, M.; LUCAS, A.; PÉREZ, T.; LLANES, M.; FERREIRA, C.L. 2015. Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Rev Salud Anim. 37(2):94-104. 43. SCHUBERT, H. 1993. lnstantization of powdered food products. lnt Chemical Enginieering. 33:28-45. 44. SVETOSLAV, D.T.; OTÁVIO, A.L.; DE PAULA, A.C.; CAMARGO, D.A.; LOPES, L.A. 2018. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Revista Argentina de Microbiología. 50(1):48-55. https://doi.org/10.1016/j.ram.2017.04.011 45. TAGG, J.R.; MCGIVEN, A.R. 1971. Assay system for bacteriocins. Appl Microb. 21(5):943. 46. TOLEDO, E.; FALCON, N.; FLORES, C.; REBATTA, M.; GUEVARA, J.; RAMOS, D. 2015. Susceptibilidad antimicrobiana de cepas de Escherichia coli obtenidas de muestras de heces de cerdos destinados a Consumo Humano. Salud y Tecnología Veterinaria. 3(2):35-40. https://doi.org/10.20453/stv.v3i1.2823 47. VERA-MEJÍA, R.; ORMAZA-DONOSO, J.; MUÑOZ-CEDEÑO, J.; ARTEAGA-CHÁVEZ, F.; SÁNCHEZ-MIRANDA, L. 2018. Cepas de Lactobacillus plantarum con potencialidades probióticas aisladas de cerdos criollos. Revista de Salud Animal. 40(2):e04. 48. WENDLANDT, S.; SHEN, J.; KADLEC, K.; WANG, Y.; LI, B.; ZHANG, WJ.; SCHWARZ, S. 2015. Genes de resistencia a múltiples fármacos en estafilococos de animales que confieren resistencia a agentes antimicrobianos de gran importancia y crítica en la medicina humana. Tendencias en microbiología. 23(1):4. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2021-06-30 |
date_accessioned |
2021-06-30T00:00:00Z |
date_available |
2021-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1733 |
url_doi |
https://doi.org/10.31910/rudca.v24.n1.2021.1733 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v24.n1.2021.1733 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1733/2181 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1733/2182 |
_version_ |
1811201180539289600 |
spelling |
Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 Viability of microencapsulated Lactobacillus plantarum under simulated gastrointestinal conditions and inhibition against Escherichia coli O157:H7 Los Lactobacillus inhiben múltiples agentes patógenos causales de toxiinfecciones alimentarias, relacionándose su mecanismo de acción con la modulación del sistema inmune. Por su parte, E. coli O157:H7 es considerado un microorganismo causal de alteraciones, principalmente, a nivel intestinal y renal y es encontrado, por lo general, en matrices alimentarias contaminadas o en mal estado. La incidencia de este tipo de problemática se ha relacionado a la resistencia a los antibióticos, que limita su control y mitigación de manera eficaz. Por lo tanto, el objetivo del trabajo fue evaluar el efecto inhibitorio de Lactobacillus plantarum microencapsulado in vitro sobre Escherichia coli O157:H7, con el fin de encontrar estrategias inocuas para el control de agentes patógenos. Se determinó la cinética de fermentación, evaluando variables, como consumo de azúcar, producción de proteínas, acidez, pH y fase logarítmica (UFC/mL). La microencapsulación, se realizó mediante la técnica de spray drying, utilizando inulina y maltodextrina, como materiales encapsulantes. Se determinó la viabilidad de L. plantarum bajo condiciones gastrointestinales simuladas. Además, se evaluaron las características físicas del microorganismo microencapsulado y el efecto inhibitorio de L. plantarum y su sobrenadante sobre E. coli O157:H7. Posteriormente, se valoró la susceptibilidad de ambas cepas a diferentes antibióticos. Como