Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión
.
La interacción entre plantas y patógenos es una relación muy dinámica y compleja, que conlleva un alto grado de especificidad y es esta última característica, la que desencadena respuestas tan importantes en la supervivencia de uno u otro. El patosistema formado por tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. lycopersici (Fol) ha sido objeto de múltiples estudios, debido a la importancia de la hortaliza, a nivel mundial y por el impacto económico y ecológico del hongo, responsable de la marchitez vascular, provocando pérdidas que llegan hasta el 100%. Una forma de encontrar alternativas para el manejo de cualquier patosistema es conocer los actores involucrados y los mecanismos que rigen la interacción, a través de avances... Ver más
0123-4226
2619-2551
24
2021-06-30
Silvia Patricia López-Zapata, Dora Janeth García-Jaramillo, Walter Ricardo López, Nelson Ceballos-Aguirre - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1713 |
---|---|
record_format |
ojs |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión |
spellingShingle |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión López-Zapata, Silvia Patricia García-Jaramillo, Dora Janeth López, Walter Ricardo Ceballos-Aguirre, Nelson Avirulencia Hongo Patosistema Defensa Resistencia Avirulence Fungus Pathosystem Plant defense Resistance |
title_short |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión |
title_full |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión |
title_fullStr |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión |
title_full_unstemmed |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión |
title_sort |
interacción entre tomate (solanum lycopersicum l.) y fusarium oxysporum f. sp. lycopersici. una revisión |
title_eng |
Tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici interaction. A review |
description |
La interacción entre plantas y patógenos es una relación muy dinámica y compleja, que conlleva un alto grado de especificidad y es esta última característica, la que desencadena respuestas tan importantes en la supervivencia de uno u otro. El patosistema formado por tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. lycopersici (Fol) ha sido objeto de múltiples estudios, debido a la importancia de la hortaliza, a nivel mundial y por el impacto económico y ecológico del hongo, responsable de la marchitez vascular, provocando pérdidas que llegan hasta el 100%. Una forma de encontrar alternativas para el manejo de cualquier patosistema es conocer los actores involucrados y los mecanismos que rigen la interacción, a través de avances tecnológicos y científicos, que muestren, claramente, cómo se desarrolla la interacción, a nivel genético. Esta revisión recoge la información de fuentes científicas con énfasis en el conocimiento del hongo, el cultivo del tomate y la defensa vegetal, aplicada a este patosistema, así como los mecanismos moleculares.
|
description_eng |
The interaction between plants and pathogens is a very dynamic and complex relationship that also includes a high degree of specificity, and it is precisely this last characteristic which triggers such important responses in the survival of one or the other. The pathosystem formed by tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici (Fol) has been the subject of multiple studies due to the importance of the vegetable worldwide and for the economic and ecological impact of the fungus responsible for the vascular wilt disease in tomato, causing losses that go up to 100%. One way to find alternatives for the management of any pathosystem is to know the actors involved and the mechanisms that govern the interaction through technological and scientific advances that clearly show how the interaction develops on a genetic level. This review collects the information from different scientific sources with focus on the knowledge of the fungus, tomato cultivation and plant defense applied to this pathosystem, as well as the molecular mechanisms.
|
author |
López-Zapata, Silvia Patricia García-Jaramillo, Dora Janeth López, Walter Ricardo Ceballos-Aguirre, Nelson |
author_facet |
López-Zapata, Silvia Patricia García-Jaramillo, Dora Janeth López, Walter Ricardo Ceballos-Aguirre, Nelson |
topicspa_str_mv |
Avirulencia Hongo Patosistema Defensa Resistencia |
topic |
Avirulencia Hongo Patosistema Defensa Resistencia Avirulence Fungus Pathosystem Plant defense Resistance |
topic_facet |
Avirulencia Hongo Patosistema Defensa Resistencia Avirulence Fungus Pathosystem Plant defense Resistance |
citationvolume |
24 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1713 |
language |
eng |
format |
Article |
rights |
http://creativecommons.org/licenses/by-nc/4.0 Silvia Patricia López-Zapata, Dora Janeth García-Jaramillo, Walter Ricardo López, Nelson Ceballos-Aguirre - 2021 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
ABDALLAH, R.A.B.; MOKNI-TLILI, S.; NEFZI, A.; KHIAREDDINE, H.J.; DAAMI-REMADI, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biological Control. (United States). 97:80-88. http://dx.doi.org/10.1016/j.biocontrol.2016.03.005 2. AGRIOS, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press. 922p. 3. AGRIOS, G.N. 2013. Plant Pathology. J. Chemical Information and Modeling. 53. https://doi.org/10.1017/CBO9781107415324.00 4. AGRONET. 2021. Information and Communication Network of the Colombian Agricultural Sector. Available online: http://www.agronet.gov.co/estadistica/Paginas/default.aspx 5. AGUDELO, A.G.; CEBALLOS, N.; OROZCO, F.J. 2011. Caracterización morfológica del tomate tipo cereza (Solanum lycopersicum L.). Agronomía. (Colombia). 19:44-53. 6. AKRAMI, M.; YOUSEFI, Z. 2015. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonistic fungi. Biological Forum- An International Journal. 7(1):887-892. 7. ALI, A.; MUZAFFAR, A.; AWAN, M.F.; DIN, S.; NASIR, I.A.; HUSNAIN, T. 2014. Genetically Modified Foods: Engineered tomato with extra advantages. Advancements in Life Science. (Pakistan). 1(3):139-152. 8. ANDERSEN, E.J.; ALI, S.; BYAMUKAMA, E.; YEN, Y.; NEPAL, M.P. 2018. Disease resistance mechanisms in plants. Genes. (Switzerland). 9(7):339. https://doi.org/10.3390/genes9070339 9. ANDOLFO, G.; FERRIELLO, F.; TARDELLA, L.; FERRARINI, A.; SIGILLO, L.; FRUSCIANTE, L.; ERCOLANO, M.R. 2014. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato mosaic virus. Plos One. (United States). 9(5):e94963. https://doi.org/10.1371/journal.pone.0094963 10. ANDOLFO, G.; IOVIENO, P.; FRUSCIANTE, L.; ERCOLANO, M. 2016. Genome-Editing technologies for enhancing plant disease resistance. Frontiers in Plant Science. 7:1813. https://dx.doi.org/10.3389/fpls.2016.01813 11. ÁVILA, M.K.; ROMERO, H.M. 2017. Plant responses to pathogen attack: molecular basis of qualitative resistance. Rev. Facultad Nacional de Agronomía. (Colombia). 70(2):8225-8235. https://dx.doi.org/10.15446/rfna.v70n2.64526 12. BÁEZ-VALDEZ, E.P.; CARRILLO-FASIO, J.A.; BÁEZ-SAÑUDO, M.A.; GARCÍA-ESTRADA, R.S.; VALDEZ-TORRES, J.B.; CONTRERAS-MARTÍNEZ, R. 2010. Resistant rootstocks utilization for Fusarium control (Fusarium oxysporum f. sp. lycopersici Snyder and Hansen race 3) in tomato (Lycopersicon esculentum Mill) under shade conditions. Rev. Mexicana de Fitopatología. 28(2):111-123. 13. BERGOUGNOUX, V. 2014. The history of tomato: From domestication to biopharming. Biotechnology Advances. (Netherlands). 32(1):170-189. https://doi.org/10.1016/j.biotechadv.2013.11.003 14. BIJU, V.C.; FOKKENS, L.; HOUTERMAN, P.M.; REP, M.; CORNELISSEN, B.J.C. 2017. Multiple evolutionary trajectories have led to the emergence of races in Fusarium oxysporum f. sp. lycopersici. Applied and Environmental Microbiology. (United States). 83(4):e02548-16. https://dx.doi.org/10.1128/AEM.02548-16 15. BLANCA, J.; MONTERO-PAU, J.; SAUVAGE, C.; BAUCHET, G.; ILLA, E.; DÍEZ M., J.; CAÑIZARES, J. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. (United Kingdom). 16(1):1-19. https://doi.org/10.1186/s12864-015-1444-1 16. BOLLER, T.; HE, S.Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. (New York). 324(5928):742. https://doi.org/10.1126/science.1171647 17. BOTERO, V.; HOYOS-CARVAJAL, L.; MARÍN J. 2018. Detection of asymptomatic plants of Solanum lycopersicum L. infected with Fusarium oxysporum using VIS reflectance spectroscopy. Ciencias Hortícolas. (Colombia). 12(2):436-446. http://doi.org/10.17584/rcch.2018v12i2.7293 18. CAMAGNA, M.; TAKEMOTO, D. 2018. Hypersensitive response in plants. eLS. John Wiley and Sons, Ltd (Chichester, UK). p.1-7. https://doi.org/10.1002/9780470015902.a0020103.pub2 19. CARMONA, S.L.; BURBANO-DAVID, D.; GÓMEZ, M.; LÓPEZ, W.; CEBALLOS, N.; CASTAÑO-ZAPATA, J.; SIMBAQUEBA, J.; SOTO-SUÁREZ, M. 2020. Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens. (Switzerland). 9(70):1-23. https://doi.org/10.3390/pathogens9010070 20. CEBALLOS-AGUIRRE, N.; LÓPEZ, W.; OROZCO-CÁRDENAS, M.; MORILLO, Y.; VALLEJO-CABRERA, F. 2017. Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia. (Brazil). 76(2):220-228. http://dx.doi.org/10.1590/1678-4499.116 21. CEBALLOS-AGUIRRE, N.; VALLEJO, A. 2012. Evaluating the Fruit Production and Quality of Cherry Tomato (Solanum lycopersicum var. cerasiforme). Rev. Facultad Nacional de Agronomía. (Colombia). 65(2):6593-6604. 22. CHEEMA, D.S.; DHALIWAL, M.S. 2005. Hybrid Tomato Breeding. J. New Seeds. (United States). 6(2-3):1-14. http://dx.doi.org/10.1300/J153v06n02_01 23. COOK, D.E.; MESARICH, C.H.; THOMMA, B.P. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology. (United States). 53:541-563. https://doi.org/10.1146/annurev-phyto-080614-120114 24. COUTO, D.; ZIPFEL, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology. (United Kingdom). 16(9):537-552. https://doi.org/10.1038/nri.2016.77 25. DEAN, R.; VAN-KAN, J.A.; PRETORIUS, Z.A.; HAMMOND, KIM.; DI PIETRO, A.; SPANU, P.; RUDD, J.; DICKMAN, M.; KAHMANN, R.; ELLIS, J.; FOSTER, G. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. (United Kingdom). 13(4):414-30. https://doi.org/10.1111/j.1364-3703.2011.00783.x 26. DJIDONOU, D.; SIMONNE, A.H.; KOCH, K.E.; BRECHT, J.K.; ZHAO, X. 2016. Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. American Society of Horticultural Science. (United States). 