Titulo:

Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
.

Sumario:

  En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el p... Ver más

Guardado en:

0123-4226

2619-2551

23

2020-12-31

Sindy Escobar, Claudia Bernal, Monica Mesa - 2020

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1631
record_format ojs
spelling Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
Enzymatic synthesis of 4-methoxycinnamoylglycerol Uv filter mediated by immobilized-lipase and nanoparticle formation on N-succinylchitosan
  En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el proceso de purificación por extracción líquido-líquido. Las entidades de glicerilo libre favorecen su incorporación en nanopartículas de N-succinil-quitosano, con un tamaño de alrededor de 185±77nm, que son promisorias para los productos de protección solar.
The synthesis of 4-methoxycinnamoylglycerol takes advantage of the biodiesel subproduct for obtaining a hydrophilic UV cinnamate derivate filter, useful in sunscreen formulations. The objective here was to demonstrate that esterification of 4-methoxycinnamic acid and glycerol mediated by immobilized-lipase from Thermomyces lanuginosus is selective towards 4-methoxycinnamoylglycerol monoester UV filter, whose chemical characteristics favor the nanoparticles formation by ionotropic gelation on N-Succinyl chitosan. A cinnamic acid conversion ~34% in hexane is higher than in other reports, without the presence of other sub-products or degradation products. This eases the purification process by liquid-liquid extraction. The free glyceryl entities favour its incorporation on N-Succinyl chitosan nanoparticles with size around 185±77nm, which are promissory for sunblock products.
Escobar, Sindy
Bernal, Claudia
Mesa, Monica
Derivados de cinnamato
Filtro radiación UV
Nanopartículas
Lipasa inmovilizada
Cinnamate derivates
UV radiation filter
Nanoparticles
Immobilized lipases
(Fragments found in Mesh Browser)
23
2
Núm. 2 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
Artículo de revista
Journal article
2020-12-31T00:00:00Z
2020-12-31T00:00:00Z
2020-12-31
application/xml
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/1631
10.31910/rudca.v23.n2.2020.1631
https://doi.org/10.31910/rudca.v23.n2.2020.1631
eng
https://creativecommons.org/licenses/by-nc-sa/4.0/
Sindy Escobar, Claudia Bernal, Monica Mesa - 2020
BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; YOUSEFI, P.; MOHAMMADI, J.; BRASK, J. 2016. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 91:196-206. https://doi.org/10.1016/j.renene.2016.01.053
BASSI, J.J.; TODERO, L.M.; LAGE, F.A.P.; KHEDY, G.I.; DUCAS, J.D.; CUSTÓDIO, A.P.; PINTO, M.A.; MENDES, A.A. 2016. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Internal J. Biological Macromolecules. 92:900-909. https://doi.org/10.1016/j.ijbiomac.2016.07.097
BASTIDA, A.; SABUQUILLO, P.; ARMISEN, P.; FERNÁNDEZ-LAFUENTE, R.; HUGUET, J.; GUISÁN, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering. 58(5):486-493. https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9
BERNAL, C.; POVEDA-JARAMILLO, J.C.; MESA, M. 2018. Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering J. 334:760-767. https://doi.org/10.1016/j.cej.2017.10.082
CIPOLATTI, E.P.; VALÉRIO, A.; NINOW, J.L.; DE OLIVEIRA, D.; PESSELA, B.C. 2016. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochemical Engineering J. 112:54-60. https://doi.org/10.1016/j.bej.2016.04.006
ESCOBAR, S.; BERNAL, C.; BOLIVAR, J.M.; NIDETZKY, B.; LÓPEZ-GALLEGO, F.; MESA, M. 2018. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis. 449:106-113. https://doi.org/10.1016/j.mcat.2018.02.024
FERENC, W.; CRISTÓVÃO, B.; SARZYŃSKI, J.; SADOWSKI, P. 2012. Complexes of the selected transition metal ions with 4-methoxycinnamic acid: Physico-chemical properties. J. Thermal Analysis and Calorimetry. 110(2):739-748. https://doi.org/10.1007/s10973-011-1935-5
FERNANDEZ-LAFUENTE, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Molecular Catalysis B: Enzymatic. 62(3):197-212. https://doi.org/10.1016/j.molcatb.2009.11.010
FERNANDEZ-LORENTE, G.; CABRERA, Z.; GODOY, C.; FERNANDEZ-LAFUENTE, R.; PALOMO, J.M.; GUISAN, J.M. 2008. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry. 43(10):1061-1067. https://doi.org/10.1016/j.procbio.2008.05.009
HANSON, K.M.; NARAYANAN, S.; NICHOLS, V.M.; BARDEEN, C.J. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochemical and Photobiological Sciences. 14(9):1607–1616. https://doi.org/10.1039/c5pp00074b
HOLSER, R.A. 2008. Kinetics of cinnamoyl glycerol formation. JAOCS, J. the American Oil Chemists’ Society. 85(3):221-225. https://doi.org/10.1007/s11746-007-1189-3
HOLSER, R.A.; MITCHELL, T.R.; HARRY-O’KURU, R.E.; VAUGHN, S.F.; WALTER, E.; HIMMELSBACH, D. 2008. Preparation and Characterization of 4-Methoxy Cinnamoyl Glycerol. J. American Oil Chemists’ Society. 85(4):347-351. https://doi.org/10.1007/s11746-008-1197-y
KATZ, L.M.; DEWAN, K.; BRONAUGH, R.L. 2015. Nanotechnology in cosmetics. Food and Chemical Toxicology. 85:127-137. https://doi.org/10.1016/j.fct.2015.06.020
KUO, S.-J.; PARKIN, K.L. 1996. Solvent polarity influences product selectivity of lipase-mediated esterification reactions in microaqueous media. J. American Oil Chemists’ Society. 73(11):1427-1433. https://doi.org/10.1007/BF02523507
LEE, C.H.; PARKIN, K.L. 2001. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnology and Bioengineering. 75(2):219-227. https://doi.org/10.1002/bit.10009
LEE, G.S.; WIDJAJA, A.; JU, Y.H. 2006. Enzymatic synthesis of cinnamic acid derivatives. Biotechnology Letters. 28(8):581-585. https://doi.org/10.1007/s10529-006-0019-2
MATTE, C.R.; BUSSAMARA, R.; DUPONT, J.; RODRIGUES, R.C.; HERTZ, P.F.; AYUB, M.A.Z. 2014. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: Characterization and applications. Applied Biochemistry and Biotechnology. 172(5):2507-2520. https://doi.org/10.1007/s12010-013-0702-4
MONSALVE, Y.; SIERRA, L.; LÓPEZ, B.L. 2015. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromolecular Symposia. 354(1):91-98. https://doi.org/10.1002/masy.201400128
NAIK, S.; BASU, A.; SAIKIA, R.; MADAN, B.; PAUL, P.; CHATERJEE, R.; BRASK, J.; SVENDSEN, A. 2010. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Molecular Catalysis B: Enzymatic. 65:18-23. https://doi.org/10.1016/j.molcatb.2010.01.002
NOHYNEK, G.J.; DUFOUR, E.K. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Archives of Toxicology. 86(7):1063-1075. https://doi.org/10.1007/s00204-012-0831-5
PALACIO, J.; MONSALVE, Y.; RAMÍREZ-RODRÍGUEZ, F.; LÓPEZ, B. 2020. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J. Drug Delivery Science and Technology. 57:101610. https://doi.org/10.1016/j.jddst.2020.101610
PATIL, D.; DEV, B.; NAG, A. 2011. Lipase-catalyzed synthesis of 4-methoxy cinnamoyl glycerol. J. Molecular Catalysis B: Enzymatic. 73(1-4):5-8. https://doi.org/10.1016/j.molcatb.2011.07.002
SAHATSAPAN, N.; ROJANARATA, T.; NGAWHIRUNPAT, T.; OPANASOPIT, P.; PATROJANASOPHON, P. 2019. Catechol-functionalized succinyl chitosan for novel mucoadhesive drug delivery. Key Engineering Materials. 819:21-26. https://doi.org/10.4028/www.scientific.net/KEM.819.21
SANTOS, A.C.; MORAIS, F.; SIMÕES, A.; PEREIRA, I.; SEQUEIRA, J.A.D.; PEREIRA-SILVA, M.; VEIGA, F.; RIBEIRO, A. 2019. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery. 16(4):313-330. https://doi.org/10.1080/17425247.2019.1585426
SHAATH, N.A. 2010. Ultraviolet filters. Photochem. Photobiol. Sci. 9(4):464-469. https://doi.org/10.1039/B9PP00174C
SOTO, I.D.; ESCOBAR, S.; MESA, M. 2017. Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C. 79:525-532. https://doi.org/10.1016/j.msec.2017.05.088
SUN, W.J.; ZHAO, H.X.; CUI, F.J.; LI, Y.H.; YU, S.L.; ZHOU, Q.; QIAN, J.Y.; DONG, Y. 2013. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central J. 7(1):1-13. https://doi.org/10.1186/1752-153X-7-114
YESILOGLU, Y.; KILIC, I. 2004. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. JAOCS. J. American Oil Chemists’ Society. 81(3):281-284. https://doi.org/10.1007/s11746-004-0896-5
ZHANG, C.-G.; ZHU, Q.-L.; ZHOU, Y.; LIU, Y.; CHEN, W.-L.; YUAN, Z.-Q.; YANG, S.-D.; ZHOU, X.-F.; ZHU, A.-J.; ZHANG, X.-N.; JIN, Y. 2014. N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International J. Nanomedicine. 9(1):2919-2932. https://doi.org/10.2147/IJN.S59799
ZHOU, Z.; INAYAT, A.; SCHWIEGER, W.; HARTMANN, M. 2012. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials. 154:133-141. https://doi.org/10.1016/j.micromeso.2012.01.003
https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2035
https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2080
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
spellingShingle Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
Escobar, Sindy
Bernal, Claudia
Mesa, Monica
Derivados de cinnamato
Filtro radiación UV
Nanopartículas
Lipasa inmovilizada
Cinnamate derivates
UV radiation filter
Nanoparticles
Immobilized lipases
(Fragments found in Mesh Browser)
title_short Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
title_full Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
title_fullStr Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
title_full_unstemmed Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
title_sort síntesis enzimática del filtro uv 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas n-succinilquitosano
title_eng Enzymatic synthesis of 4-methoxycinnamoylglycerol Uv filter mediated by immobilized-lipase and nanoparticle formation on N-succinylchitosan
description &amp;nbsp; En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el proceso de purificación por extracción líquido-líquido. Las entidades de glicerilo libre favorecen su incorporación en nanopartículas de N-succinil-quitosano, con un tamaño de alrededor de 185±77nm, que son promisorias para los productos de protección solar.
description_eng The synthesis of 4-methoxycinnamoylglycerol takes advantage of the biodiesel subproduct for obtaining a hydrophilic UV cinnamate derivate filter, useful in sunscreen formulations. The objective here was to demonstrate that esterification of 4-methoxycinnamic acid and glycerol mediated by immobilized-lipase from Thermomyces lanuginosus is selective towards 4-methoxycinnamoylglycerol monoester UV filter, whose chemical characteristics favor the nanoparticles formation by ionotropic gelation on N-Succinyl chitosan. A cinnamic acid conversion ~34% in hexane is higher than in other reports, without the presence of other sub-products or degradation products. This eases the purification process by liquid-liquid extraction. The free glyceryl entities favour its incorporation on N-Succinyl chitosan nanoparticles with size around 185±77nm, which are promissory for sunblock products.
author Escobar, Sindy
Bernal, Claudia
Mesa, Monica
author_facet Escobar, Sindy
Bernal, Claudia
Mesa, Monica
topicspa_str_mv Derivados de cinnamato
Filtro radiación UV
Nanopartículas
Lipasa inmovilizada
topic Derivados de cinnamato
Filtro radiación UV
Nanopartículas
Lipasa inmovilizada
Cinnamate derivates
UV radiation filter
Nanoparticles
Immobilized lipases
(Fragments found in Mesh Browser)
topic_facet Derivados de cinnamato
Filtro radiación UV
Nanopartículas
Lipasa inmovilizada
Cinnamate derivates
UV radiation filter
Nanoparticles
Immobilized lipases
(Fragments found in Mesh Browser)
citationvolume 23
citationissue 2
citationedition Núm. 2 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/1631
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Sindy Escobar, Claudia Bernal, Monica Mesa - 2020
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; YOUSEFI, P.; MOHAMMADI, J.; BRASK, J. 2016. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 91:196-206. https://doi.org/10.1016/j.renene.2016.01.053
BASSI, J.J.; TODERO, L.M.; LAGE, F.A.P.; KHEDY, G.I.; DUCAS, J.D.; CUSTÓDIO, A.P.; PINTO, M.A.; MENDES, A.A. 2016. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Internal J. Biological Macromolecules. 92:900-909. https://doi.org/10.1016/j.ijbiomac.2016.07.097
BASTIDA, A.; SABUQUILLO, P.; ARMISEN, P.; FERNÁNDEZ-LAFUENTE, R.; HUGUET, J.; GUISÁN, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering. 58(5):486-493. https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9
BERNAL, C.; POVEDA-JARAMILLO, J.C.; MESA, M. 2018. Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering J. 334:760-767. https://doi.org/10.1016/j.cej.2017.10.082
CIPOLATTI, E.P.; VALÉRIO, A.; NINOW, J.L.; DE OLIVEIRA, D.; PESSELA, B.C. 2016. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochemical Engineering J. 112:54-60. https://doi.org/10.1016/j.bej.2016.04.006
ESCOBAR, S.; BERNAL, C.; BOLIVAR, J.M.; NIDETZKY, B.; LÓPEZ-GALLEGO, F.; MESA, M. 2018. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis. 449:106-113. https://doi.org/10.1016/j.mcat.2018.02.024
FERENC, W.; CRISTÓVÃO, B.; SARZYŃSKI, J.; SADOWSKI, P. 2012. Complexes of the selected transition metal ions with 4-methoxycinnamic acid: Physico-chemical properties. J. Thermal Analysis and Calorimetry. 110(2):739-748. https://doi.org/10.1007/s10973-011-1935-5
FERNANDEZ-LAFUENTE, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Molecular Catalysis B: Enzymatic. 62(3):197-212. https://doi.org/10.1016/j.molcatb.2009.11.010
FERNANDEZ-LORENTE, G.; CABRERA, Z.; GODOY, C.; FERNANDEZ-LAFUENTE, R.; PALOMO, J.M.; GUISAN, J.M. 2008. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry. 43(10):1061-1067. https://doi.org/10.1016/j.procbio.2008.05.009
HANSON, K.M.; NARAYANAN, S.; NICHOLS, V.M.; BARDEEN, C.J. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochemical and Photobiological Sciences. 14(9):1607–1616. https://doi.org/10.1039/c5pp00074b
HOLSER, R.A. 2008. Kinetics of cinnamoyl glycerol formation. JAOCS, J. the American Oil Chemists’ Society. 85(3):221-225. https://doi.org/10.1007/s11746-007-1189-3
HOLSER, R.A.; MITCHELL, T.R.; HARRY-O’KURU, R.E.; VAUGHN, S.F.; WALTER, E.; HIMMELSBACH, D. 2008. Preparation and Characterization of 4-Methoxy Cinnamoyl Glycerol. J. American Oil Chemists’ Society. 85(4):347-351. https://doi.org/10.1007/s11746-008-1197-y
KATZ, L.M.; DEWAN, K.; BRONAUGH, R.L. 2015. Nanotechnology in cosmetics. Food and Chemical Toxicology. 85:127-137. https://doi.org/10.1016/j.fct.2015.06.020
KUO, S.-J.; PARKIN, K.L. 1996. Solvent polarity influences product selectivity of lipase-mediated esterification reactions in microaqueous media. J. American Oil Chemists’ Society. 73(11):1427-1433. https://doi.org/10.1007/BF02523507
LEE, C.H.; PARKIN, K.L. 2001. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnology and Bioengineering. 75(2):219-227. https://doi.org/10.1002/bit.10009
LEE, G.S.; WIDJAJA, A.; JU, Y.H. 2006. Enzymatic synthesis of cinnamic acid derivatives. Biotechnology Letters. 28(8):581-585. https://doi.org/10.1007/s10529-006-0019-2
MATTE, C.R.; BUSSAMARA, R.; DUPONT, J.; RODRIGUES, R.C.; HERTZ, P.F.; AYUB, M.A.Z. 2014. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: Characterization and applications. Applied Biochemistry and Biotechnology. 172(5):2507-2520. https://doi.org/10.1007/s12010-013-0702-4
MONSALVE, Y.; SIERRA, L.; LÓPEZ, B.L. 2015. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromolecular Symposia. 354(1):91-98. https://doi.org/10.1002/masy.201400128
NAIK, S.; BASU, A.; SAIKIA, R.; MADAN, B.; PAUL, P.; CHATERJEE, R.; BRASK, J.; SVENDSEN, A. 2010. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Molecular Catalysis B: Enzymatic. 65:18-23. https://doi.org/10.1016/j.molcatb.2010.01.002
NOHYNEK, G.J.; DUFOUR, E.K. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Archives of Toxicology. 86(7):1063-1075. https://doi.org/10.1007/s00204-012-0831-5
PALACIO, J.; MONSALVE, Y.; RAMÍREZ-RODRÍGUEZ, F.; LÓPEZ, B. 2020. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J. Drug Delivery Science and Technology. 57:101610. https://doi.org/10.1016/j.jddst.2020.101610
PATIL, D.; DEV, B.; NAG, A. 2011. Lipase-catalyzed synthesis of 4-methoxy cinnamoyl glycerol. J. Molecular Catalysis B: Enzymatic. 73(1-4):5-8. https://doi.org/10.1016/j.molcatb.2011.07.002
SAHATSAPAN, N.; ROJANARATA, T.; NGAWHIRUNPAT, T.; OPANASOPIT, P.; PATROJANASOPHON, P. 2019. Catechol-functionalized succinyl chitosan for novel mucoadhesive drug delivery. Key Engineering Materials. 819:21-26. https://doi.org/10.4028/www.scientific.net/KEM.819.21
SANTOS, A.C.; MORAIS, F.; SIMÕES, A.; PEREIRA, I.; SEQUEIRA, J.A.D.; PEREIRA-SILVA, M.; VEIGA, F.; RIBEIRO, A. 2019. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery. 16(4):313-330. https://doi.org/10.1080/17425247.2019.1585426
SHAATH, N.A. 2010. Ultraviolet filters. Photochem. Photobiol. Sci. 9(4):464-469. https://doi.org/10.1039/B9PP00174C
SOTO, I.D.; ESCOBAR, S.; MESA, M. 2017. Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C. 79:525-532. https://doi.org/10.1016/j.msec.2017.05.088
SUN, W.J.; ZHAO, H.X.; CUI, F.J.; LI, Y.H.; YU, S.L.; ZHOU, Q.; QIAN, J.Y.; DONG, Y. 2013. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central J. 7(1):1-13. https://doi.org/10.1186/1752-153X-7-114
YESILOGLU, Y.; KILIC, I. 2004. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. JAOCS. J. American Oil Chemists’ Society. 81(3):281-284. https://doi.org/10.1007/s11746-004-0896-5
ZHANG, C.-G.; ZHU, Q.-L.; ZHOU, Y.; LIU, Y.; CHEN, W.-L.; YUAN, Z.-Q.; YANG, S.-D.; ZHOU, X.-F.; ZHU, A.-J.; ZHANG, X.-N.; JIN, Y. 2014. N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International J. Nanomedicine. 9(1):2919-2932. https://doi.org/10.2147/IJN.S59799
ZHOU, Z.; INAYAT, A.; SCHWIEGER, W.; HARTMANN, M. 2012. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials. 154:133-141. https://doi.org/10.1016/j.micromeso.2012.01.003
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-12-31
date_accessioned 2020-12-31T00:00:00Z
date_available 2020-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/1631
url_doi https://doi.org/10.31910/rudca.v23.n2.2020.1631
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v23.n2.2020.1631
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2035
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2080
_version_ 1811201179037728768