resultado, se encontró resistencia de ambas cepas a algunos antibióticos evaluados, como penicilina. La cepa láctica y el sobrenadante inhibieron el crecimiento de E. coli O157:H7. L. plantarum presentó una viabilidad óptima a condiciones gastrointestinales simuladas después de 45 días de almacenamiento (1,4x107-3,0x1010UFC/150µL). La microencapsulación incrementa su vialidad y su establecimiento en el huésped. Lactobacillus inhibit multiple pathogens that cause food poisoning, and their mechanism of action is related to the modulation of the immune system. E. coli O157:H7 is considered a causal microorganism of alterations, mainly at intestinal and renal level, and is generally found in contaminated or spoiled food matrices. The incidence of this type of problem has been related to antibiotic resistance, which limits its effective control and mitigation. Therefore, the objective of this work was to evaluate the inhibitory effect of microencapsulated Lactobacillus plantarum in vitro on Escherichia coli O157:H7, in order to find innocuous strategies for the control of pathogens. Fermentation kinetics were determined by evaluating variables such as sugar consumption, protein production, acidity, pH and logarithmic phase (CFU/mL). Microencapsulation was performed by spray drying, using inulin and maltodextrin as encapsulating materials. The viability of L. plantarum was determined under simulated gastrointestinal conditions. In addition, the physical characteristics of the microencapsulated microorganism and the inhibitory effect of L. plantarum and its supernatant on E. coli O157:H7 were evaluated. Subsequently, the susceptibility of both strains to different antibiotics was evaluated. As a result, resistance of both strains to some of the antibiotics evaluated, such as penicillin, was found. The lactic strain and the supernatant inhibited the growth of E. coli O157:H7. L. plantarum showed optimal viability at simulated gastrointestinal conditions after 45 days of storage (1.4x107-3.0x1010CFU/150µL). Microencapsulation increases its viability and establishment in the host. Fajardo-Argoti, Catalina Jurado-Gámez, Henry Parra-Suescún, Jaime Sanidad animal Probiótico Lactobacillus Patógeno Animal health Probiotic Lactobacillus Pathogen 24 1 Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio Artículo de revista Journal article 2021-06-30T00:00:00Z 2021-06-30T00:00:00Z 2021-06-30 application/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1733 10.31910/rudca.v24.n1.2021.1733 https://doi.org/10.31910/rudca.v24.n1.2021.1733 spa http://creativecommons.org/licenses/by-nc/4.0 Catalina Fajardo-Argoti, Henry Jurado-Gámez, Jaime Parra-Suescún - 2021 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. ABRAMOV, V.; KHLEBNIKOV, V.; KOSAREV, I.; BAIRAMOVA, G.; VASILENKO, R.; SUZINA, N.; MACHULIN, A.; SAKULIN, V.; KULIKOVA, N.; VASILENKO, N.; KARLYSHEV, A.; UVERSKY, V.; CHIKINDAS, M.; MELNIKOV, V. 2014. Probiotic Properties of Lactobacillus crispatus 2,029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens. Probiotics and Antimicrobial Proteins. 6(3-4):165-176. https://doi.org/10.1007/s12602-014-9164-4 2. AGUDELO, C.; ORTEGA, R.; HOYOS, J. 2010. Determination of kinetic parameters of two lactic inoculums: Lactobacillus plantarum A6 and Lactic Acid bacterias of yogurt. Ciencias Agropecuarias. 8(2):8-16. 3. BAUER, A.W.; KIRBY, W.M.; SHERRIS, J.C.; TURCK, M. 1966. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology. 45(4):493–496. 4. BETANCUR, H.C.; RODRÍGUEZ, B.R.; MARTÍNEZ, Y.; ROMERO C., O.; RUGELES, C.C. 2020. La administración oral de un biopreparado con Lactobacillus plantarum CAM-6 mejoró el comportamiento productivo y el rendimiento de la canal de cerdos en crecimiento. Revista de Producción Animal. 32(2):64-73. 5. CASTELLANO, P.; PÉREZ IBARRECHE, M.; BLANCO MASSANI, M.; FONTANA, C.; VIGNOLO, G.M. 2017. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms. 38(5):1-25. https://doi.org/10.3390/microorganisms5030038 6. CHARTERIS, W.P.; KELLY, P.M.; MORELLI, L.; COLLINS, K. 1998. Antibiotic susceptibility of potential probiotic Lactobacillus species. J. Food Protect. 61(12):1636-1643. https://doi.org/10.4315/0362-028x-61.12.1636 7. COSSIO, D.S.; HERNÁNDEZ, Y.G.; MENDOZA, J.D. 2018. Development of probiotics for animal production. Experiences in Cuba Desarrollo de probióticos destinados a la producción animal: experiencias en Cuba. Cuban Journal of Agricultural Science. 52(4):1. 8. CRUEGER, W.; CRUEGER, A. 1993. Biotecnología: Manual de Microbiología Industrial. 3°ed. Ed. Acribia (España). 432p. 9. CUETO, C.; ARAGÓN, S. 2012. Evaluación del potencial probiótico de bacterias ácido lácticas para reducir el colesterol in vitro. Scientia Agropecuaria. 3(1):45-50. https://doi.org/10.17268/sci.agropecu.2012.01.06 10. CUETO-VIGIL, M.C.; ACUÑA-MONSALVE, Y.; VALENZUELA-RIAÑO, J. 2010. Evaluación in vitro del potencial probiótico de bacterias ácido lácticas aisladas de suero costeño. Actualidades biológicas. 32(93):129-138. 11. DUAR, R.M.; LIN, X.B.; ZHENG, J.; MARTINO, M.E.; GRENIER, T.; PÉREZ-MUÑOZ, M.E.; LEULIER, F.; GÄNZLE, M.; WALTER, J. 2017. Estilos de vida en transición: evolución e historia natural del género Lactobacillus. FEMS Microbiol. Rev. 41(Supl. 1):S27-S48. https://doi.org/10.1093/femsre/fux030 12. DUBOIS, M.; GILES, K.A.; HAMILTON, J.K.; REBERS, P.A.; SMITH, F. 1956. Colorimetric method for determination of sugar and related substances. Anal Chem. 28(3):350-356. 13. EGAN, K.; FIELD, D.; REA, M.C.; ROSS, R.P.; HILL, C.; COTTER, P.D. 2016. Bacteriocins: Novel Solutions to Age Old Spore Related Problems? Frontiers in Microbiology. 7(461):1-21. https://doi.org/10.3389/fmicb.2016.00461 14. ELINALVA MACIEL, P.; VASCONCELOS, M.P.; OLIVEIRA, I.S.; AFFE, H.M.D.J.; NASCIMENTO, R.; MELO, I.S.D.; ROQUE, M.R.A.; ASSIS, S.A.D. 2012. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology. 32(4):710-714. https://dx.doi.org/10.1590/S0101-20612012005000094 15. EUROPEAN FOOD SAFETY AUTHORITY, EFSA; EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL, ECDC. 2018. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal. 16(2):e05182. https://doi.org/10.2903/j.efsa.2018.5182 16. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS-FAO; WORLD HEALTH ORGANIZATION- WHO. 2002. Guidelines for the evaluation of probiotics in food. Available from Internet in: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf 17. FREUDIG, B.; HOGEKAMP, S.; SCHUBERT, H. 1999. Dispersion of powders in liquids in a stirred vessel. Chemical Engineering and Processing. 38:525–532. 18. FRITZEN-FREIRE, C.; PRUDÊNCIO, E.S.; AMBONI, R.D.; PINTO, S.S.; NEGRÃO-MURAKAMI, A.N.; MURAKAMI, F.S. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International. 45:306e312. 19. GARCÍA, Y.; PÉREZ, T.; BOUCOURT, R.; BALCÁZAR, J.L.; NICOLI, J.R.; MOREIRA, J.; RODRÍGUEZ, Z.; FUERTES, H.; NUÑEZ, O.; ALBELO, N.; HALAIHEL, N. 2016. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science. 108:125-132. https://doi.org/10.1016/j.rvsc.2016.08.009 20. GONZÁLEZ, R.E.; MENDOZA, J.; MORÓN, L.B. 2015. Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados. Inf Tecnol. 26(5):11-16. http://dx.doi.org/10.4067/S0718-07642015000500003 21. GUIMARÃES, D.P.; COSTA, F.A.A.; RODRIGUES, M.I.; MAUGERI, F. 1999. Optimización de la síntesis de dextrano e hidrólisis ácida mediante análisis de respuesta de superficie. Revista Brasileña de Ingeniería Química. 16(2):129-139. http://dx.doi.org/10.1590/S0104-66321999000200004 22. GUTIÉRREZ-SARMIENTO, W.; VENTURA-CANSECO, L.M.; GUTIÉRREZ-MICELI, F.A.; LUJÁN-HIDALGO, M.C.; ABUD-ARCHILA, M.; RUÍZ-VALDIVIEZO, V.M. 2020. Optimización de producción de biomasa, ácido láctico y supervivencia a simulación gastrointestinal de Lactobacillus plantarum BAL-03-ITTG cultivado en biorreactor de tanque agitado. Agrociencia. 54(2):147-162. 23. HEREDIA-CASTRO, P.; HÉRNÁNDEZ-MENDOZA, A.; GONZÁLEZ-CÓRDOVA, A.; VALLEJO-CORDOBA, B. 2017. Bacteriocinas de bacterias ácido lácticas: mecanismos de acción y actividad antimicrobiana contra patógenos en quesos. Interciencia. 42(6):340-346. https://doi.org/10.1093/ajcp/45.4_ts.493 24. JURADO GÁMEZ, H.; SINSAJOA TEPUD, M.; NARVÁEZ RODRÍGUEZ, M. 2019. Evaluación de Lactobacillus plantarum microencapsulado y su viabilidad bajo condiciones gastrointestinales simuladas e inhibición frente a Escherichia coli O157:H7. Revista de la Facultad de Medicina Veterinaria y de Zootecnia. 66(3):231-244. https://doi.org/10.15446/rfmvz.v66n3.84260 25. JURADO, H.; CALPA, F.; CHASPUENGAL, A. 2014. Determinación in vitro de la acción probiótica de Lactobacillus plantarum sobre Yersinia pseudotuberculosis aislada de Cavia porcellus. Rev Fac Med Vet Zoot. 61(3):241-257. http://dx.doi.org/10.15446/rfmvz.v61n3.46872 26. JURADO, H.; JARRÍN, V.; PARREÑO, J. 2015. Crecimiento de L. plantarum y efecto sobre E. coli, S. typhimurium, S. aureus y C. perfringens. Biotecnología en el Sector Agropecuario y Agroindustrial. 13(2):57-66. 27. JURADO-GÁMEZ, H.; ZAMBRANO-MORA, E. 2020. Efecto de Lactobacillus casei microencapsulado sobre la salud intestinal y parámetros bioquímicos y productivos en pollo de engorde. Revista U.D.C.A Actualidad & Divulgación Científica. 23(2):e1480. https://doi.org/10.31910/rudca.v23.n2.2020.1480 28. KINGWATEE, N.; APICHARTSRANGKOON, A.; CHAIKHAM, P.; WORAMETRACHANON, S.; TECHARUNG, J.; PANKASEMSUK, T. 2015. Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT - Food Science and Technology. 62:847-853. https://doi.org/10.1016/j.lwt.2014.12.007 29. LANARA, L. 1981. Métodos microbiológicos. 3ªed. Ministerio de Agricultura (Brasilia). 30. LOWRY, O.; ROSEBROUG, N.; FAR, A.; RANDALL, R. 1951. Protein measurement with the folin phenol reagent. J. Biol Chem. 193(1):265-275. 31. MCLINDEN, T.; SARGEANT, J.M.; THOMAS, M.K.; PAPADOPOULOS, A.; FAZIL, A. 2014. Component costs of foodborne illness: a scoping review. BMC Public Health. 14:509. https://doi.org/10.1186/1471-2458-14-509 32. MONTALBAN-ARQUES, A.; DE SCHRYVER, P.; BOSSIER, P.; GORKIEWICZ, G.; MULERO, V.; GATLIN, D.M.; GALDINO-VILLEGAS, J. 2015. Selective manipulation of the gut microbiota improves immune status in vertebrates. Front. Immunol. 6:512. http://dx.doi.org/10.3389/fimmu.2015.00512 33. MONTEAGUDO-MERA, A.; RODRÍGUEZ-APARICIO, L.; RÚA, J.; MARTÍNEZ-BLANCO, H.; NAVASA, N.; GARCÍA-ARMESTO, M.R.; FERRERO, M.Á. 2012. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods. 4:531-541. https://doi.org/10.1016/j.jff.2012.02.014 34. NÁCHER VÁZQUEZ, M.; LÓPEZ, I.I.; NOTARARIGO, S.; FERNÁNDEZ, P.; FERNÁNDEZ, P. DE P.D.; AZNAR NOVELLA, R.; DUEÑAS CHASCO, M.T.; LÓPEZ GARCIA, P. 2016. Aplicaciones de los exopolisacáridos producidos por bacterias lácticas en la calidad y funcionalidad de los alimentos. En: Drider, D.; Rivera, V. Bacterias ácido lácticas. Fundamentos y aplicaciones. Alfaomega México. p.295-310. 35. PAIM, D.; COSTA, S.D.; WALTER, E.H.; TONON, R.V. 2016. Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT. 74:21-25. https://doi.org/10.1016/j.lwt.2016.07.022 36. PULIDO, A.; BERISTAIN, C.I. 2010. Encapsulación de ácido ascórbico mediante secado por aspersión, utilizando quitosano como material de pared. Revista Mexicana de Ingeniería Química. 9(2):189-195. 37. RODRÍGUEZ, R.Y.A.; ROJAS, G.A.F.; RODRÍGUEZ, B.S. 2016. Encapsulación de probióticos para aplicaciones alimenticias. Biosalud. 15(2):106-115. https://doi.org/10.17151/biosa.2016.15.2.10 38. RODRÍGUEZ, S.; MONTES, L.; RAMÍREZ, D. 2012. Microencapsulación de probióticos mediante secado por aspersión en presencia de prebióticos. VITAE. 19(1):186-188. 39. RODRIGUEZ-BARONA, S.; GIRALDO, G.; MONTES, L. 2016. Encapsulación de Alimentos Probióticos mediante Liofilización en Presencia de Prebióticos. Inf. tecnol. La Serena. 27(6):135-144. http://dx.doi.org/10.4067/S0718-07642016000600014 40. RUIZ, M.; COLELLO, R.; PADOLA, N.; ETCHEVERRÍA, A. 2017. Efecto inhibitorio de Lactobacillus spp. sobre bacterias implicadas en enfermedades transmitidas por alimentos, Revista Argentina de Microbiología. 49(2):174-177. https://doi.org/10.1016/j.ram.2016.10.005 41. SÁNCHEZ DE RAMOS, M.; DE DÍAZ, C.G.; MORÁN, A.E. 2011. Identificación de Escherichia coli O157: H7 en muestras de heces de pacientes con enfermedad diarreica aguda y en muestras de carne comercializadas en supermercados de San Salvador, El Salvador. Minerva Revista en Línea CIC-UES. 2(1):28-34. 42. SÁNCHEZ, L.; OMURA, M.; LUCAS, A.; PÉREZ, T.; LLANES, M.; FERREIRA, C.L. 2015. Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Rev Salud Anim. 37(2):94-104. 43. SCHUBERT, H. 1993. lnstantization of powdered food products. lnt Chemical Enginieering. 33:28-45. 44. SVETOSLAV, D.T.; OTÁVIO, A.L.; DE PAULA, A.C.; CAMARGO, D.A.; LOPES, L.A. 2018. Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Revista Argentina de Microbiología. 50(1):48-55. https://doi.org/10.1016/j.ram.2017.04.011 45. TAGG, J.R.; MCGIVEN, A.R. 1971. Assay system for bacteriocins. Appl Microb. 21(5):943. 46. TOLEDO, E.; FALCON, N.; FLORES, C.; REBATTA, M.; GUEVARA, J.; RAMOS, D. 2015. Susceptibilidad antimicrobiana de cepas de Escherichia coli obtenidas de muestras de heces de cerdos destinados a Consumo Humano. Salud y Tecnología Veterinaria. 3(2):35-40. https://doi.org/10.20453/stv.v3i1.2823 47. VERA-MEJÍA, R.; ORMAZA-DONOSO, J.; MUÑOZ-CEDEÑO, J.; ARTEAGA-CHÁVEZ, F.; SÁNCHEZ-MIRANDA, L. 2018. Cepas de Lactobacillus plantarum con potencialidades probióticas aisladas de cerdos criollos. Revista de Salud Animal. 40(2):e04. 48. WENDLANDT, S.; SHEN, J.; KADLEC, K.; WANG, Y.; LI, B.; ZHANG, WJ.; SCHWARZ, S. 2015. Genes de resistencia a múltiples fármacos en estafilococos de animales que confieren resistencia a agentes antimicrobianos de gran importancia y crítica en la medicina humana. Tendencias en microbiología. 23(1):4. https://revistas.udca.edu.co/index.php/ruadc/article/download/1733/2181 https://revistas.udca.edu.co/index.php/ruadc/article/download/1733/2182 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |