Titulo:

Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
.

Sumario:

Las bacterias y los hongos son un riesgo potencial para el material arqueológico y trabajadores de los museos en Lambayeque, Perú. Con el objetivo de cuantificar la microbiología ambiental aislada del museo Tumbas Reales de Sipán, se muestrearon cuatro almacenes, con Agar Nutritivo y Agar Papa Dextrosa, incubándose a 30 °C, en aerobiosis, hasta por 7 días, para bacterias y, hasta por 10 días, para hongos. Se cuantificaron bacterias con un máximo de 2,7x104 UFC cm-2, en las superficies de pisos y paredes; 1,4x103 UFC m-3, en el aire y hongos filamentosos, con un máximo de 7,5x104 UFC cm-2, en las superficies y 9,1x104 UFC m-3, en el aire. Se aislaron e identificaron los géneros de bacterias: Bacillus, Micrococcus, Acinetobacter, Nocardia, St... Ver más

Guardado en:

0123-4226

2619-2551

24

2021-12-31

Rocío Farro-Barbaran, Willy Mauricio Ramos-Iturregui, Sebastian Iglesias-Osores, Carmen Carreño-Farfán - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1533
record_format ojs
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
spellingShingle Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
Farro-Barbaran, Rocío
Ramos-Iturregui, Willy Mauricio
Iglesias-Osores, Sebastian
Carreño-Farfán, Carmen
Museo arqueológico
Biodeterioro
Material arqueológico
Manejo de museos
Curaduría
Archeological Museum
Biodeterioration
Archeological Material
Museum management
Curatorship
title_short Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
title_full Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
title_fullStr Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
title_full_unstemmed Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
title_sort aislamiento e identificación de microorganismos ambientales del museo tumbas reales de sipán
title_eng Isolation and identification of the environmental microorganism of the Tumbas Reales de Sipán museum
description Las bacterias y los hongos son un riesgo potencial para el material arqueológico y trabajadores de los museos en Lambayeque, Perú. Con el objetivo de cuantificar la microbiología ambiental aislada del museo Tumbas Reales de Sipán, se muestrearon cuatro almacenes, con Agar Nutritivo y Agar Papa Dextrosa, incubándose a 30 °C, en aerobiosis, hasta por 7 días, para bacterias y, hasta por 10 días, para hongos. Se cuantificaron bacterias con un máximo de 2,7x104 UFC cm-2, en las superficies de pisos y paredes; 1,4x103 UFC m-3, en el aire y hongos filamentosos, con un máximo de 7,5x104 UFC cm-2, en las superficies y 9,1x104 UFC m-3, en el aire. Se aislaron e identificaron los géneros de bacterias: Bacillus, Micrococcus, Acinetobacter, Nocardia, Streptococcus, Staphylococcus y Streptomyces y los géneros de hongos filamentosos: Aspergillus, Cladosporium, Circinella, Syncephalastrum, Penicillium, Alternaria, Staphylotrichum, Cercospora, Rhizopus, Cunninghamella, Chrysosporium, Nigrospora, Stachybotrys, Gliocladium y Verticillium.
description_eng Bacteria and fungi are a potential risk to archaeological material and museum workers in Lambayeque, Peru. In order to quantify the isolated environmental microbiology of the Tumbas Reales de Sipán museum, four warehouses were sampled with Nutritive Agar and Papa Dextrose Agar, incubated at 30 °C in aerobiosis for up to 7 days for bacteria and up to 10 days for fungi. Bacteria were quantified with a maximum of 2.7x104 CFU cm-2 on the floor and wall surfaces, 1.4x103 CFU m-3 in the air and filamentous fungi with a maximum of 7.5x104 CFU cm-2 on the surfaces and 9.1x104 CFU m-3 in the air. Bacterial genera were isolated and identified: Bacillus, Micrococcus, Acinetobacter, Nocardia, Streptococcus, Staphylococcus and Streptomyces and the filamentous fungal genera: Aspergillus, Cladosporium, Circinella, Syncephalastrum, Penicillium, Cyrryspunrichum, Cyrrysopositive, Cyrrysylopola Rushingum, Cyrrysophyllizum, Nigrospora, Stachybotrys, Gliocladium and Verticillium.
