Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá
.
La agricultura de precisión busca mejorar la eficiencia productiva, a partir de la variabilidad del agroecosistema. Para ello, se deben delimitar zonas homogéneas de manejo (ZM), dentro del lote de cultivo. Los sensores de inducción electromagnética (IM), que registran la conductividad eléctrica aparente (CEa), permiten identificar variaciones en propiedades del suelo y, por consiguiente, definir, en forma rápida y confiable, zonas con características similares. La investigación tuvo como objetivo delimitar ZM, con fines de manejo específico por sitio (MES), usando un sensor IM en suelos productores de maíz (Zea mays L.), de la Sabana de Bogotá. Para ello, se escogieron dos lotes en los que se sembró maíz, en los municipios de... Ver más
0123-4226
2619-2551
18
2015-12-31
373
383
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_163 |
---|---|
record_format |
ojs |
spelling |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá Homogeneous zones for site-specific management in maize using an electromagnetic induction sensor at the Bogota Sabana La agricultura de precisión busca mejorar la eficiencia productiva, a partir de la variabilidad del agroecosistema. Para ello, se deben delimitar zonas homogéneas de manejo (ZM), dentro del lote de cultivo. Los sensores de inducción electromagnética (IM), que registran la conductividad eléctrica aparente (CEa), permiten identificar variaciones en propiedades del suelo y, por consiguiente, definir, en forma rápida y confiable, zonas con características similares. La investigación tuvo como objetivo delimitar ZM, con fines de manejo específico por sitio (MES), usando un sensor IM en suelos productores de maíz (Zea mays L.), de la Sabana de Bogotá. Para ello, se escogieron dos lotes en los que se sembró maíz, en los municipios de Facatativá y de Bojacá y, en estos, se midió la CEa y el contenido de agua en el suelo (Wsc). Se elaboraron mapas de CEa y Wsc y se delimitaron tres ZM, dentro de cada lote. En esas ZM, se tomaron muestras edáficas para análisis fisicoquímico de laboratorio y se determinó altura de planta, índice SPAD a los 60 y 120ddg y rendimiento del cultivo. El análisis estadístico, se realizó con SPSS V22 y SAS V 2.5. Los resultados mostraron correlaciones entre la CEa y el contenido de limo en Bojacá y el de arcilla en Facatativá y diferencias estadísticas significativas en los rendimientos de maíz entre ZM. Esta investigación destaca la utilidad del sensor IM para delimitar ZM, con fines de MES.   Precision farming aims to improve production taking into account variability of the agricultural system. To do this, homogeneous management zones (HZ) are delimited within the crop field. The use of electromagnetic induction (EMI) sensors that record apparent electrical conductivity (ECa) allows to identify variations in soil properties and in turn to define quickly and reliably zones with similar characteristics. The research had as objective ZM delimitation for site-specific management (SSM) using an EMI sensor in soils under maize crops (Zea mays L.) at the Sabana de Bogotá. For this, two agricultural fields were chosen in Facatativá and Bojacá, and in them it was measured ECa and soil water content (Wsc). Maps of ECa and Wsc were drawn and three ZM were defined within each field. In these ZM, soil samples were taken for physicochemical laboratory analysis and it was determined plant height, SPAD index at 60 and 120 DDG and crop yield. Statistical analysis was performed with SPSS V22 and SAS V 2.5. The results showed correlations between ECa and content of silt in Bojacá and clay content in Facatativá, and statistically significant differences in maize yields between the ZM. This research highlights the utility of the IM sensor to define ZM for SSM. Alfaro Rodríguez, Ricardo Rodrigo Leiva, Fabio Iván Gómez, Manuel Conductividad eléctrica aparente agricultura de precisión suelos agrícolas cereales Apparent electrical conductivity precision agriculture agricultural soils cereals 18 2 Núm. 2 , Año 2015 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre Artículo de revista Journal article 2015-12-31T00:00:00Z 2015-12-31T00:00:00Z 2015-12-31 application/pdf text/html Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/163 10.31910/rudca.v18.n2.2015.163 https://doi.org/10.31910/rudca.v18.n2.2015.163 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ 373 383 ADAMCHUK, V. 2011. On-the-go soil sensors - are we there yet? Ed. McGill University. Ste-Anne-de-Bellevue. Quebec (Canada). p.63. ANDERSON-COOK, C.; ALLEY, J.; ROYGARD, R.; KHOSLA, R.; NOBLE, R.; DOOLITTLE, J. 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 66:1562-1570. BLACKMER, T.; SCHEPERS, J. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agr. (USA). 8:56-60. BONGIOVANNI, R.; MANTOVANI, E.; BEST, S.; ROEL, Á. 2006. Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Ed. Instituto Interamericano de Cooperación para la Agricultura (IICA). (Uruguay). 244p. BULLOCK, D.; KITCHEN, N. 2007. Multidisciplinary teams: a necessity for research in precision agriculture systems. Crop Sci. 47:1765-1769. COOK, S.; OBRIEN, R.; CORNER, R.; OBERTHUR, T. 2003. Is precision agriculture irrelevant to developing countries? En: Stafford, J.; Werner, A. (eds). Precision agriculture. Wageningen Academic Publishers. Netherlands (Holanda). p.115-119. CORWIN, D.; LESCH, S. 2005a. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Computers Electronics Agric.46:135-152. CORWIN, D.; LESCH, S. 2005b. Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols Computers Electronics Agric. 46:103-133. CORWIN, D.; LESCH, S.; SHOUSE, P.; SOPPE, R.; AYARS, J. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 95(2):352-364. CUESTA, P.; VILLANEDA, E. 2005. El análisis de suelos: toma de muestras y recomendaciones de fertilización para producción ganadera. En: Manual Técnico Producción y Utilización de Recursos Forrajeros en Sistemas de Producción Bovina en las regiones Caribe y Valles Interandinos. CORPOICA. (Bogotá D.C). 96p. DOBERMANN, A.; BLACKMORE, S.; COOK, S.; ADAMCHUK, V. 2004. Challenges and future directions. En: Krishna, K, (ed). Precision farming: Soil fertility and productivity aspects. Ed. Apple Academis Press Inc. (USA). p.71-90. FASSIO, A.; CARRIQUIRI, A.; TOJO, C.; ROMERO, R. 1998. Maíz aspectos sobre fenología. INIA. Montevideo (Uruguay). 59p. GEONICS EM38K2. 2012. Ground conductivity meter operating manual. Geonics Limited. Leaders in electromagnetics. Mississaagua (Ontario). 57p. GRISSO, R.; ALLEY, M.; HOLSHOUSER, D.; THOMASON, W. 2007. Precision farming tools: Soil electrical conductivity. Virginia. Cooperative Extension. p.442-508. INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI. -IGAC-. 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. IGAC. Bogotá D.C. 492p. JOHNSON, C.; DORAN, J.; DUKE, H.; WEINHOLD, B.; ESKRIDGE, K.; SHANAHAN, J. 2003. Field scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837. LARREAL, R. 2005. Definición y establecimiento de la serie San Francisco en la altiplanicie de Maracaibo, sector semiárido. Facultad de Agronomía. Luz. Maracaibo. (Venezuela). 106p. LEIVA, F.; CRIOLLO, V.; GUERRERO, L. 2013. Aproximación al riego por sitio específico: Estudio de caso en la Sabana de Bogotá. Suelos Ecuatoriales. (Colombia). 43(2):82-86. LEIVA, F. 2008. Agricultura de precisión en cultivos transitorios. Universidad Nacional de Colombia. Bogotá. D.C. 107p. LITTELL, R.; MILLIKEN, G.; STROUP, W.; WOLFINGER, R. 1996. SAS System for mixed Models, Cary, NC: SAS Institute Inc. 596p. McNEILL, J. 1992. Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. In: Topp, G.C.; Reynolds, W.D.; Green, R.E. (eds). Advances in measurement of soil physical properties: Bringing theory into practice. SSSA Spec. Madison, (WI). p.209-229. ORTEGA, R.; FLORES, L. 1999. Agricultura de precisión: introducción al manejo sitio-específico. Ministerio de Agricultura, Instituto de investigaciones agropecuarias. CRI Quilamapu. (Chile). p.13-46. ROBERTS, D.; KITCHEN, N.; SUDDUTH, K.; SHARF, P. 2010. Will variable-rate nitrogen fertilization using corn canopy reflectance sensing deliver environmental benefits. Agronomy. J. 102:85-95. RODRÍGUEZ, J.; GONZÁLEZ, A.; LEIVA, F.; GUERRERO, L. 2008. Fertilización por sitio específico en un cultivo de maíz (Zea mays L.) en la Sabana de Bogotá. Agr. Col. 26(2):308-321. SIMÓN, M.; PERALTA, N.; COSTA, J. 2013. Relación entre la conductividad eléctrica aparente con propiedades del suelo y nutrientes. Ciencia Suelo (Argentina). 31(1):45-55. SUDDUTH, K.; KITCHEN, N.; WIEBOLD, W. 2005. Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture. 46(1-3):263-283. SUDDUTH, K.; KITCHEN, N.; BOLLERO, G.; BULLOCK, D.; WIEBOLD, W. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron. J. 95:472-482. VIEIRA, S. 2000. Uso de geoestadística en estudios de variabilidad espacial de propiedades del suelo. Tópicos em Ciência do Solo. Viçosa. Sociedade Brasileira de Ciência do Solo. Ed. Novais. 87p. https://revistas.udca.edu.co/index.php/ruadc/article/download/163/127 https://revistas.udca.edu.co/index.php/ruadc/article/download/163/1277 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá |
spellingShingle |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá Alfaro Rodríguez, Ricardo Rodrigo Leiva, Fabio Iván Gómez, Manuel Conductividad eléctrica aparente agricultura de precisión suelos agrícolas cereales Apparent electrical conductivity precision agriculture agricultural soils cereals |
title_short |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá |
title_full |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá |
title_fullStr |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá |
title_full_unstemmed |
Zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la Sabana de Bogotá |
title_sort |
zonas homogéneas para manejo específico por sitio en maíz usando un sensor de inducción electromagnética en la sabana de bogotá |
title_eng |
Homogeneous zones for site-specific management in maize using an electromagnetic induction sensor at the Bogota Sabana |
description |
La agricultura de precisión busca mejorar la eficiencia productiva, a partir de la variabilidad del agroecosistema. Para ello, se deben delimitar zonas homogéneas de manejo (ZM), dentro del lote de cultivo. Los sensores de inducción electromagnética (IM), que registran la conductividad eléctrica aparente (CEa), permiten identificar variaciones en propiedades del suelo y, por consiguiente, definir, en forma rápida y confiable, zonas con características similares. La investigación tuvo como objetivo delimitar ZM, con fines de manejo específico por sitio (MES), usando un sensor IM en suelos productores de maíz (Zea mays L.), de la Sabana de Bogotá. Para ello, se escogieron dos lotes en los que se sembró maíz, en los municipios de Facatativá y de Bojacá y, en estos, se midió la CEa y el contenido de agua en el suelo (Wsc). Se elaboraron mapas de CEa y Wsc y se delimitaron tres ZM, dentro de cada lote. En esas ZM, se tomaron muestras edáficas para análisis fisicoquímico de laboratorio y se determinó altura de planta, índice SPAD a los 60 y 120ddg y rendimiento del cultivo. El análisis estadístico, se realizó con SPSS V22 y SAS V 2.5. Los resultados mostraron correlaciones entre la CEa y el contenido de limo en Bojacá y el de arcilla en Facatativá y diferencias estadísticas significativas en los rendimientos de maíz entre ZM. Esta investigación destaca la utilidad del sensor IM para delimitar ZM, con fines de MES.
 
|
description_eng |
Precision farming aims to improve production taking into account variability of the agricultural system. To do this, homogeneous management zones (HZ) are delimited within the crop field. The use of electromagnetic induction (EMI) sensors that record apparent electrical conductivity (ECa) allows to identify variations in soil properties and in turn to define quickly and reliably zones with similar characteristics. The research had as objective ZM delimitation for site-specific management (SSM) using an EMI sensor in soils under maize crops (Zea mays L.) at the Sabana de Bogotá. For this, two agricultural fields were chosen in Facatativá and Bojacá, and in them it was measured ECa and soil water content (Wsc). Maps of ECa and Wsc were drawn and three ZM were defined within each field. In these ZM, soil samples were taken for physicochemical laboratory analysis and it was determined plant height, SPAD index at 60 and 120 DDG and crop yield. Statistical analysis was performed with SPSS V22 and SAS V 2.5. The results showed correlations between ECa and content of silt in Bojacá and clay content in Facatativá, and statistically significant differences in maize yields between the ZM. This research highlights the utility of the IM sensor to define ZM for SSM.
|
author |
Alfaro Rodríguez, Ricardo Rodrigo Leiva, Fabio Iván Gómez, Manuel |
author_facet |
Alfaro Rodríguez, Ricardo Rodrigo Leiva, Fabio Iván Gómez, Manuel |
topicspa_str_mv |
Conductividad eléctrica aparente agricultura de precisión suelos agrícolas cereales |
topic |
Conductividad eléctrica aparente agricultura de precisión suelos agrícolas cereales Apparent electrical conductivity precision agriculture agricultural soils cereals |
topic_facet |
Conductividad eléctrica aparente agricultura de precisión suelos agrícolas cereales Apparent electrical conductivity precision agriculture agricultural soils cereals |
citationvolume |
18 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2015 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/163 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ADAMCHUK, V. 2011. On-the-go soil sensors - are we there yet? Ed. McGill University. Ste-Anne-de-Bellevue. Quebec (Canada). p.63. ANDERSON-COOK, C.; ALLEY, J.; ROYGARD, R.; KHOSLA, R.; NOBLE, R.; DOOLITTLE, J. 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 66:1562-1570. BLACKMER, T.; SCHEPERS, J. 1995. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agr. (USA). 8:56-60. BONGIOVANNI, R.; MANTOVANI, E.; BEST, S.; ROEL, Á. 2006. Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Ed. Instituto Interamericano de Cooperación para la Agricultura (IICA). (Uruguay). 244p. BULLOCK, D.; KITCHEN, N. 2007. Multidisciplinary teams: a necessity for research in precision agriculture systems. Crop Sci. 47:1765-1769. COOK, S.; OBRIEN, R.; CORNER, R.; OBERTHUR, T. 2003. Is precision agriculture irrelevant to developing countries? En: Stafford, J.; Werner, A. (eds). Precision agriculture. Wageningen Academic Publishers. Netherlands (Holanda). p.115-119. CORWIN, D.; LESCH, S. 2005a. Characterizing soil spatial variability with apparent soil electrical conductivity: Part II. Case study. Computers Electronics Agric.46:135-152. CORWIN, D.; LESCH, S. 2005b. Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols Computers Electronics Agric. 46:103-133. CORWIN, D.; LESCH, S.; SHOUSE, P.; SOPPE, R.; AYARS, J. 2003. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 95(2):352-364. CUESTA, P.; VILLANEDA, E. 2005. El análisis de suelos: toma de muestras y recomendaciones de fertilización para producción ganadera. En: Manual Técnico Producción y Utilización de Recursos Forrajeros en Sistemas de Producción Bovina en las regiones Caribe y Valles Interandinos. CORPOICA. (Bogotá D.C). 96p. DOBERMANN, A.; BLACKMORE, S.; COOK, S.; ADAMCHUK, V. 2004. Challenges and future directions. En: Krishna, K, (ed). Precision farming: Soil fertility and productivity aspects. Ed. Apple Academis Press Inc. (USA). p.71-90. FASSIO, A.; CARRIQUIRI, A.; TOJO, C.; ROMERO, R. 1998. Maíz aspectos sobre fenología. INIA. Montevideo (Uruguay). 59p. GEONICS EM38K2. 2012. Ground conductivity meter operating manual. Geonics Limited. Leaders in electromagnetics. Mississaagua (Ontario). 57p. GRISSO, R.; ALLEY, M.; HOLSHOUSER, D.; THOMASON, W. 2007. Precision farming tools: Soil electrical conductivity. Virginia. Cooperative Extension. p.442-508. INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI. -IGAC-. 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. IGAC. Bogotá D.C. 492p. JOHNSON, C.; DORAN, J.; DUKE, H.; WEINHOLD, B.; ESKRIDGE, K.; SHANAHAN, J. 2003. Field scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837. LARREAL, R. 2005. Definición y establecimiento de la serie San Francisco en la altiplanicie de Maracaibo, sector semiárido. Facultad de Agronomía. Luz. Maracaibo. (Venezuela). 106p. LEIVA, F.; CRIOLLO, V.; GUERRERO, L. 2013. Aproximación al riego por sitio específico: Estudio de caso en la Sabana de Bogotá. Suelos Ecuatoriales. (Colombia). 43(2):82-86. LEIVA, F. 2008. Agricultura de precisión en cultivos transitorios. Universidad Nacional de Colombia. Bogotá. D.C. 107p. LITTELL, R.; MILLIKEN, G.; STROUP, W.; WOLFINGER, R. 1996. SAS System for mixed Models, Cary, NC: SAS Institute Inc. 596p. McNEILL, J. 1992. Rapid, accurate mapping of soil salinity by electromagnetic ground conductivity meters. In: Topp, G.C.; Reynolds, W.D.; Green, R.E. (eds). Advances in measurement of soil physical properties: Bringing theory into practice. SSSA Spec. Madison, (WI). p.209-229. ORTEGA, R.; FLORES, L. 1999. Agricultura de precisión: introducción al manejo sitio-específico. Ministerio de Agricultura, Instituto de investigaciones agropecuarias. CRI Quilamapu. (Chile). p.13-46. ROBERTS, D.; KITCHEN, N.; SUDDUTH, K.; SHARF, P. 2010. Will variable-rate nitrogen fertilization using corn canopy reflectance sensing deliver environmental benefits. Agronomy. J. 102:85-95. RODRÍGUEZ, J.; GONZÁLEZ, A.; LEIVA, F.; GUERRERO, L. 2008. Fertilización por sitio específico en un cultivo de maíz (Zea mays L.) en la Sabana de Bogotá. Agr. Col. 26(2):308-321. SIMÓN, M.; PERALTA, N.; COSTA, J. 2013. Relación entre la conductividad eléctrica aparente con propiedades del suelo y nutrientes. Ciencia Suelo (Argentina). 31(1):45-55. SUDDUTH, K.; KITCHEN, N.; WIEBOLD, W. 2005. Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture. 46(1-3):263-283. SUDDUTH, K.; KITCHEN, N.; BOLLERO, G.; BULLOCK, D.; WIEBOLD, W. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron. J. 95:472-482. VIEIRA, S. 2000. Uso de geoestadística en estudios de variabilidad espacial de propiedades del suelo. Tópicos em Ciência do Solo. Viçosa. Sociedade Brasileira de Ciência do Solo. Ed. Novais. 87p. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2015-12-31 |
date_accessioned |
2015-12-31T00:00:00Z |
date_available |
2015-12-31T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/163 |
url_doi |
https://doi.org/10.31910/rudca.v18.n2.2015.163 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v18.n2.2015.163 |
citationstartpage |
373 |
citationendpage |
383 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/163/127 |
url3_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/163/1277 |
_version_ |
1811201116806840320 |