51(12):1618-1624. https://doi.org/10.21273/HORTSCI11275-16 27. EDEL-HERMANN, V.; LECOMTE, C. 2019. Current status of Fusarium oxysporum Formae speciales and races. Phytophatology. (United States). 109(4):512-530. https://doi.org/10.1094/PHYTO-08-18-0320-RVW 28. EITAS, T.K.; DANGL, J.L. 2010. NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Current Opinion in Plant Biology. (Netherlands). 13(4):472-477. https://doi.org/10.1016/j.pbi.2010.04.007 29. ESSARIOUI, A.; MOKRINI, F.; AFECHTAL, M. 2016. Molecular interactions between tomato and its wilt pathogen Fusarium oxysporum f. sp. lycopersici. Reveu Marocaine des Sciences Agronomiques et Veterinaries. 4(1):66-74. 30. FRANCO, D.A.; ARANGO, J.F.; HURTADO-SALAZAR, A.; CEBALLOS-AGUIRRE, N. 2018. Development, production, and quality of “Chonto” type tomato grafted on cherry tomato introductions. Ceres. (Brazil). 65(2):150-157. https://doi.org/10.1590/0034-737X201865020006 31. GARCÍA-ENCISO, E.L.; BENAVIDES-MENDOZA, A.; FLORES-LÓPEZ, M.L.; ROBLEDO-OLIVO, A.; JUÁREZ-MALDONADO, A.; GONZÁLEZ-MORALES, S. 2017. A molecular vision of the interaction of tomato plants and Fusarium oxysporum f. sp. lycopersici. IntechOpen. https://doi.org/10.5772/intechopen.72127 32. GERSZBERG, A.; HNATUSZKO-KONKA, K.; KOWALCZY, T.; KONONOWICZ, A. 2015. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue and Organ Culture (Netherlands). 120:881-902. https://doi.org/10.1007/s11240-014-0664-4 33. GONZÁLEZ, I.; ARIAS, Y.; PETEIRA, B. 2012. General aspects of the interaction Fusarium oxysporum f. sp. lycopersici-tomato. Protección vegetal. (La Habana). 27(1):1-7. 34. GORDON, T. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annual Rev. Phytopathology. (United States). 55:23-39. https://doi.org/10.1146/annurev-phyto-080615-095919 35. GUAN, W.; ZHAO, X.; HASSELL, R.; THIES, J. 2012. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience. (United States). 47(2):164-170. https://doi.org/10.21273/HORTSCI.47.2.164 36. GURURANI, M.A.; VENKATESH, J.; UPADHYAYA, C.P.; NOOKARAJU, A.; PANDEY, S.K.; PARK, S.W. 2012. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology. (United States). 78:51-65. https://doi.org/10.1016/j.pmpp.2012.01.002 37. HAMEL, L.P.; NICOLE, M.C.; DUPLESSIS, S.; ELLIS, B.E. 2012. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. Plant Cell. (United States). 24(4):1327-1351. https://doi.org/10.1105/tpc.112.096156 38. HERNÁNDEZ-MARTÍNEZ, R.; LÓPEZ-BENÍTEZ, A.; BORREGO-ESCALANTE, F.; ESPINOZA-VELÁZQUEZ, J.; SÁNCHEZ-ASPEYTIA, D.; MALDONADO-MENDOZA, I.E.; LÓPEZ-OCHOA, L.A. 2014. Fusarium oxysporum f. sp. lycopersici in tomato farms in San Luis Potosí. Rev. Mexicana de Ciencias Agrícolas. 5(7):1169-1178. 39. HERRERA, H.; HURTADO, A.; CEBALLOS, N. 2015. Technical and economic study of the elite cherry tomato (Solanum lycopersicum var. cerasiforme) under semi-controlled conditions. Rev. Col. ciencias hortícolas. 9(2):290-300. http://dx.doi.org/10.17584/rcch.2015v9i2.4185 40. IGNJATOV, M.; MILOSEVIC, D.; NIKOLIC, Z.; GVOZDANOVIC-VARGA, J.; JOVICIC, D.; ZDJELAR, G. 2012. Fusarium oxysporum as causal agent of tomato wilt and fruit rot. Pesticidi i Fitomedicina (Serbia). 27(1):25-31. https://doi.org/10.2298/PIF1201025I 41. INAMI, K.; KASHIWA, T.; KAWABE, M.; ONOKUBO-OKABE, A.; ISHIKAWA, N.; PÉREZ, E.R.; ARIE, T. 2014. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and Environments. (Japan). 29(2):200-210. https://dx.doi.org/10.1264/jsme2.ME13184 42. JIMÉNEZ-FERNÁNDEZ, D.; LANDA, B.B.; KANG, S.; JIMÉNEZ-DÍAZ, R.M.; NAVAS-CORTÉS, J.A. 2013. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. Plos One. (United States). 8(4):e61360. https://doi.org/10.1371/journal.pone.0061360 43. JONES, J.D.G.; DANGL, J.L. 2006. The plant immune system. Nature. (United Kingdom). 444(7117):323-329. https://doi.org/10.1038/nature05286 44. KANT, P.; REINPRECHT, Y.; MARTIN, C.J.; ISLAM, R.; PAULS, K.P. 2011. Disease resistance/ Pathology/Fusarium. Comprehensive Biotechnology (Canada). 4:729-743. https://doi.org/10.1016/B978-0-08-088504-9.00263-4 45. KHAN, N.; MAYMON, M.; HIRSCH, A.M. 2017. Combating Fusarium infection using Bacillus- based antimicrobials. Microorganisms. (Switzerland). 5(4):75. https://dx.doi.org/10.3390/microorganisms5040075 46. KOYYAPPURATH, S. 2015. Histological and molecular approaches for resistance to Fusarium oxysporum f.sp. radicis-vanillae, causal agent of root and stem rot in Vanilla spp. (Orchidaceae). Université de la Reunión (France). 227p. 47. KOYYAPPURATH, S.; CONÉJÉRO, G.; DIJOUX, J.B.; LAPEYRE-MONTÈS, F.; JADE, K.; CHIROLEU, F.; GRISONI, M. 2015. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae. Frontiers in Plant Science. (Switzerland). 6:1125. https://dx.doi.org/10.3389/fpls.2015.01125 48. LESLIE, J.F.; SUMMERELL; B.A. 2006. The Fusarium laboratory manual. Blackwell Pub (Ames, IA, USA). 369p. 49. LI, B.; MENG, X.; SHAN, L.; HE, P. 2016. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host and Microbe. (United States). 19(5):641-650. https://doi.org/10.1016/j.chom.2016.04.011 50. LI, J.; FOKKENS, L.; CONNEELY, L.J.; REP, M. 2020a. Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred. Environmental microbiology (United Kingdom). 22(12):4985-5004. https://doi.org/10.1111/1462-2920.15095 51. LI, J.; GAO, M.; GABRIEL, D.W.; LIANG, W.; SONG, L. 2020b. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. Lycopersici Provides Novel Insights Into Infection-Related Proteins. Frontiers in microbiology. (Switzerland).11:559440. https://doi.org/10.3389/fmicb.2020.559440 52. MA, L.J.; GEISER, D.M.; PROCTOR, R.H.; ROONEY, A.P.; O'DONNELL, K.; TRAIL, F.; GARDINER, D.M.; MANNERS, J.M.; KAZAN, K. 2013. Fusarium pathogenomics. Annual Review of Microbiology. (United States). 67(1):399-416. https://doi.org/10.1146/annurev-micro-092412-155650 53. MCGOVERN, R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection. 73:78-92. https://doi.org/10.1016/j.cropro.2015.02.021 54. MENG, X.; ZHANG, S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology. (United States). 51:245-266. https://doi.org/10.1146/annurev-phyto-082712-102314 55. MORALES, N.; ESPINOSA, G.; MORALES, A.; SÁNCHEZ, B.; JIMÉNEZ, M.; MILIAN-GARCÍA, R. 2014. Morphological characterization and evaluation of resistance to Fusarium oxysporum in wild species of the genus Solanum section lycopersicon. Rev. Col. Biotecnología. 16(1):62-73. http://dx.doi.org/10.15446/rev.colomb.biote.v16n1.38259 56. MURILLO-GÓMEZ, P.; HOYOS, R.; CHAVARRIAGA, P. 2017. Organogenesis in-vitro using three tissue types of tree tomato [Solanum betaceum (Cav.)]. Agronomía Colombiana. 35(1):5-11. https://dx.doi.org/10.15446/agron.colomb.v35n1.61330 57. MURUGAN, L.; KRISHNAN, N.; VENKATARAVANAPPA, V.; SAHA, S.; MISHRA, A.K.; SHARMA, B.K.; RAI, A.B. 2020. Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. Biotech. 10(11). https://doi.org/10.1007/s13205-020-02475-z 58. MUTHAMILARASAN, M.; PRASAD, M. 2013. Plant innate immunity: an updated insight into defense mechanism. J. Biosciences. (India). 38(2):433-449. https://doi.org/10.1007/s12038-013-9302-2 59. OKUNGBOWA, F.I.; SHITTU, H.O. 2014. Fusarium wilts: an overview. Environmental Research J. 6(2):83-102. 60. ORTIZ, E.; CRUZ, M.; MELGAREJO, L.M.; MARQUÍNEZ, X.; HOYOS-CARVAJAL, L. 2014. Histopathological features of infections caused by Fusarium oxysporum and F. solani in purple passionfruit plants (Passiflora edulis Sims). Summa Phytopathologica. (Brazil). 40(2):134-140. https://dx.doi.org/10.1590/0100-5405/1910 61. PALACIO, M.N.M.; LÓPEZ, G.E.; ASTUDILLO, Á.R.M.; MASACHE, B.R.S.; CASTILLO, Á.M.J.; MILIÁN-GARCÍA, Y. 2014. Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum en especies silvestres del género Solanum sección Lycopersicon. Rev. Colombiana de Biotecnología. 16(1):62-73. 62. RAMPERSAD, S.N. 2020. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens. (Switzerland). 9(340):21. http://dx.doi.org/10.3390/pathogens9050340 63. RANJAN, A.; ICHIHASHI, Y.; SINHA, N.R. 2012. The tomato genome: Implications for plant breeding, genomics and evolution. Genome Biology. (United Kingdom). 13(8):1-8. https://doi.org/10.1186/gb-2012-13-8-167 64. RODRÍGUEZ-ORTEGA, W.M.; MARTÍNEZ, V.; NIEVES, M.; SIMÓN, I.; LIDÓN, V.; FERNÁNDEZ-ZAPATA, J.C.; MARTÍNEZ, N.J.J.; CÁMARA-Z, J.; GARCIA-SÁNCHEZ, F. 2019. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Scientific Reports. (United Kingdom). 9(6733):1-13. https://doi.org/10.1038/s41598-019-42805-7 65. SEGORBE, D.; DI PIETRO, A.; PÉREZ-NADALES, E.; TURRÀ, D. 2017. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. Molecular Plant Pathology. (United Kingdom). 18(7):912-924. https://doi.org/10.1111/mpp.12446 66. SELIM, E.M.; EL-GAMMAL, N.A. 2015. Role of fusaric acid mycotoxin in pathogensis process of tomato wilt disease caused by Fusarium oxysporum. Bioprocessing &. Biotechniques. (USA). 5(10):255. http://dx.doi.org/10.4172/2155-9821.1000255 67. SINGH, V.K.; SINGH, H.B.; UPADHYAY, R.S. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemestry. (Netherlands). 118:320-332. https://doi.org/10.1016/j.plaphy.2017.06.028 68. SRINIVAS, C.; NIRMALA, D.; NARASIMHA MURTHY, K.; MOHAN, C.D.; LAKSHMEESHA, T.R.; SINGH, B.; KALAGATUR, N.K.; NIRANJANA, S.R.; HASHEM, A.; ALQARAWI, A.A.; TABASSUM, B.; ABD_ALLAH, E.F.; CHANDRA NAYAKA, S.; SRIVASTAVA, R.K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi J. Biological Sciences. 26(7):1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002 69. SUTHERLAND, R.; VILJOEN, A.; MYBURG, A.A.; VAN DEN BERG, N. 2013. Pathogenicity associated genes in Fusarium oxysporum f. sp. cubense race 4. South African J. of Science. 109(5-6):1-10 http://dx.doi.org/10.1590/sajs.2013/20120023 70. TAMPOARE, G.B.; MILLIAR, G.; ADAZABRA, A.N. 2012. Analyzing the economic benefit of fresh tomato production at the Tono irrigation scheme in upper east region of Ghana. Elixir Agriculture. (Poland). 3(13):14613-14617. 71. TRONG, L.V.; TUONG, L.Q.; THINH, B.B.; KHOI, N.T.; TRONG, V.T. 2019. Physiological and biochemical changes in tomato fruit (Solanum lycopersicum L.) during growth and ripening cultivated in Vietnam. Bioscience Research. (Pakistan). 16(2):1736-1744. 72. VAN DER DOES, H.C.; CONSTANTIN, M.E.; HOUTERMAN, P.M.; TAKKEN, F.L.; CORNELISSEN, B.J.; HARING, M.A.; VAN DER BURG, H.A.; REP, M. 2019. Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European J. Plant Pathology. 154:55-65. https://doi.org/10.1007/s10658-018-1596-3 73. WANG, B.; YU, H.; JIA, Y.; DONG, Q.; STEINBERG, C.; ALABOUVETTE, C.; EDEL-HERMANN, V.; KISTLER, C.; YE, K.; MA, L.J.; GUO, L. 2020. Chromosome-Scale Genome Assembly of Fusarium oxysporum Strain Fo47, a Fungal Endophyte and Biocontrol Agent. Mol. Plant Microbe Interact. (United States). 33(9):1108-1111. https://doi.org/10.1094/mpmi-05-20-0116-a 74. YADETA, K.; THOMMA, B.P.H. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in PlantScience. (Switzerland). 4(97):1-12. https://doi.org/10.3389/fpls.2013.00097 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2021-06-30 |
date_accessioned |
2021-06-30T00:00:00Z |
date_available |
2021-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1713 |
url_doi |
https://doi.org/10.31910/rudca.v24.n1.2021.1713 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v24.n1.2021.1713 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1713/2157 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1713/2158 |
_version_ |
1811201180183822336 |
spelling |
Interacción entre tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. Lycopersici. Una revisión Tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici interaction. A review La interacción entre plantas y patógenos es una relación muy dinámica y compleja, que conlleva un alto grado de especificidad y es esta última característica, la que desencadena respuestas tan importantes en la supervivencia de uno u otro. El patosistema formado por tomate (Solanum lycopersicum L.) y Fusarium oxysporum f. sp. lycopersici (Fol) ha sido objeto de múltiples estudios, debido a la importancia de la hortaliza, a nivel mundial y por el impacto económico y ecológico del hongo, responsable de la marchitez vascular, provocando pérdidas que llegan hasta el 100%. Una forma de encontrar alternativas para el manejo de cualquier patosistema es conocer los actores involucrados y los mecanismos que rigen la interacción, a través de avances tecnológicos y científicos, que muestren, claramente, cómo se desarrolla la interacción, a nivel genético. Esta revisión recoge la información de fuentes científicas con énfasis en el conocimiento del hongo, el cultivo del tomate y la defensa vegetal, aplicada a este patosistema, así como los mecanismos moleculares. The interaction between plants and pathogens is a very dynamic and complex relationship that also includes a high degree of specificity, and it is precisely this last characteristic which triggers such important responses in the survival of one or the other. The pathosystem formed by tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici (Fol) has been the subject of multiple studies due to the importance of the vegetable worldwide and for the economic and ecological impact of the fungus responsible for the vascular wilt disease in tomato, causing losses that go up to 100%. One way to find alternatives for the management of any pathosystem is to know the actors involved and the mechanisms that govern the interaction through technological and scientific advances that clearly show how the interaction develops on a genetic level. This review collects the information from different scientific sources with focus on the knowledge of the fungus, tomato cultivation and plant defense applied to this pathosystem, as well as the molecular mechanisms. López-Zapata, Silvia Patricia García-Jaramillo, Dora Janeth López, Walter Ricardo Ceballos-Aguirre, Nelson Avirulencia Hongo Patosistema Defensa Resistencia Avirulence Fungus Pathosystem Plant defense Resistance 24 1 Núm. 1 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio Artículo de revista Journal article 2021-06-30T00:00:00Z 2021-06-30T00:00:00Z 2021-06-30 application/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1713 10.31910/rudca.v24.n1.2021.1713 https://doi.org/10.31910/rudca.v24.n1.2021.1713 eng http://creativecommons.org/licenses/by-nc/4.0 Silvia Patricia López-Zapata, Dora Janeth García-Jaramillo, Walter Ricardo López, Nelson Ceballos-Aguirre - 2021 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. ABDALLAH, R.A.B.; MOKNI-TLILI, S.; NEFZI, A.; KHIAREDDINE, H.J.; DAAMI-REMADI, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biological Control. (United States). 97:80-88. http://dx.doi.org/10.1016/j.biocontrol.2016.03.005 2. AGRIOS, G.N. 2005. Plant pathology. 5th ed. Elsevier Academic Press. 922p. 3. AGRIOS, G.N. 2013. Plant Pathology. J. Chemical Information and Modeling. 53. https://doi.org/10.1017/CBO9781107415324.00 4. AGRONET. 2021. Information and Communication Network of the Colombian Agricultural Sector. Available online: http://www.agronet.gov.co/estadistica/Paginas/default.aspx 5. AGUDELO, A.G.; CEBALLOS, N.; OROZCO, F.J. 2011. Caracterización morfológica del tomate tipo cereza (Solanum lycopersicum L.). Agronomía. (Colombia). 19:44-53. 6. AKRAMI, M.; YOUSEFI, Z. 2015. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonistic fungi. Biological Forum- An International Journal. 7(1):887-892. 7. ALI, A.; MUZAFFAR, A.; AWAN, M.F.; DIN, S.; NASIR, I.A.; HUSNAIN, T. 2014. Genetically Modified Foods: Engineered tomato with extra advantages. Advancements in Life Science. (Pakistan). 1(3):139-152. 