author Farro-Barbaran, Rocío
Ramos-Iturregui, Willy Mauricio
Iglesias-Osores, Sebastian
Carreño-Farfán, Carmen
author_facet Farro-Barbaran, Rocío
Ramos-Iturregui, Willy Mauricio
Iglesias-Osores, Sebastian
Carreño-Farfán, Carmen
topicspa_str_mv Museo arqueológico
Biodeterioro
Material arqueológico
Manejo de museos
Curaduría
topic Museo arqueológico
Biodeterioro
Material arqueológico
Manejo de museos
Curaduría
Archeological Museum
Biodeterioration
Archeological Material
Museum management
Curatorship
topic_facet Museo arqueológico
Biodeterioro
Material arqueológico
Manejo de museos
Curaduría
Archeological Museum
Biodeterioration
Archeological Material
Museum management
Curatorship
citationvolume 24
citationissue 2
citationedition Núm. 2 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/colecciones-tumbas
language spa
format Article
rights http://creativecommons.org/licenses/by-nc/4.0
Rocío Farro-Barbaran, Willy Mauricio Ramos-Iturregui, Sebastian Iglesias-Osores, Carmen Carreño-Farfán - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references BARNETT, H.L.; HUNTER, B.B. 1998. Illustrated Genera of Imperfect Fungi. 4th Edition, APS Press, St. Paul. 218p. 2. CAVKA, M.; GLASNOVIĆ, A.; JANKOVIĆ, I.; SIKANJIĆ, P.R.; PERIĆ, B.; BRKLJACIĆ, B.; MLINARIĆ-MISSONI, E.; SKRLIN, J. 2010. Microbiological analysis of a mummy from the archeological museum in Zagreb. Collegium Antropologicum. 34(3):803-805. 3. CHMIEL, M.; KRAL, I.; LENART-BORON, A. 2019. Concentration and size distribution of microbial aerosol in the historical objects in Kraków as a potential health risk and biodeterioration factor. Aerobiologia. 35(4):743-758. https://doi.org/10.1007/s10453-019-09614-x 4. CIFERRI, O. 2002. The role of microorganisms in the degradation of cultural heritage. Studies in Conservation. 47(Supplement-1):35-45. https://doi.org/10.1179/sic.2002.47.supplement-1.35 5. COX, C.S.; WATHES, C.M. 1995. Bioaerosols handbook. crc press. 6. DAÂSSI, D.; ZOUARI-MECHICHI, H.; BELBAHRI, L.; BARRIUSO, J.; MARTÍNEZ, M.J.; NASRI, M.; MECHICHI, T. 2016. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology. 3 Biotech. 6(1):46. https://doi.org/10.1007/s13205-015-0356-8 7. EYZAGUIRRE, M.P.L. 2002. Análisis científico de fibras arqueológicas. Conserva. 6(1):47-59. 8. FAROOQ, M.; HASSAN, M.; GULL, F. 2015. Mycobial Deterioration of Stone Monuments of Dharmarajika, Taxila. J. Microbiology & Experimentation. 2(1):29-33. https://doi.org/10.15406/jmen.2015.02.00036 9. GRBIĆ, M.L.; STUPAR, M.; VUKOJEVIĆ, J.; MARIČIĆ, I.; BUNGUR, N. 2013. Molds in museum environments: Biodeterioration of art photographs and wooden sculptures. Archives of Biological Sciences. 65(3):955-962. https://doi.org/10.2298/ABS1303955G 10. GU, J.D. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. Internal Biodeterioration and Biodegradation. 52(2):69-91. https://doi.org/10.1016/S0964-8305(02)00177-4 11. GU, J.D.; FORD, T.E.; BERKE, N.S.; MITCHELL, R. 1998. Biodeterioration of concrete by the fungus Fusarium. Internal Biodeterioration and Biodegradation. 41(2):101-109. https://doi.org/10.1016/S0964-8305(98)00034-1 12. GUIAMET, P.; BORREGO, S.; LAVIN, P.; PERDOMO, I.; GÓMEZ DE SARAVIA, S. 2011. Biofouling and biodeterioration in materials stored at the Historical Archive of the Museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloids and Surfaces B: Biointerfaces. 85(2):229-234. https://doi.org/10.1016/j.colsurfb.2011.02.031 13. HÖRZ, G.; KALLFASS, M. 2000. The treasure of gold and silver artifacts from the Royal Tombs of Sipán, Peru - A study on the Moche metalworking techniques. Materials Characterization. 45(4–5):391-419. https://doi.org/10.1016/S1044-5803(00)00093-0 14. KAKAKHEL, M.A.; WU, F.; GU, J.D.; FENG, H.; SHAH, K.; WANG, W. 2019. Controlling biodeterioration of cultural heritage objects with biocides: A review. Internal Biodeterioration and Biodegradation. 143(2019):104721. https://doi.org/10.1016/j.ibiod.2019.104721 15. KARBOWSKA-BERENT, J.; GÓRNY, R.L.; STRZELCZYK, A.B.; WLAZŁO, A. 2011. Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment. 46(10):1872-1879. https://doi.org/10.1016/j.buildenv.2011.03.007 16. KONSA, K.; TIRRUL, I.; HERMANN, A. 2014. Wooden objects in museums: Managing biodeterioration situation. Internal Biodeterioration and Biodegradation. 86(2014):165-170. https://doi.org/10.1016/j.ibiod.2013.06.023 17. LABARCA, M.; SANABRIA, N.; ARCIA, A. 2006. Patogenicidad de Pestalotiopsis palmarum Cooke, sobre plantas de vivero de palma aceitera (Elaeis guineensis Jacq.). Rev. Fac. Agron. (LUZ). 23:417-424 18. LIU, X.; MENG, H.; WANG, Y.; KATAYAMA, Y.; GU, J.D. 2018. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Internal Biodeterioration and Biodegradation. 133(2018):9-16. https://doi.org/10.1016/j.ibiod.2018.05.011 19. LÓPEZ-ARANDA, B.G.; IGLESIAS-OSORES, S.; TULLUME GONZALES, L.; CARREÑO-FARFAN, C. 2020. Caracterización microbiológica de los almacenes del museo tumbas reales de Sipán en Lambayeque, Perú. La zaranda de ideas. 18(2):136-145. 20. MENG, H.; KATAYAMA, Y.; GU, J.D. 2017. More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. Internal Biodeterioration and Biodegradation. 117:78-88. https://doi.org/10.1016/j.ibiod.2016.11.012 21. MENG, H.; LUO, L.; CHAN, H.W.; KATAYAMA, Y.; GU, J.D. 2016. Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. Internal Biodeterioration and Biodegradation. 115(2016):234-243. https://doi.org/10.1016/j.ibiod.2016.08.021 22. MONTANARI, M.; MELLONI, V.; PINZARI, F.; INNOCENTI, G. 2012. Fungal biodeterioration of historical library materials stored in Compactus movable shelves. Internal Biodeterioration and Biodegradation. 75:83-88. https://doi.org/10.1016/j.ibiod.2012.03.011 23. OBRUCA, S.; MAROVA, I.; MATOUSKOVA, P.; HARONIKOVA, A.; LICHNOVA, A. 2012. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica. 57(3):221-227. 24. PIÑAR, G.; PIOMBINO-MASCALI, D.; MAIXNER, F.; ZINK, A.; STERFLINGER, K. 2013. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiology Ecology. 86(2):341–356. https://doi.org/10.1111/1574-6941.12165 25. ROJAS, T.I.; AIRA, M.J.; BATISTA, A.; CRUZ, I.L.; GONZÁLEZ, S. 2012. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana. 51(1):44-51. https://doi.org/10.1080/00173134.2011.643920 26. SEQUEIRA, S.; CABRITA, E.J.; MACEDO, M.F. 2012. Antifungals on paper conservation: An overview. Internal Biodeterioration and Biodegradation. 74(2012):67-86. https://doi.org/10.1016/j.ibiod.2012.07.011 27. SHIMADA, I.; HÄUSLER, W.; JAKOB, M.; MONTENEGRO, J.; RIEDERER, J.; WAGNER, U. 2003. Early pottery making in Northern Coastal Peru. Part IV: Mössbauer study of ceramics from Huaca Sialupe. Hyperfine Interactions. 150(1-4):125-139. https://doi.org/10.1023/B:HYPE.0000007354.42840.ef 28. STERFLINGER, K.; PIÑAR, G. 2013. Microbial deterioration of cultural heritage and works of art - Tilting at windmills? Applied Microbiology and Biotechnology. 97(22):9637-9646. https://doi.org/10.1007/s00253-013-5283-1 29. WARSCHEID, T.; BRAAMS, J. 2000. Biodeterioration of stone: A review. Internal Biodeterioration and Biodegradation. 46(4):343-368. https://doi.org/10.1016/S0964-8305(00)00109-8 30. ZHU, H.; PHELAN, P.E.; DUAN, T.; RAUPP, G.B.; FERNANDO, H.J.S.; CHE, F. 2003. Experimental study of indoor and outdoor airborne bacterial concentrations in Tempe, Arizona, USA. Aerobiologia. 19(3-4):201-211. https://doi.org/10.1023/B:AERO.0000006571.23160.8a
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-12-31
date_accessioned 2021-12-31T00:00:00Z
date_available 2021-12-31T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/colecciones-tumbas
url_doi https://doi.org/10.31910/rudca.v24.n2.2021.1533
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v24.n2.2021.1533
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/colecciones-tumbas/2205
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/colecciones-tumbas/2206
_version_ 1811201177453330432
spelling Aislamiento e identificación de microorganismos ambientales del museo Tumbas Reales de Sipán
Isolation and identification of the environmental microorganism of the Tumbas Reales de Sipán museum
Las bacterias y los hongos son un riesgo potencial para el material arqueológico y trabajadores de los museos en Lambayeque, Perú. Con el objetivo de cuantificar la microbiología ambiental aislada del museo Tumbas Reales de Sipán, se muestrearon cuatro almacenes, con Agar Nutritivo y Agar Papa Dextrosa, incubándose a 30 °C, en aerobiosis, hasta por 7 días, para bacterias y, hasta por 10 días, para hongos. Se cuantificaron bacterias con un máximo de 2,7x104 UFC cm-2, en las superficies de pisos y paredes; 1,4x103 UFC m-3, en el aire y hongos filamentosos, con un máximo de 7,5x104 UFC cm-2, en las superficies y 9,1x104 UFC m-3, en el aire. Se aislaron e identificaron los géneros de bacterias: Bacillus, Micrococcus, Acinetobacter, Nocardia, Streptococcus, Staphylococcus y Streptomyces y los géneros de hongos filamentosos: Aspergillus, Cladosporium, Circinella, Syncephalastrum, Penicillium, Alternaria, Staphylotrichum, Cercospora, Rhizopus, Cunninghamella, Chrysosporium, Nigrospora, Stachybotrys, Gliocladium y Verticillium.
Bacteria and fungi are a potential risk to archaeological material and museum workers in Lambayeque, Peru. In order to quantify the isolated environmental microbiology of the Tumbas Reales de Sipán museum, four warehouses were sampled with Nutritive Agar and Papa Dextrose Agar, incubated at 30 °C in aerobiosis for up to 7 days for bacteria and up to 10 days for fungi. Bacteria were quantified with a maximum of 2.7x104 CFU cm-2 on the floor and wall surfaces, 1.4x103 CFU m-3 in the air and filamentous fungi with a maximum of 7.5x104 CFU cm-2 on the surfaces and 9.1x104 CFU m-3 in the air. Bacterial genera were isolated and identified: Bacillus, Micrococcus, Acinetobacter, Nocardia, Streptococcus, Staphylococcus and Streptomyces and the filamentous fungal genera: Aspergillus, Cladosporium, Circinella, Syncephalastrum, Penicillium, Cyrryspunrichum, Cyrrysopositive, Cyrrysylopola Rushingum, Cyrrysophyllizum, Nigrospora, Stachybotrys, Gliocladium and Verticillium.
Farro-Barbaran, Rocío
Ramos-Iturregui, Willy Mauricio
Iglesias-Osores, Sebastian
Carreño-Farfán, Carmen
Museo arqueológico
Biodeterioro
Material arqueológico
Manejo de museos
Curaduría
Archeological Museum
Biodeterioration
Archeological Material
Museum management
Curatorship
24
2
Núm. 2 , Año 2021 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre
Artículo de revista
Journal article
2021-12-31T00:00:00Z
2021-12-31T00:00:00Z
2021-12-31
application/xml
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/colecciones-tumbas
10.31910/rudca.v24.n2.2021.1533
https://doi.org/10.31910/rudca.v24.n2.2021.1533
spa
http://creativecommons.org/licenses/by-nc/4.0
Rocío Farro-Barbaran, Willy Mauricio Ramos-Iturregui, Sebastian Iglesias-Osores, Carmen Carreño-Farfán - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
BARNETT, H.L.; HUNTER, B.B. 1998. Illustrated Genera of Imperfect Fungi. 4th Edition, APS Press, St. Paul. 218p. 2. CAVKA, M.; GLASNOVIĆ, A.; JANKOVIĆ, I.; SIKANJIĆ, P.R.; PERIĆ, B.; BRKLJACIĆ, B.; MLINARIĆ-MISSONI, E.; SKRLIN, J. 2010. Microbiological analysis of a mummy from the archeological museum in Zagreb. Collegium Antropologicum. 34(3):803-805. 3. CHMIEL, M.; KRAL, I.; LENART-BORON, A. 2019. Concentration and size distribution of microbial aerosol in the historical objects in Kraków as a potential health risk and biodeterioration factor. Aerobiologia. 35(4):743-758. https://doi.org/10.1007/s10453-019-09614-x 4. CIFERRI, O. 2002. The role of microorganisms in the degradation of cultural heritage. Studies in Conservation. 47(Supplement-1):35-45. https://doi.org/10.1179/sic.2002.47.supplement-1.35 5. COX, C.S.; WATHES, C.M. 1995. Bioaerosols handbook. crc press. 6. DAÂSSI, D.; ZOUARI-MECHICHI, H.; BELBAHRI, L.; BARRIUSO, J.; MARTÍNEZ, M.J.; NASRI, M.; MECHICHI, T. 2016. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology. 3 Biotech. 6(1):46. https://doi.org/10.1007/s13205-015-0356-8 7. EYZAGUIRRE, M.P.L. 2002. Análisis científico de fibras arqueológicas. Conserva. 6(1):47-59. 8. FAROOQ, M.; HASSAN, M.; GULL, F. 2015. Mycobial Deterioration of Stone Monuments of Dharmarajika, Taxila. J. Microbiology & Experimentation. 2(1):29-33. https://doi.org/10.15406/jmen.2015.02.00036 9. GRBIĆ, M.L.; STUPAR, M.; VUKOJEVIĆ, J.; MARIČIĆ, I.; BUNGUR, N. 2013. Molds in museum environments: Biodeterioration of art photographs and wooden sculptures. Archives of Biological Sciences. 65(3):955-962. https://doi.org/10.2298/ABS1303955G 10. GU, J.D. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. Internal Biodeterioration and Biodegradation. 52(2):69-91. https://doi.org/10.1016/S0964-8305(02)00177-4 11. GU, J.D.; FORD, T.E.; BERKE, N.S.; MITCHELL, R. 1998. Biodeterioration of concrete by the fungus Fusarium. Internal Biodeterioration and Biodegradation. 41(2):101-109. https://doi.org/10.1016/S0964-8305(98)00034-1 12. GUIAMET, P.; BORREGO, S.; LAVIN, P.; PERDOMO, I.; GÓMEZ DE SARAVIA, S. 2011. Biofouling and biodeterioration in materials stored at the Historical Archive of the Museum of La Plata, Argentine and at the National Archive of the Republic of Cuba. Colloids and Surfaces B: Biointerfaces. 85(2):229-234. https://doi.org/10.1016/j.colsurfb.2011.02.031 13. HÖRZ, G.; KALLFASS, M. 2000. The treasure of gold and silver artifacts from the Royal Tombs of Sipán, Peru - A study on the Moche metalworking techniques. Materials Characterization. 45(4–5):391-419. https://doi.org/10.1016/S1044-5803(00)00093-0 14. KAKAKHEL, M.A.; WU, F.; GU, J.D.; FENG, H.; SHAH, K.; WANG, W. 2019. Controlling biodeterioration of cultural heritage objects with biocides: A review. Internal Biodeterioration and Biodegradation. 143(2019):104721. https://doi.org/10.1016/j.ibiod.2019.104721 15. KARBOWSKA-BERENT, J.; GÓRNY, R.L.; STRZELCZYK, A.B.; WLAZŁO, A. 2011. Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment. 46(10):1872-1879. https://doi.org/10.1016/j.buildenv.2011.03.007 16. KONSA, K.; TIRRUL, I.; HERMANN, A. 2014. Wooden objects in museums: Managing biodeterioration situation. Internal Biodeterioration and Biodegradation. 86(2014):165-170. https://doi.org/10.1016/j.ibiod.2013.06.023 17. LABARCA, M.; SANABRIA, N.; ARCIA, A. 2006. Patogenicidad de Pestalotiopsis palmarum Cooke, sobre plantas de vivero de palma aceitera (Elaeis guineensis Jacq.). Rev. Fac. Agron. (LUZ). 23:417-424 18. LIU, X.; MENG, H.; WANG, Y.; KATAYAMA, Y.; GU, J.D. 2018. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Internal Biodeterioration and Biodegradation. 133(2018):9-16. https://doi.org/10.1016/j.ibiod.2018.05.011 19. LÓPEZ-ARANDA, B.G.; IGLESIAS-OSORES, S.; TULLUME GONZALES, L.; CARREÑO-FARFAN, C. 2020. Caracterización microbiológica de los almacenes del museo tumbas reales de Sipán en Lambayeque, Perú. La zaranda de ideas. 18(2):136-145. 20. MENG, H.; KATAYAMA, Y.; GU, J.D. 2017. More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. Internal Biodeterioration and Biodegradation. 117:78-88. https://doi.org/10.1016/j.ibiod.2016.11.012 21. MENG, H.; LUO, L.; CHAN, H.W.; KATAYAMA, Y.; GU, J.D. 2016. Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. Internal Biodeterioration and Biodegradation. 115(2016):234-243. https://doi.org/10.1016/j.ibiod.2016.08.021 22. MONTANARI, M.; MELLONI, V.; PINZARI, F.; INNOCENTI, G. 2012. Fungal biodeterioration of historical library materials stored in Compactus movable shelves. Internal Biodeterioration and Biodegradation. 75:83-88. https://doi.org/10.1016/j.ibiod.2012.03.011 23. OBRUCA, S.; MAROVA, I.; MATOUSKOVA, P.; HARONIKOVA, A.; LICHNOVA, A. 2012. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica. 57(3):221-227. 24. PIÑAR, G.; PIOMBINO-MASCALI, D.; MAIXNER, F.; ZINK, A.; STERFLINGER, K. 2013. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiology Ecology. 86(2):341–356. https://doi.org/10.1111/1574-6941.12165 25. ROJAS, T.I.; AIRA, M.J.; BATISTA, A.; CRUZ, I.L.; GONZÁLEZ, S. 2012. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana. 51(1):44-51. https://doi.org/10.1080/00173134.2011.643920 26. SEQUEIRA, S.; CABRITA, E.J.; MACEDO, M.F. 2012. Antifungals on paper conservation: An overview. Internal Biodeterioration and Biodegradation. 74(2012):67-86. https://doi.org/10.1016/j.ibiod.2012.07.011 27. SHIMADA, I.; HÄUSLER, W.; JAKOB, M.; MONTENEGRO, J.; RIEDERER, J.; WAGNER, U. 2003. Early pottery making in Northern Coastal Peru. Part IV: Mössbauer study of ceramics from Huaca Sialupe. Hyperfine Interactions. 150(1-4):125-139. https://doi.org/10.1023/B:HYPE.0000007354.42840.ef 28. STERFLINGER, K.; PIÑAR, G. 2013. Microbial deterioration of cultural heritage and works of art - Tilting at windmills? Applied Microbiology and Biotechnology. 97(22):9637-9646. https://doi.org/10.1007/s00253-013-5283-1 29. WARSCHEID, T.; BRAAMS, J. 2000. Biodeterioration of stone: A review. Internal Biodeterioration and Biodegradation. 46(4):343-368. https://doi.org/10.1016/S0964-8305(00)00109-8 30. ZHU, H.; PHELAN, P.E.; DUAN, T.; RAUPP, G.B.; FERNANDO, H.J.S.; CHE, F. 2003. Experimental study of indoor and outdoor airborne bacterial concentrations in Tempe, Arizona, USA. Aerobiologia. 19(3-4):201-211. https://doi.org/10.1023/B:AERO.0000006571.23160.8a
https://revistas.udca.edu.co/index.php/ruadc/article/download/colecciones-tumbas/2205
https://revistas.udca.edu.co/index.php/ruadc/article/download/colecciones-tumbas/2206
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication