Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano
.
  En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el p... Ver más
0123-4226
2619-2551
23
2020-12-31
Sindy Escobar, Claudia Bernal, Monica Mesa - 2020
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1631 |
---|---|
record_format |
ojs |
spelling |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano Enzymatic synthesis of 4-methoxycinnamoylglycerol Uv filter mediated by immobilized-lipase and nanoparticle formation on N-succinylchitosan &nbsp; En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el proceso de purificación por extracción líquido-líquido. Las entidades de glicerilo libre favorecen su incorporación en nanopartículas de N-succinil-quitosano, con un tamaño de alrededor de 185±77nm, que son promisorias para los productos de protección solar. The synthesis of 4-methoxycinnamoylglycerol takes advantage of the biodiesel subproduct for obtaining a hydrophilic UV cinnamate derivate filter, useful in sunscreen formulations. The objective here was to demonstrate that esterification of 4-methoxycinnamic acid and glycerol mediated by immobilized-lipase from Thermomyces lanuginosus is selective towards 4-methoxycinnamoylglycerol monoester UV filter, whose chemical characteristics favor the nanoparticles formation by ionotropic gelation on N-Succinyl chitosan. A cinnamic acid conversion ~34% in hexane is higher than in other reports, without the presence of other sub-products or degradation products. This eases the purification process by liquid-liquid extraction. The free glyceryl entities favour its incorporation on N-Succinyl chitosan nanoparticles with size around 185±77nm, which are promissory for sunblock products. Escobar, Sindy Bernal, Claudia Mesa, Monica Derivados de cinnamato Filtro radiación UV Nanopartículas Lipasa inmovilizada Cinnamate derivates UV radiation filter Nanoparticles Immobilized lipases (Fragments found in Mesh Browser) 23 2 Núm. 2 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre Artículo de revista Journal article 2020-12-31T00:00:00Z 2020-12-31T00:00:00Z 2020-12-31 application/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1631 10.31910/rudca.v23.n2.2020.1631 https://doi.org/10.31910/rudca.v23.n2.2020.1631 eng https://creativecommons.org/licenses/by-nc-sa/4.0/ Sindy Escobar, Claudia Bernal, Monica Mesa - 2020 BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; YOUSEFI, P.; MOHAMMADI, J.; BRASK, J. 2016. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 91:196-206. https://doi.org/10.1016/j.renene.2016.01.053 BASSI, J.J.; TODERO, L.M.; LAGE, F.A.P.; KHEDY, G.I.; DUCAS, J.D.; CUSTÓDIO, A.P.; PINTO, M.A.; MENDES, A.A. 2016. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Internal J. Biological Macromolecules. 92:900-909. https://doi.org/10.1016/j.ijbiomac.2016.07.097 BASTIDA, A.; SABUQUILLO, P.; ARMISEN, P.; FERNÁNDEZ-LAFUENTE, R.; HUGUET, J.; GUISÁN, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering. 58(5):486-493. https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9 BERNAL, C.; POVEDA-JARAMILLO, J.C.; MESA, M. 2018. Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering J. 334:760-767. https://doi.org/10.1016/j.cej.2017.10.082 CIPOLATTI, E.P.; VALÉRIO, A.; NINOW, J.L.; DE OLIVEIRA, D.; PESSELA, B.C. 2016. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochemical Engineering J. 112:54-60. https://doi.org/10.1016/j.bej.2016.04.006 ESCOBAR, S.; BERNAL, C.; BOLIVAR, J.M.; NIDETZKY, B.; LÓPEZ-GALLEGO, F.; MESA, M. 2018. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis. 449:106-113. https://doi.org/10.1016/j.mcat.2018.02.024 FERENC, W.; CRISTÓVÃO, B.; SARZYŃSKI, J.; SADOWSKI, P. 2012. Complexes of the selected transition metal ions with 4-methoxycinnamic acid: Physico-chemical properties. J. Thermal Analysis and Calorimetry. 110(2):739-748. https://doi.org/10.1007/s10973-011-1935-5 FERNANDEZ-LAFUENTE, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Molecular Catalysis B: Enzymatic. 62(3):197-212. https://doi.org/10.1016/j.molcatb.2009.11.010 FERNANDEZ-LORENTE, G.; CABRERA, Z.; GODOY, C.; FERNANDEZ-LAFUENTE, R.; PALOMO, J.M.; GUISAN, J.M. 2008. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry. 43(10):1061-1067. https://doi.org/10.1016/j.procbio.2008.05.009 HANSON, K.M.; NARAYANAN, S.; NICHOLS, V.M.; BARDEEN, C.J. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochemical and Photobiological Sciences. 14(9):1607–1616. https://doi.org/10.1039/c5pp00074b HOLSER, R.A. 2008. Kinetics of cinnamoyl glycerol formation. JAOCS, J. the American Oil Chemists’ Society. 85(3):221-225. https://doi.org/10.1007/s11746-007-1189-3 HOLSER, R.A.; MITCHELL, T.R.; HARRY-O’KURU, R.E.; VAUGHN, S.F.; WALTER, E.; HIMMELSBACH, D. 2008. Preparation and Characterization of 4-Methoxy Cinnamoyl Glycerol. J. American Oil Chemists’ Society. 85(4):347-351. https://doi.org/10.1007/s11746-008-1197-y KATZ, L.M.; DEWAN, K.; BRONAUGH, R.L. 2015. Nanotechnology in cosmetics. Food and Chemical Toxicology. 85:127-137. https://doi.org/10.1016/j.fct.2015.06.020 KUO, S.-J.; PARKIN, K.L. 1996. Solvent polarity influences product selectivity of lipase-mediated esterification reactions in microaqueous media. J. American Oil Chemists’ Society. 73(11):1427-1433. https://doi.org/10.1007/BF02523507 LEE, C.H.; PARKIN, K.L. 2001. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnology and Bioengineering. 75(2):219-227. https://doi.org/10.1002/bit.10009 LEE, G.S.; WIDJAJA, A.; JU, Y.H. 2006. Enzymatic synthesis of cinnamic acid derivatives. Biotechnology Letters. 28(8):581-585. https://doi.org/10.1007/s10529-006-0019-2 MATTE, C.R.; BUSSAMARA, R.; DUPONT, J.; RODRIGUES, R.C.; HERTZ, P.F.; AYUB, M.A.Z. 2014. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: Characterization and applications. Applied Biochemistry and Biotechnology. 172(5):2507-2520. https://doi.org/10.1007/s12010-013-0702-4 MONSALVE, Y.; SIERRA, L.; LÓPEZ, B.L. 2015. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromolecular Symposia. 354(1):91-98. https://doi.org/10.1002/masy.201400128 NAIK, S.; BASU, A.; SAIKIA, R.; MADAN, B.; PAUL, P.; CHATERJEE, R.; BRASK, J.; SVENDSEN, A. 2010. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Molecular Catalysis B: Enzymatic. 65:18-23. https://doi.org/10.1016/j.molcatb.2010.01.002 NOHYNEK, G.J.; DUFOUR, E.K. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Archives of Toxicology. 86(7):1063-1075. https://doi.org/10.1007/s00204-012-0831-5 PALACIO, J.; MONSALVE, Y.; RAMÍREZ-RODRÍGUEZ, F.; LÓPEZ, B. 2020. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J. Drug Delivery Science and Technology. 57:101610. https://doi.org/10.1016/j.jddst.2020.101610 PATIL, D.; DEV, B.; NAG, A. 2011. Lipase-catalyzed synthesis of 4-methoxy cinnamoyl glycerol. J. Molecular Catalysis B: Enzymatic. 73(1-4):5-8. https://doi.org/10.1016/j.molcatb.2011.07.002 SAHATSAPAN, N.; ROJANARATA, T.; NGAWHIRUNPAT, T.; OPANASOPIT, P.; PATROJANASOPHON, P. 2019. Catechol-functionalized succinyl chitosan for novel mucoadhesive drug delivery. Key Engineering Materials. 819:21-26. https://doi.org/10.4028/www.scientific.net/KEM.819.21 SANTOS, A.C.; MORAIS, F.; SIMÕES, A.; PEREIRA, I.; SEQUEIRA, J.A.D.; PEREIRA-SILVA, M.; VEIGA, F.; RIBEIRO, A. 2019. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery. 16(4):313-330. https://doi.org/10.1080/17425247.2019.1585426 SHAATH, N.A. 2010. Ultraviolet filters. Photochem. Photobiol. Sci. 9(4):464-469. https://doi.org/10.1039/B9PP00174C SOTO, I.D.; ESCOBAR, S.; MESA, M. 2017. Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C. 79:525-532. https://doi.org/10.1016/j.msec.2017.05.088 SUN, W.J.; ZHAO, H.X.; CUI, F.J.; LI, Y.H.; YU, S.L.; ZHOU, Q.; QIAN, J.Y.; DONG, Y. 2013. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central J. 7(1):1-13. https://doi.org/10.1186/1752-153X-7-114 YESILOGLU, Y.; KILIC, I. 2004. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. JAOCS. J. American Oil Chemists’ Society. 81(3):281-284. https://doi.org/10.1007/s11746-004-0896-5 ZHANG, C.-G.; ZHU, Q.-L.; ZHOU, Y.; LIU, Y.; CHEN, W.-L.; YUAN, Z.-Q.; YANG, S.-D.; ZHOU, X.-F.; ZHU, A.-J.; ZHANG, X.-N.; JIN, Y. 2014. N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International J. Nanomedicine. 9(1):2919-2932. https://doi.org/10.2147/IJN.S59799 ZHOU, Z.; INAYAT, A.; SCHWIEGER, W.; HARTMANN, M. 2012. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials. 154:133-141. https://doi.org/10.1016/j.micromeso.2012.01.003 https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2035 https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2080 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano |
spellingShingle |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano Escobar, Sindy Bernal, Claudia Mesa, Monica Derivados de cinnamato Filtro radiación UV Nanopartículas Lipasa inmovilizada Cinnamate derivates UV radiation filter Nanoparticles Immobilized lipases (Fragments found in Mesh Browser) |
title_short |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano |
title_full |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano |
title_fullStr |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano |
title_full_unstemmed |
Síntesis enzimática del filtro UV 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas N-succinilquitosano |
title_sort |
síntesis enzimática del filtro uv 4-metoxicinamoilglicerol mediado por lipasa inmovilizada y formación de nanopartículas n-succinilquitosano |
title_eng |
Enzymatic synthesis of 4-methoxycinnamoylglycerol Uv filter mediated by immobilized-lipase and nanoparticle formation on N-succinylchitosan |
description |
&nbsp;
En la síntesis de 4-metoxicinamoilglicerol, se aprovecha el subproducto de biodiesel para obtener un filtro UV hidrofílico, derivado de cinamato, útil en formulaciones de bloqueadores solares. El objetivo de este trabajo fue demostrar que la esterificación del ácido 4-metoxicinámico y el glicerol, mediado por la lipasa inmovilizada de Thermomyces lanuginosus, es selectiva hacia el monoester del filtro UV 4-metoxicinamoilglicerol, cuyas características químicas favorecen la formación de nanopartículas, por gelificación ionotrópica en N-succinil-quitosano. Una conversión de ácido cinámico ~34% en hexano es mayor que los valores ya reportados, sin la presencia de otros subproductos o productos de degradación. Esto facilita, el proceso de purificación por extracción líquido-líquido. Las entidades de glicerilo libre favorecen su incorporación en nanopartículas de N-succinil-quitosano, con un tamaño de alrededor de 185±77nm, que son promisorias para los productos de protección solar.
|
description_eng |
The synthesis of 4-methoxycinnamoylglycerol takes advantage of the biodiesel subproduct for obtaining a hydrophilic UV cinnamate derivate filter, useful in sunscreen formulations. The objective here was to demonstrate that esterification of 4-methoxycinnamic acid and glycerol mediated by immobilized-lipase from Thermomyces lanuginosus is selective towards 4-methoxycinnamoylglycerol monoester UV filter, whose chemical characteristics favor the nanoparticles formation by ionotropic gelation on N-Succinyl chitosan. A cinnamic acid conversion ~34% in hexane is higher than in other reports, without the presence of other sub-products or degradation products. This eases the purification process by liquid-liquid extraction. The free glyceryl entities favour its incorporation on N-Succinyl chitosan nanoparticles with size around 185±77nm, which are promissory for sunblock products.
|
author |
Escobar, Sindy Bernal, Claudia Mesa, Monica |
author_facet |
Escobar, Sindy Bernal, Claudia Mesa, Monica |
topicspa_str_mv |
Derivados de cinnamato Filtro radiación UV Nanopartículas Lipasa inmovilizada |
topic |
Derivados de cinnamato Filtro radiación UV Nanopartículas Lipasa inmovilizada Cinnamate derivates UV radiation filter Nanoparticles Immobilized lipases (Fragments found in Mesh Browser) |
topic_facet |
Derivados de cinnamato Filtro radiación UV Nanopartículas Lipasa inmovilizada Cinnamate derivates UV radiation filter Nanoparticles Immobilized lipases (Fragments found in Mesh Browser) |
citationvolume |
23 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1631 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Sindy Escobar, Claudia Bernal, Monica Mesa - 2020 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
BABAKI, M.; YOUSEFI, M.; HABIBI, Z.; MOHAMMADI, M.; YOUSEFI, P.; MOHAMMADI, J.; BRASK, J. 2016. Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renewable Energy. 91:196-206. https://doi.org/10.1016/j.renene.2016.01.053 BASSI, J.J.; TODERO, L.M.; LAGE, F.A.P.; KHEDY, G.I.; DUCAS, J.D.; CUSTÓDIO, A.P.; PINTO, M.A.; MENDES, A.A. 2016. Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Internal J. Biological Macromolecules. 92:900-909. https://doi.org/10.1016/j.ijbiomac.2016.07.097 BASTIDA, A.; SABUQUILLO, P.; ARMISEN, P.; FERNÁNDEZ-LAFUENTE, R.; HUGUET, J.; GUISÁN, J.M. 1998. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering. 58(5):486-493. https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9 BERNAL, C.; POVEDA-JARAMILLO, J.C.; MESA, M. 2018. Raising the enzymatic performance of lipase and protease in the synthesis of sugar fatty acid esters, by combined ionic exchange -hydrophobic immobilization process on aminopropyl silica support. Chemical Engineering J. 334:760-767. https://doi.org/10.1016/j.cej.2017.10.082 CIPOLATTI, E.P.; VALÉRIO, A.; NINOW, J.L.; DE OLIVEIRA, D.; PESSELA, B.C. 2016. Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. Biochemical Engineering J. 112:54-60. https://doi.org/10.1016/j.bej.2016.04.006 ESCOBAR, S.; BERNAL, C.; BOLIVAR, J.M.; NIDETZKY, B.; LÓPEZ-GALLEGO, F.; MESA, M. 2018. Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. Molecular Catalysis. 449:106-113. https://doi.org/10.1016/j.mcat.2018.02.024 FERENC, W.; CRISTÓVÃO, B.; SARZYŃSKI, J.; SADOWSKI, P. 2012. Complexes of the selected transition metal ions with 4-methoxycinnamic acid: Physico-chemical properties. J. Thermal Analysis and Calorimetry. 110(2):739-748. https://doi.org/10.1007/s10973-011-1935-5 FERNANDEZ-LAFUENTE, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Molecular Catalysis B: Enzymatic. 62(3):197-212. https://doi.org/10.1016/j.molcatb.2009.11.010 FERNANDEZ-LORENTE, G.; CABRERA, Z.; GODOY, C.; FERNANDEZ-LAFUENTE, R.; PALOMO, J.M.; GUISAN, J.M. 2008. Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry. 43(10):1061-1067. https://doi.org/10.1016/j.procbio.2008.05.009 HANSON, K.M.; NARAYANAN, S.; NICHOLS, V.M.; BARDEEN, C.J. 2015. Photochemical degradation of the UV filter octyl methoxycinnamate in solution and in aggregates. Photochemical and Photobiological Sciences. 14(9):1607–1616. https://doi.org/10.1039/c5pp00074b HOLSER, R.A. 2008. Kinetics of cinnamoyl glycerol formation. JAOCS, J. the American Oil Chemists’ Society. 85(3):221-225. https://doi.org/10.1007/s11746-007-1189-3 HOLSER, R.A.; MITCHELL, T.R.; HARRY-O’KURU, R.E.; VAUGHN, S.F.; WALTER, E.; HIMMELSBACH, D. 2008. Preparation and Characterization of 4-Methoxy Cinnamoyl Glycerol. J. American Oil Chemists’ Society. 85(4):347-351. https://doi.org/10.1007/s11746-008-1197-y KATZ, L.M.; DEWAN, K.; BRONAUGH, R.L. 2015. Nanotechnology in cosmetics. Food and Chemical Toxicology. 85:127-137. https://doi.org/10.1016/j.fct.2015.06.020 KUO, S.-J.; PARKIN, K.L. 1996. Solvent polarity influences product selectivity of lipase-mediated esterification reactions in microaqueous media. J. American Oil Chemists’ Society. 73(11):1427-1433. https://doi.org/10.1007/BF02523507 LEE, C.H.; PARKIN, K.L. 2001. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Biotechnology and Bioengineering. 75(2):219-227. https://doi.org/10.1002/bit.10009 LEE, G.S.; WIDJAJA, A.; JU, Y.H. 2006. Enzymatic synthesis of cinnamic acid derivatives. Biotechnology Letters. 28(8):581-585. https://doi.org/10.1007/s10529-006-0019-2 MATTE, C.R.; BUSSAMARA, R.; DUPONT, J.; RODRIGUES, R.C.; HERTZ, P.F.; AYUB, M.A.Z. 2014. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: Characterization and applications. Applied Biochemistry and Biotechnology. 172(5):2507-2520. https://doi.org/10.1007/s12010-013-0702-4 MONSALVE, Y.; SIERRA, L.; LÓPEZ, B.L. 2015. Preparation and characterization of succinyl-chitosan nanoparticles for drug delivery. Macromolecular Symposia. 354(1):91-98. https://doi.org/10.1002/masy.201400128 NAIK, S.; BASU, A.; SAIKIA, R.; MADAN, B.; PAUL, P.; CHATERJEE, R.; BRASK, J.; SVENDSEN, A. 2010. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Molecular Catalysis B: Enzymatic. 65:18-23. https://doi.org/10.1016/j.molcatb.2010.01.002 NOHYNEK, G.J.; DUFOUR, E.K. 2012. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Archives of Toxicology. 86(7):1063-1075. https://doi.org/10.1007/s00204-012-0831-5 PALACIO, J.; MONSALVE, Y.; RAMÍREZ-RODRÍGUEZ, F.; LÓPEZ, B. 2020. Study of encapsulation of polyphenols on succinyl-chitosan nanoparticles. J. Drug Delivery Science and Technology. 57:101610. https://doi.org/10.1016/j.jddst.2020.101610 PATIL, D.; DEV, B.; NAG, A. 2011. Lipase-catalyzed synthesis of 4-methoxy cinnamoyl glycerol. J. Molecular Catalysis B: Enzymatic. 73(1-4):5-8. https://doi.org/10.1016/j.molcatb.2011.07.002 SAHATSAPAN, N.; ROJANARATA, T.; NGAWHIRUNPAT, T.; OPANASOPIT, P.; PATROJANASOPHON, P. 2019. Catechol-functionalized succinyl chitosan for novel mucoadhesive drug delivery. Key Engineering Materials. 819:21-26. https://doi.org/10.4028/www.scientific.net/KEM.819.21 SANTOS, A.C.; MORAIS, F.; SIMÕES, A.; PEREIRA, I.; SEQUEIRA, J.A.D.; PEREIRA-SILVA, M.; VEIGA, F.; RIBEIRO, A. 2019. Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery. 16(4):313-330. https://doi.org/10.1080/17425247.2019.1585426 SHAATH, N.A. 2010. Ultraviolet filters. Photochem. Photobiol. Sci. 9(4):464-469. https://doi.org/10.1039/B9PP00174C SOTO, I.D.; ESCOBAR, S.; MESA, M. 2017. Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. Materials Science and Engineering C. 79:525-532. https://doi.org/10.1016/j.msec.2017.05.088 SUN, W.J.; ZHAO, H.X.; CUI, F.J.; LI, Y.H.; YU, S.L.; ZHOU, Q.; QIAN, J.Y.; DONG, Y. 2013. D-isoascorbyl palmitate: Lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central J. 7(1):1-13. https://doi.org/10.1186/1752-153X-7-114 YESILOGLU, Y.; KILIC, I. 2004. Lipase-Catalyzed Esterification of Glycerol and Oleic Acid. JAOCS. J. American Oil Chemists’ Society. 81(3):281-284. https://doi.org/10.1007/s11746-004-0896-5 ZHANG, C.-G.; ZHU, Q.-L.; ZHOU, Y.; LIU, Y.; CHEN, W.-L.; YUAN, Z.-Q.; YANG, S.-D.; ZHOU, X.-F.; ZHU, A.-J.; ZHANG, X.-N.; JIN, Y. 2014. N-succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. International J. Nanomedicine. 9(1):2919-2932. https://doi.org/10.2147/IJN.S59799 ZHOU, Z.; INAYAT, A.; SCHWIEGER, W.; HARTMANN, M. 2012. Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials. 154:133-141. https://doi.org/10.1016/j.micromeso.2012.01.003 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2020-12-31 |
date_accessioned |
2020-12-31T00:00:00Z |
date_available |
2020-12-31T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1631 |
url_doi |
https://doi.org/10.31910/rudca.v23.n2.2020.1631 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v23.n2.2020.1631 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2035 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1631/2080 |
_version_ |
1811201179037728768 |