8. ANDERSEN, E.J.; ALI, S.; BYAMUKAMA, E.; YEN, Y.; NEPAL, M.P. 2018. Disease resistance mechanisms in plants. Genes. (Switzerland). 9(7):339. https://doi.org/10.3390/genes9070339 9. ANDOLFO, G.; FERRIELLO, F.; TARDELLA, L.; FERRARINI, A.; SIGILLO, L.; FRUSCIANTE, L.; ERCOLANO, M.R. 2014. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato mosaic virus. Plos One. (United States). 9(5):e94963. https://doi.org/10.1371/journal.pone.0094963 10. ANDOLFO, G.; IOVIENO, P.; FRUSCIANTE, L.; ERCOLANO, M. 2016. Genome-Editing technologies for enhancing plant disease resistance. Frontiers in Plant Science. 7:1813. https://dx.doi.org/10.3389/fpls.2016.01813 11. ÁVILA, M.K.; ROMERO, H.M. 2017. Plant responses to pathogen attack: molecular basis of qualitative resistance. Rev. Facultad Nacional de Agronomía. (Colombia). 70(2):8225-8235. https://dx.doi.org/10.15446/rfna.v70n2.64526 12. BÁEZ-VALDEZ, E.P.; CARRILLO-FASIO, J.A.; BÁEZ-SAÑUDO, M.A.; GARCÍA-ESTRADA, R.S.; VALDEZ-TORRES, J.B.; CONTRERAS-MARTÍNEZ, R. 2010. Resistant rootstocks utilization for Fusarium control (Fusarium oxysporum f. sp. lycopersici Snyder and Hansen race 3) in tomato (Lycopersicon esculentum Mill) under shade conditions. Rev. Mexicana de Fitopatología. 28(2):111-123. 13. BERGOUGNOUX, V. 2014. The history of tomato: From domestication to biopharming. Biotechnology Advances. (Netherlands). 32(1):170-189. https://doi.org/10.1016/j.biotechadv.2013.11.003 14. BIJU, V.C.; FOKKENS, L.; HOUTERMAN, P.M.; REP, M.; CORNELISSEN, B.J.C. 2017. Multiple evolutionary trajectories have led to the emergence of races in Fusarium oxysporum f. sp. lycopersici. Applied and Environmental Microbiology. (United States). 83(4):e02548-16. https://dx.doi.org/10.1128/AEM.02548-16 15. BLANCA, J.; MONTERO-PAU, J.; SAUVAGE, C.; BAUCHET, G.; ILLA, E.; DÍEZ M., J.; CAÑIZARES, J. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics. (United Kingdom). 16(1):1-19. https://doi.org/10.1186/s12864-015-1444-1 16. BOLLER, T.; HE, S.Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. (New York). 324(5928):742. https://doi.org/10.1126/science.1171647 17. BOTERO, V.; HOYOS-CARVAJAL, L.; MARÍN J. 2018. Detection of asymptomatic plants of Solanum lycopersicum L. infected with Fusarium oxysporum using VIS reflectance spectroscopy. Ciencias Hortícolas. (Colombia). 12(2):436-446. http://doi.org/10.17584/rcch.2018v12i2.7293 18. CAMAGNA, M.; TAKEMOTO, D. 2018. Hypersensitive response in plants. eLS. John Wiley and Sons, Ltd (Chichester, UK). p.1-7. https://doi.org/10.1002/9780470015902.a0020103.pub2 19. CARMONA, S.L.; BURBANO-DAVID, D.; GÓMEZ, M.; LÓPEZ, W.; CEBALLOS, N.; CASTAÑO-ZAPATA, J.; SIMBAQUEBA, J.; SOTO-SUÁREZ, M. 2020. Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens. (Switzerland). 9(70):1-23. https://doi.org/10.3390/pathogens9010070 20. CEBALLOS-AGUIRRE, N.; LÓPEZ, W.; OROZCO-CÁRDENAS, M.; MORILLO, Y.; VALLEJO-CABRERA, F. 2017. Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia. (Brazil). 76(2):220-228. http://dx.doi.org/10.1590/1678-4499.116 21. CEBALLOS-AGUIRRE, N.; VALLEJO, A. 2012. Evaluating the Fruit Production and Quality of Cherry Tomato (Solanum lycopersicum var. cerasiforme). Rev. Facultad Nacional de Agronomía. (Colombia). 65(2):6593-6604. 22. CHEEMA, D.S.; DHALIWAL, M.S. 2005. Hybrid Tomato Breeding. J. New Seeds. (United States). 6(2-3):1-14. http://dx.doi.org/10.1300/J153v06n02_01 23. COOK, D.E.; MESARICH, C.H.; THOMMA, B.P. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology. (United States). 53:541-563. https://doi.org/10.1146/annurev-phyto-080614-120114 24. COUTO, D.; ZIPFEL, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology. (United Kingdom). 16(9):537-552. https://doi.org/10.1038/nri.2016.77 25. DEAN, R.; VAN-KAN, J.A.; PRETORIUS, Z.A.; HAMMOND, KIM.; DI PIETRO, A.; SPANU, P.; RUDD, J.; DICKMAN, M.; KAHMANN, R.; ELLIS, J.; FOSTER, G. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology. (United Kingdom). 13(4):414-30. https://doi.org/10.1111/j.1364-3703.2011.00783.x 26. DJIDONOU, D.; SIMONNE, A.H.; KOCH, K.E.; BRECHT, J.K.; ZHAO, X. 2016. Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. American Society of Horticultural Science. (United States). 51(12):1618-1624. https://doi.org/10.21273/HORTSCI11275-16 27. EDEL-HERMANN, V.; LECOMTE, C. 2019. Current status of Fusarium oxysporum Formae speciales and races. Phytophatology. (United States). 109(4):512-530. https://doi.org/10.1094/PHYTO-08-18-0320-RVW 28. EITAS, T.K.; DANGL, J.L. 2010. NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Current Opinion in Plant Biology. (Netherlands). 13(4):472-477. https://doi.org/10.1016/j.pbi.2010.04.007 29. ESSARIOUI, A.; MOKRINI, F.; AFECHTAL, M. 2016. Molecular interactions between tomato and its wilt pathogen Fusarium oxysporum f. sp. lycopersici. Reveu Marocaine des Sciences Agronomiques et Veterinaries. 4(1):66-74. 30. FRANCO, D.A.; ARANGO, J.F.; HURTADO-SALAZAR, A.; CEBALLOS-AGUIRRE, N. 2018. Development, production, and quality of “Chonto” type tomato grafted on cherry tomato introductions. Ceres. (Brazil). 65(2):150-157. https://doi.org/10.1590/0034-737X201865020006 31. GARCÍA-ENCISO, E.L.; BENAVIDES-MENDOZA, A.; FLORES-LÓPEZ, M.L.; ROBLEDO-OLIVO, A.; JUÁREZ-MALDONADO, A.; GONZÁLEZ-MORALES, S. 2017. A molecular vision of the interaction of tomato plants and Fusarium oxysporum f. sp. lycopersici. IntechOpen. https://doi.org/10.5772/intechopen.72127 32. GERSZBERG, A.; HNATUSZKO-KONKA, K.; KOWALCZY, T.; KONONOWICZ, A. 2015. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue and Organ Culture (Netherlands). 120:881-902. https://doi.org/10.1007/s11240-014-0664-4 33. GONZÁLEZ, I.; ARIAS, Y.; PETEIRA, B. 2012. General aspects of the interaction Fusarium oxysporum f. sp. lycopersici-tomato. Protección vegetal. (La Habana). 27(1):1-7. 34. GORDON, T. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annual Rev. Phytopathology. (United States). 55:23-39. https://doi.org/10.1146/annurev-phyto-080615-095919 35. GUAN, W.; ZHAO, X.; HASSELL, R.; THIES, J. 2012. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience. (United States). 47(2):164-170. https://doi.org/10.21273/HORTSCI.47.2.164 36. GURURANI, M.A.; VENKATESH, J.; UPADHYAYA, C.P.; NOOKARAJU, A.; PANDEY, S.K.; PARK, S.W. 2012. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology. (United States). 78:51-65. https://doi.org/10.1016/j.pmpp.2012.01.002 37. HAMEL, L.P.; NICOLE, M.C.; DUPLESSIS, S.; ELLIS, B.E. 2012. Mitogen-activated protein kinase signaling in plant-interacting fungi: Distinct messages from conserved messengers. Plant Cell. (United States). 24(4):1327-1351. https://doi.org/10.1105/tpc.112.096156 38. HERNÁNDEZ-MARTÍNEZ, R.; LÓPEZ-BENÍTEZ, A.; BORREGO-ESCALANTE, F.; ESPINOZA-VELÁZQUEZ, J.; SÁNCHEZ-ASPEYTIA, D.; MALDONADO-MENDOZA, I.E.; LÓPEZ-OCHOA, L.A. 2014. Fusarium oxysporum f. sp. lycopersici in tomato farms in San Luis Potosí. Rev. Mexicana de Ciencias Agrícolas. 5(7):1169-1178. 39. HERRERA, H.; HURTADO, A.; CEBALLOS, N. 2015. Technical and economic study of the elite cherry tomato (Solanum lycopersicum var. cerasiforme) under semi-controlled conditions. Rev. Col. ciencias hortícolas. 9(2):290-300. http://dx.doi.org/10.17584/rcch.2015v9i2.4185 40. IGNJATOV, M.; MILOSEVIC, D.; NIKOLIC, Z.; GVOZDANOVIC-VARGA, J.; JOVICIC, D.; ZDJELAR, G. 2012. Fusarium oxysporum as causal agent of tomato wilt and fruit rot. Pesticidi i Fitomedicina (Serbia). 27(1):25-31. https://doi.org/10.2298/PIF1201025I 41. INAMI, K.; KASHIWA, T.; KAWABE, M.; ONOKUBO-OKABE, A.; ISHIKAWA, N.; PÉREZ, E.R.; ARIE, T. 2014. The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and Environments. (Japan). 29(2):200-210. https://dx.doi.org/10.1264/jsme2.ME13184 42. JIMÉNEZ-FERNÁNDEZ, D.; LANDA, B.B.; KANG, S.; JIMÉNEZ-DÍAZ, R.M.; NAVAS-CORTÉS, J.A. 2013. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. Plos One. (United States). 8(4):e61360. https://doi.org/10.1371/journal.pone.0061360 43. JONES, J.D.G.; DANGL, J.L. 2006. The plant immune system. Nature. (United Kingdom). 444(7117):323-329. https://doi.org/10.1038/nature05286 44. KANT, P.; REINPRECHT, Y.; MARTIN, C.J.; ISLAM, R.; PAULS, K.P. 2011. Disease resistance/ Pathology/Fusarium. Comprehensive Biotechnology (Canada). 4:729-743. https://doi.org/10.1016/B978-0-08-088504-9.00263-4 45. KHAN, N.; MAYMON, M.; HIRSCH, A.M. 2017. Combating Fusarium infection using Bacillus- based antimicrobials. Microorganisms. (Switzerland). 5(4):75. https://dx.doi.org/10.3390/microorganisms5040075 46. KOYYAPPURATH, S. 2015. Histological and molecular approaches for resistance to Fusarium oxysporum f.sp. radicis-vanillae, causal agent of root and stem rot in Vanilla spp. (Orchidaceae). Université de la Reunión (France). 227p. 47. KOYYAPPURATH, S.; CONÉJÉRO, G.; DIJOUX, J.B.; LAPEYRE-MONTÈS, F.; JADE, K.; CHIROLEU, F.; GRISONI, M. 2015. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae. Frontiers in Plant Science. (Switzerland). 6:1125. https://dx.doi.org/10.3389/fpls.2015.01125 48. LESLIE, J.F.; SUMMERELL; B.A. 2006. The Fusarium laboratory manual. Blackwell Pub (Ames, IA, USA). 369p. 49. LI, B.; MENG, X.; SHAN, L.; HE, P. 2016. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host and Microbe. (United States). 19(5):641-650. https://doi.org/10.1016/j.chom.2016.04.011 50. LI, J.; FOKKENS, L.; CONNEELY, L.J.; REP, M. 2020a. Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred. Environmental microbiology (United Kingdom). 22(12):4985-5004. https://doi.org/10.1111/1462-2920.15095 51. LI, J.; GAO, M.; GABRIEL, D.W.; LIANG, W.; SONG, L. 2020b. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. Lycopersici Provides Novel Insights Into Infection-Related Proteins. Frontiers in microbiology. (Switzerland).11:559440. https://doi.org/10.3389/fmicb.2020.559440 52. MA, L.J.; GEISER, D.M.; PROCTOR, R.H.; ROONEY, A.P.; O'DONNELL, K.; TRAIL, F.; GARDINER, D.M.; MANNERS, J.M.; KAZAN, K. 2013. Fusarium pathogenomics. Annual Review of Microbiology. (United States). 67(1):399-416. https://doi.org/10.1146/annurev-micro-092412-155650 53. MCGOVERN, R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection. 73:78-92. https://doi.org/10.1016/j.cropro.2015.02.021 54. MENG, X.; ZHANG, S. 2013. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology. (United States). 51:245-266. https://doi.org/10.1146/annurev-phyto-082712-102314 55. MORALES, N.; ESPINOSA, G.; MORALES, A.; SÁNCHEZ, B.; JIMÉNEZ, M.; MILIAN-GARCÍA, R. 2014. Morphological characterization and evaluation of resistance to Fusarium oxysporum in wild species of the genus Solanum section lycopersicon. Rev. Col. Biotecnología. 16(1):62-73. http://dx.doi.org/10.15446/rev.colomb.biote.v16n1.38259 56. MURILLO-GÓMEZ, P.; HOYOS, R.; CHAVARRIAGA, P. 2017. Organogenesis in-vitro using three tissue types of tree tomato [Solanum betaceum (Cav.)]. Agronomía Colombiana. 35(1):5-11. https://dx.doi.org/10.15446/agron.colomb.v35n1.61330 57. MURUGAN, L.; KRISHNAN, N.; VENKATARAVANAPPA, V.; SAHA, S.; MISHRA, A.K.; SHARMA, B.K.; RAI, A.B. 2020. Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. Biotech. 10(11). https://doi.org/10.1007/s13205-020-02475-z 58. MUTHAMILARASAN, M.; PRASAD, M. 2013. Plant innate immunity: an updated insight into defense mechanism. J. Biosciences. (India). 38(2):433-449. https://doi.org/10.1007/s12038-013-9302-2 59. OKUNGBOWA, F.I.; SHITTU, H.O. 2014. Fusarium wilts: an overview. Environmental Research J. 6(2):83-102. 60. ORTIZ, E.; CRUZ, M.; MELGAREJO, L.M.; MARQUÍNEZ, X.; HOYOS-CARVAJAL, L. 2014. Histopathological features of infections caused by Fusarium oxysporum and F. solani in purple passionfruit plants (Passiflora edulis Sims). Summa Phytopathologica. (Brazil). 40(2):134-140. https://dx.doi.org/10.1590/0100-5405/1910 61. PALACIO, M.N.M.; LÓPEZ, G.E.; ASTUDILLO, Á.R.M.; MASACHE, B.R.S.; CASTILLO, Á.M.J.; MILIÁN-GARCÍA, Y. 2014. Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum en especies silvestres del género Solanum sección Lycopersicon. Rev. Colombiana de Biotecnología. 16(1):62-73. 62. RAMPERSAD, S.N. 2020. Pathogenomics and Management of Fusarium Diseases in Plants. Pathogens. (Switzerland). 9(340):21. http://dx.doi.org/10.3390/pathogens9050340 63. RANJAN, A.; ICHIHASHI, Y.; SINHA, N.R. 2012. The tomato genome: Implications for plant breeding, genomics and evolution. Genome Biology. (United Kingdom). 13(8):1-8. https://doi.org/10.1186/gb-2012-13-8-167 64. RODRÍGUEZ-ORTEGA, W.M.; MARTÍNEZ, V.; NIEVES, M.; SIMÓN, I.; LIDÓN, V.; FERNÁNDEZ-ZAPATA, J.C.; MARTÍNEZ, N.J.J.; CÁMARA-Z, J.; GARCIA-SÁNCHEZ, F. 2019. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Scientific Reports. (United Kingdom). 9(6733):1-13. https://doi.org/10.1038/s41598-019-42805-7 65. SEGORBE, D.; DI PIETRO, A.; PÉREZ-NADALES, E.; TURRÀ, D. 2017. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. Molecular Plant Pathology. (United Kingdom). 18(7):912-924. https://doi.org/10.1111/mpp.12446 66. SELIM, E.M.; EL-GAMMAL, N.A. 2015. Role of fusaric acid mycotoxin in pathogensis process of tomato wilt disease caused by Fusarium oxysporum. Bioprocessing &. Biotechniques. (USA). 5(10):255. http://dx.doi.org/10.4172/2155-9821.1000255 67. SINGH, V.K.; SINGH, H.B.; UPADHYAY, R.S. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiology and Biochemestry. (Netherlands). 118:320-332. https://doi.org/10.1016/j.plaphy.2017.06.028 68. SRINIVAS, C.; NIRMALA, D.; NARASIMHA MURTHY, K.; MOHAN, C.D.; LAKSHMEESHA, T.R.; SINGH, B.; KALAGATUR, N.K.; NIRANJANA, S.R.; HASHEM, A.; ALQARAWI, A.A.; TABASSUM, B.; ABD_ALLAH, E.F.; CHANDRA NAYAKA, S.; SRIVASTAVA, R.K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity– A review. Saudi J. Biological Sciences. 26(7):1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002 69. SUTHERLAND, R.; VILJOEN, A.; MYBURG, A.A.; VAN DEN BERG, N. 2013. Pathogenicity associated genes in Fusarium oxysporum f. sp. cubense race 4. South African J. of Science. 109(5-6):1-10 http://dx.doi.org/10.1590/sajs.2013/20120023 70. TAMPOARE, G.B.; MILLIAR, G.; ADAZABRA, A.N. 2012. Analyzing the economic benefit of fresh tomato production at the Tono irrigation scheme in upper east region of Ghana. Elixir Agriculture. (Poland). 3(13):14613-14617. 71. TRONG, L.V.; TUONG, L.Q.; THINH, B.B.; KHOI, N.T.; TRONG, V.T. 2019. Physiological and biochemical changes in tomato fruit (Solanum lycopersicum L.) during growth and ripening cultivated in Vietnam. Bioscience Research. (Pakistan). 16(2):1736-1744. 72. VAN DER DOES, H.C.; CONSTANTIN, M.E.; HOUTERMAN, P.M.; TAKKEN, F.L.; CORNELISSEN, B.J.; HARING, M.A.; VAN DER BURG, H.A.; REP, M. 2019. Fusarium oxysporum colonizes the stem of resistant tomato plants, the extent varying with the R-gene present. European J. Plant Pathology. 154:55-65. https://doi.org/10.1007/s10658-018-1596-3 73. WANG, B.; YU, H.; JIA, Y.; DONG, Q.; STEINBERG, C.; ALABOUVETTE, C.; EDEL-HERMANN, V.; KISTLER, C.; YE, K.; MA, L.J.; GUO, L. 2020. Chromosome-Scale Genome Assembly of Fusarium oxysporum Strain Fo47, a Fungal Endophyte and Biocontrol Agent. Mol. Plant Microbe Interact. (United States). 33(9):1108-1111. https://doi.org/10.1094/mpmi-05-20-0116-a 74. YADETA, K.; THOMMA, B.P.H. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in PlantScience. (Switzerland). 4(97):1-12. https://doi.org/10.3389/fpls.2013.00097 https://revistas.udca.edu.co/index.php/ruadc/article/download/1713/2157 https://revistas.udca.edu.co/index.php/ruadc/article/download/1713/2158 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |