Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
.
El pH es un parámetro fundamental a considerarse en el momento de diseñar películas multicomponentes, debido a que interviene en la compatibilidad e interacciones que se generan entre los componentes de la matriz, determina la funcionalidad de las mismas y como se demuestra en este estudio, el pH tiene una influencia significativa en las propiedades mecánicas, fisicoquímicas y morfologías de las películas. Con ese objetivo, se sometieron películas a base de goma gellan, gelatina, caseinato de calcio, aceite de canola, glicerol, tween 80 y natamisina, a cuatro niveles de pH T1:6,6 T2:6,2 T3:5,8 T4:5,4 para evaluar y determinar la influencia del pH en las propiedades finales de las películas. Como resultado obtenido en las propiedades, se pre... Ver más
0123-4226
2619-2551
23
2020-06-30
Meliza Moreno Henao, Yanneth Bohórquez Pérez, Leidy Ayala Sánchez, Claudia Valenzuela Real - 2020
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1457 |
---|---|
record_format |
ojs |
spelling |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes Effect of pH on mechanical, physicochemical and morphological properties in multicomponent edible films El pH es un parámetro fundamental a considerarse en el momento de diseñar películas multicomponentes, debido a que interviene en la compatibilidad e interacciones que se generan entre los componentes de la matriz, determina la funcionalidad de las mismas y como se demuestra en este estudio, el pH tiene una influencia significativa en las propiedades mecánicas, fisicoquímicas y morfologías de las películas. Con ese objetivo, se sometieron películas a base de goma gellan, gelatina, caseinato de calcio, aceite de canola, glicerol, tween 80 y natamisina, a cuatro niveles de pH T1:6,6 T2:6,2 T3:5,8 T4:5,4 para evaluar y determinar la influencia del pH en las propiedades finales de las películas. Como resultado obtenido en las propiedades, se presentaron diferencias significativas (α=0,05), influenciadas por la modificación del pH, de modo que, en las películas sometidas a un pH de T4=5,4 se generó una mejor compatibilidad de los componentes, por las condiciones del medio que permitieron obtener interacciones por fuerzas electrostáticas entre los polímeros y el aceite, evidenciándose en el mejor comportamiento mecánico con una elongación de 10,6 ± 1,8%, mayor permeabilidad al vapor de agua, solubilidad de 51 ± 0,02% y un contenido de humedad de 9 ± 3,0%; a diferencia de las películas de T1, en las cuales, predominaron las interacciones a través de los enlaces de hidrógeno, afectando la permeabilidad y el comportamiento mecánico de las mismas. En películas multicomponentes a base polímeros y lípidos para garantizar mayor compatibilidad e interacciones que se reflejan en mejores propiedades mecánicas, fisicoquímicas y morfológicas entre los componentes se deben elaborar películas a pH de 5,4 o, en caso contrario, en los cuales, las propiedades deban permitir mayores interacciones entre grupos polares de los componentes utilizar pH más básicos, como pH de 6,6. pH is a fundamental parameter to be considered when designing multicomponent films, because it intervenes in the compatibility and interactions that are generated between the components of the matrix, determines their functionality and as demonstrated in this study the pH has a significant influence on the mechanical, physicochemical and morphological properties of films. With this objective, films based on gellan gum, gelatin, calcium caseinate and canola oil were subjected to four levels of pH T1 = 6.6 T2 = 6.2 T3 = 5.8 T4 = 5.4 to evaluate and determine the influence of pH on the final properties of the films. As a result obtained in the properties there were significant differences (α = 0.05) influenced by the modification of the pH so that in the films subjected to a pH of T4 = 5.4 a better compatibility of the components was generated by the conditions of the medium that allowed to obtain interactions by electrostatic forces between the polymers and the oil, being evident in the best mechanical behavior with an elongation of 10.6 ± 1.8%, greater water vapor permeability, solubility of 51 ± 0.02% and a moisture content of 9 ± 3.0%; unlike the T1 films in which the interactions through hydrogen bonds predominated, affecting their permeability and mechanical behavior. Finally, as a conclusion in multi-component films based on polymers and lipids to ensure greater compatibility and interactions that are reflected in better mechanical, physicochemical and morphological properties between the components, films at pH 5.4 or otherwise in the which properties should allow greater interactions between polar groups of the components to use more basic pH such as pH 6.6. Henao, Meliza Moreno Bohórquez Pérez, Yanneth Ayala Sánchez, Leidy Valenzuela Real, Claudia biopolímeros compatibilidad interacciones permeabilidad elasticidad biopolymers compatibility interactions permeability elasticity 23 1 Núm. 1 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio Artículo de revista Journal article 2020-06-30T00:00:00Z 2020-06-30T00:00:00Z 2020-06-30 application/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1457 10.31910/rudca.v23.n1.2020.1457 https://doi.org/10.31910/rudca.v23.n1.2020.1457 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ Meliza Moreno Henao, Yanneth Bohórquez Pérez, Leidy Ayala Sánchez, Claudia Valenzuela Real - 2020 ACOSTA, S.; JIMÉNEZ, A.; CHÁFER, M.; GONZÁLEZ-MARTÍNEZ, C.; CHIRALT, A. 2015. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids. (Netherlands). 49:135-143. https://doi.org/10.1016/j.foodhyd.2015.03.015 AHMADI, R.; KALBASI-ASHTARI, A.; OROMIEHIE, A.; YARMAND, M.-S.; JAHANDIDEH, F. 2012. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J. Food Engineering. (Netherlands). 109(4):745-751. https://doi.org/10.1016/j.jfoodeng.2011.11.010 ARRIETA, M.P.; PELTZER, M.A.; GARRIGÓS, M. DEL C.; JIMÉNEZ, A. 2013. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Engineering. 114(4):486-494. https://doi.org/10.1016/j.jfoodeng.2012.09.002 ARRIETA, M.P.; PELTZER, M.A.; LÓPEZ, J.; GARRIGÓS, M. DEL C.; VALENTE, A.J.M.; JIMÉNEZ, A. 2014. Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J. Food Engineering. 121:94-101. https://doi.org/10.1016/j.jfoodeng.2013.08.015 ASTM INTERNATIONAL. 2002. ASTM D882 - 02. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. BENAVIDES, S.; VILLALOBOS-CARVAJAL, R.; REYES, J.E. 2012. Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J. Food Engineering. 110(2):232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023 BIERHALZ, A.C.K.; DA SILVA, M.A.; BRAGA, M.E.M.; SOUSA, H.J.C.; KIECKBUSCH, T.G. 2014. Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT - Food Science and Technology. (Estados Unidos). 57(2):494-501. https://doi.org/10.1016/j.lwt.2014.02.021 BONILLA, J.; ATARÉS, L.; VARGAS, M.; CHIRALT, A. 2012. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Engineering. 110(2):208-213. https://doi.org/10.1016/j.jfoodeng.2011.05.034 CAO, N.; FU, Y.; HE, J. 2007. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids. 21(7):1153-1162. https://doi.org/10.1016/j.foodhyd.2006.09.001 CAZÓN, P.; VELAZQUEZ, G.; RAMÍREZ, J.A.; VÁZQUEZ, M. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 68:136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009 CERQUEIRA, M.A.; SOUZA, B.W.S.; TEIXEIRA, J.A.; VICENTE, A. 2012. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids. 27(1):175-184. https://doi.org/10.1016/j.foodhyd.2011.07.007 CHAMBI, H.; GROSSO, C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research Internal. (Netherlands). 39(4):458-466. https://doi.org/10.1016/j.foodres.2005.09.009 DE KRUIF, C.G.; WEINBRECK, F.; DE VRIES, R. 2004. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science. 9(5):340-349. https://doi.org/10.1016/j.cocis.2004.09.006 ESTEGHLAL, S.; NIAKOUSARI, M.; HOSSEINI, S.M.H. 2018. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. Internal J. Biological Macromolecules. (Netherlands). 114:1-9. https://doi.org/10.1016/j.ijbiomac.2018.03.079 GALUS, S.; LENART, A. 2013. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Engineering. 15(4):459-465. https://doi.org/10.1016/j.jfoodeng.2012.03.006 GARAVAND, F.; ROUHI, M.; RAZAVI, S.H.; CACCIOTTI, I.; MOHAMMADI, R. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Internal J. Biological Macromolecules. 104:687-707. https://doi.org/10.1016/j.ijbiomac.2017.06.093 GENNADIOS, A.; WELLER, C.L.; GOODING, C.H. 1994. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Engineering. 21(4):395-409. https://doi.org/10.1016/0260-8774(94)90062-0 GHASEMLOU, M.; KHODAIYAN, F.; OROMIEHIE, A. 2011. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers. (United Kingdom). 84(1):477-483. https://doi.org/10.1016/j.carbpol.2010.12.010 HAN, J.H.; FLOROS, J.D. 1997. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plastic Film & Sheeting. (United States). 13(4):287-298. https://doi.org/10.1177/875608799701300405 HASSAN, B.; CHATHA, S.A.S.; HUSSAIN, A.I.; ZIA, K.M.; AKHTAR, N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Internal J. Biological Macromolecules. 109:1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097 JIMÉNEZ, A.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2012. Effect of re-crystallization on tensile, optical and water vapor barrier properties of corn starch films containing fatty acids. Food Hydrocolloids. 26(1):302-310. https://doi.org/10.1016/j.foodhyd.2011.06.009 JRIDI, M.; HAJJI, S.; AYED, H.; LASSOUED, I.; MBAREK, A.; KAMMOUN, M.; SOUISSI, N.; NASRI, M. 2014. Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Internal J. Biological Macromolecules. 67:373-379. https://doi.org/10.1016/j.ijbiomac.2014.03.054 KHODAEI, D.; OLTROGGE, K.; HAMIDI-ESFAHANI, Z. 2019. Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT. 117(2020):108617. https://doi.org/10.1016/j.lwt.2019.108617 LEE, K.Y.; SHIM, J.; LEE, H.G. 2004. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers. 56(2):251-254. https://doi.org/10.1016/j.carbpol.2003.04.001 MANRICH, A.; MOREIRA, F.K.V.; OTONI, C.G.; LOREVICE, M.V.; MARTINS, M.A.; MATTOSO, L.H.C. 2017. Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers. 164:83-91. https://doi.org/10.1016/j.carbpol.2017.01.075 McCLEMENTS, D.J. 2005. Colloidal Interactions. Chapter 3. In: Food Emulsions: Principles, Practices, and Techniques. 3rd Edition. London. CRC Press. p.39-82. MONEDERO, F.M.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2010. Effect of calcium and sodium caseinates on physical characteristics of soy protein isolate–lipid films. J. Food Engineering. 97(2):228-234. https://doi.org/10.1016/j.jfoodeng.2009.10.014 PAN, H.; JIANG, B.; CHEN, J.; JIN, Z. 2014. Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chemistry. (Netherlands). 151:1-6. https://doi.org/10.1016/j.foodchem.2013.11.075 PEREDA, M.; PONCE, A.G.; MARCOVICH, N.E.; RUSECKAITE, R.A.; MARTUCCI, J.F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25(5):1372-1381. https://doi.org/10.1016/j.foodhyd.2011.01.001 QI, G.; LI, N.; SUN, X.S.; SHI, Y.; WANG, D. 2016. Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers. 152:747-754. https://doi.org/10.1016/j.carbpol.2016.07.068 RHIM, J.W.; SHELLHAMMER, T.H. 2005. Lipid-based edible films and coatings. In: Innovations in Food Packaging. p. 362-383. https://doi.org/10.1016/B978-012311632-1/50053-X SANYANG, M.L.; SAPUAN, S.M.; JAWAID, M.; ISHAK, M.R.; SAHARI, J. 2016. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Science and Technology. (United Kingdom). 53(1):326-336. https://doi.org/10.1007/s13197-015-2009-7 TONGNUANCHAN, P.; BENJAKUL, S.; PRODPRAN, T. 2013. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Engineering.117(3):350-360. https://doi.org/10.1016/j.jfoodeng.2013.03.005 YILDIRIM, M.; MAHMUT, S.; SADIKOGL, H. 2019. Development and characterization of edible films based on modified corn starch and grape juice. Food Chemistry. 292:6-13. https://doi.org/10.1016/j.foodchem.2019.04.006 https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1878 https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1893 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes |
spellingShingle |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes Henao, Meliza Moreno Bohórquez Pérez, Yanneth Ayala Sánchez, Leidy Valenzuela Real, Claudia biopolímeros compatibilidad interacciones permeabilidad elasticidad biopolymers compatibility interactions permeability elasticity |
title_short |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes |
title_full |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes |
title_fullStr |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes |
title_full_unstemmed |
Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes |
title_sort |
efecto del ph sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes |
title_eng |
Effect of pH on mechanical, physicochemical and morphological properties in multicomponent edible films |
description |
El pH es un parámetro fundamental a considerarse en el momento de diseñar películas multicomponentes, debido a que interviene en la compatibilidad e interacciones que se generan entre los componentes de la matriz, determina la funcionalidad de las mismas y como se demuestra en este estudio, el pH tiene una influencia significativa en las propiedades mecánicas, fisicoquímicas y morfologías de las películas. Con ese objetivo, se sometieron películas a base de goma gellan, gelatina, caseinato de calcio, aceite de canola, glicerol, tween 80 y natamisina, a cuatro niveles de pH T1:6,6 T2:6,2 T3:5,8 T4:5,4 para evaluar y determinar la influencia del pH en las propiedades finales de las películas. Como resultado obtenido en las propiedades, se presentaron diferencias significativas (α=0,05), influenciadas por la modificación del pH, de modo que, en las películas sometidas a un pH de T4=5,4 se generó una mejor compatibilidad de los componentes, por las condiciones del medio que permitieron obtener interacciones por fuerzas electrostáticas entre los polímeros y el aceite, evidenciándose en el mejor comportamiento mecánico con una elongación de 10,6 ± 1,8%, mayor permeabilidad al vapor de agua, solubilidad de 51 ± 0,02% y un contenido de humedad de 9 ± 3,0%; a diferencia de las películas de T1, en las cuales, predominaron las interacciones a través de los enlaces de hidrógeno, afectando la permeabilidad y el comportamiento mecánico de las mismas. En películas multicomponentes a base polímeros y lípidos para garantizar mayor compatibilidad e interacciones que se reflejan en mejores propiedades mecánicas, fisicoquímicas y morfológicas entre los componentes se deben elaborar películas a pH de 5,4 o, en caso contrario, en los cuales, las propiedades deban permitir mayores interacciones entre grupos polares de los componentes utilizar pH más básicos, como pH de 6,6.
|
description_eng |
pH is a fundamental parameter to be considered when designing multicomponent films, because it intervenes in the compatibility and interactions that are generated between the components of the matrix, determines their functionality and as demonstrated in this study the pH has a significant influence on the mechanical, physicochemical and morphological properties of films. With this objective, films based on gellan gum, gelatin, calcium caseinate and canola oil were subjected to four levels of pH T1 = 6.6 T2 = 6.2 T3 = 5.8 T4 = 5.4 to evaluate and determine the influence of pH on the final properties of the films. As a result obtained in the properties there were significant differences (α = 0.05) influenced by the modification of the pH so that in the films subjected to a pH of T4 = 5.4 a better compatibility of the components was generated by the conditions of the medium that allowed to obtain interactions by electrostatic forces between the polymers and the oil, being evident in the best mechanical behavior with an elongation of 10.6 ± 1.8%, greater water vapor permeability, solubility of 51 ± 0.02% and a moisture content of 9 ± 3.0%; unlike the T1 films in which the interactions through hydrogen bonds predominated, affecting their permeability and mechanical behavior. Finally, as a conclusion in multi-component films based on polymers and lipids to ensure greater compatibility and interactions that are reflected in better mechanical, physicochemical and morphological properties between the components, films at pH 5.4 or otherwise in the which properties should allow greater interactions between polar groups of the components to use more basic pH such as pH 6.6.
|
author |
Henao, Meliza Moreno Bohórquez Pérez, Yanneth Ayala Sánchez, Leidy Valenzuela Real, Claudia |
author_facet |
Henao, Meliza Moreno Bohórquez Pérez, Yanneth Ayala Sánchez, Leidy Valenzuela Real, Claudia |
topicspa_str_mv |
biopolímeros compatibilidad interacciones permeabilidad elasticidad |
topic |
biopolímeros compatibilidad interacciones permeabilidad elasticidad biopolymers compatibility interactions permeability elasticity |
topic_facet |
biopolímeros compatibilidad interacciones permeabilidad elasticidad biopolymers compatibility interactions permeability elasticity |
citationvolume |
23 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1457 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Meliza Moreno Henao, Yanneth Bohórquez Pérez, Leidy Ayala Sánchez, Claudia Valenzuela Real - 2020 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ACOSTA, S.; JIMÉNEZ, A.; CHÁFER, M.; GONZÁLEZ-MARTÍNEZ, C.; CHIRALT, A. 2015. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids. (Netherlands). 49:135-143. https://doi.org/10.1016/j.foodhyd.2015.03.015 AHMADI, R.; KALBASI-ASHTARI, A.; OROMIEHIE, A.; YARMAND, M.-S.; JAHANDIDEH, F. 2012. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J. Food Engineering. (Netherlands). 109(4):745-751. https://doi.org/10.1016/j.jfoodeng.2011.11.010 ARRIETA, M.P.; PELTZER, M.A.; GARRIGÓS, M. DEL C.; JIMÉNEZ, A. 2013. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Engineering. 114(4):486-494. https://doi.org/10.1016/j.jfoodeng.2012.09.002 ARRIETA, M.P.; PELTZER, M.A.; LÓPEZ, J.; GARRIGÓS, M. DEL C.; VALENTE, A.J.M.; JIMÉNEZ, A. 2014. Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J. Food Engineering. 121:94-101. https://doi.org/10.1016/j.jfoodeng.2013.08.015 ASTM INTERNATIONAL. 2002. ASTM D882 - 02. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. BENAVIDES, S.; VILLALOBOS-CARVAJAL, R.; REYES, J.E. 2012. Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J. Food Engineering. 110(2):232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023 BIERHALZ, A.C.K.; DA SILVA, M.A.; BRAGA, M.E.M.; SOUSA, H.J.C.; KIECKBUSCH, T.G. 2014. Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT - Food Science and Technology. (Estados Unidos). 57(2):494-501. https://doi.org/10.1016/j.lwt.2014.02.021 BONILLA, J.; ATARÉS, L.; VARGAS, M.; CHIRALT, A. 2012. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Engineering. 110(2):208-213. https://doi.org/10.1016/j.jfoodeng.2011.05.034 CAO, N.; FU, Y.; HE, J. 2007. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids. 21(7):1153-1162. https://doi.org/10.1016/j.foodhyd.2006.09.001 CAZÓN, P.; VELAZQUEZ, G.; RAMÍREZ, J.A.; VÁZQUEZ, M. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 68:136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009 CERQUEIRA, M.A.; SOUZA, B.W.S.; TEIXEIRA, J.A.; VICENTE, A. 2012. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids. 27(1):175-184. https://doi.org/10.1016/j.foodhyd.2011.07.007 CHAMBI, H.; GROSSO, C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research Internal. (Netherlands). 39(4):458-466. https://doi.org/10.1016/j.foodres.2005.09.009 DE KRUIF, C.G.; WEINBRECK, F.; DE VRIES, R. 2004. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science. 9(5):340-349. https://doi.org/10.1016/j.cocis.2004.09.006 ESTEGHLAL, S.; NIAKOUSARI, M.; HOSSEINI, S.M.H. 2018. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. Internal J. Biological Macromolecules. (Netherlands). 114:1-9. https://doi.org/10.1016/j.ijbiomac.2018.03.079 GALUS, S.; LENART, A. 2013. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Engineering. 15(4):459-465. https://doi.org/10.1016/j.jfoodeng.2012.03.006 GARAVAND, F.; ROUHI, M.; RAZAVI, S.H.; CACCIOTTI, I.; MOHAMMADI, R. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Internal J. Biological Macromolecules. 104:687-707. https://doi.org/10.1016/j.ijbiomac.2017.06.093 GENNADIOS, A.; WELLER, C.L.; GOODING, C.H. 1994. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Engineering. 21(4):395-409. https://doi.org/10.1016/0260-8774(94)90062-0 GHASEMLOU, M.; KHODAIYAN, F.; OROMIEHIE, A. 2011. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers. (United Kingdom). 84(1):477-483. https://doi.org/10.1016/j.carbpol.2010.12.010 HAN, J.H.; FLOROS, J.D. 1997. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plastic Film & Sheeting. (United States). 13(4):287-298. https://doi.org/10.1177/875608799701300405 HASSAN, B.; CHATHA, S.A.S.; HUSSAIN, A.I.; ZIA, K.M.; AKHTAR, N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Internal J. Biological Macromolecules. 109:1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097 JIMÉNEZ, A.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2012. Effect of re-crystallization on tensile, optical and water vapor barrier properties of corn starch films containing fatty acids. Food Hydrocolloids. 26(1):302-310. https://doi.org/10.1016/j.foodhyd.2011.06.009 JRIDI, M.; HAJJI, S.; AYED, H.; LASSOUED, I.; MBAREK, A.; KAMMOUN, M.; SOUISSI, N.; NASRI, M. 2014. Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Internal J. Biological Macromolecules. 67:373-379. https://doi.org/10.1016/j.ijbiomac.2014.03.054 KHODAEI, D.; OLTROGGE, K.; HAMIDI-ESFAHANI, Z. 2019. Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT. 117(2020):108617. https://doi.org/10.1016/j.lwt.2019.108617 LEE, K.Y.; SHIM, J.; LEE, H.G. 2004. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers. 56(2):251-254. https://doi.org/10.1016/j.carbpol.2003.04.001 MANRICH, A.; MOREIRA, F.K.V.; OTONI, C.G.; LOREVICE, M.V.; MARTINS, M.A.; MATTOSO, L.H.C. 2017. Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers. 164:83-91. https://doi.org/10.1016/j.carbpol.2017.01.075 McCLEMENTS, D.J. 2005. Colloidal Interactions. Chapter 3. In: Food Emulsions: Principles, Practices, and Techniques. 3rd Edition. London. CRC Press. p.39-82. MONEDERO, F.M.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2010. Effect of calcium and sodium caseinates on physical characteristics of soy protein isolate–lipid films. J. Food Engineering. 97(2):228-234. https://doi.org/10.1016/j.jfoodeng.2009.10.014 PAN, H.; JIANG, B.; CHEN, J.; JIN, Z. 2014. Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chemistry. (Netherlands). 151:1-6. https://doi.org/10.1016/j.foodchem.2013.11.075 PEREDA, M.; PONCE, A.G.; MARCOVICH, N.E.; RUSECKAITE, R.A.; MARTUCCI, J.F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25(5):1372-1381. https://doi.org/10.1016/j.foodhyd.2011.01.001 QI, G.; LI, N.; SUN, X.S.; SHI, Y.; WANG, D. 2016. Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers. 152:747-754. https://doi.org/10.1016/j.carbpol.2016.07.068 RHIM, J.W.; SHELLHAMMER, T.H. 2005. Lipid-based edible films and coatings. In: Innovations in Food Packaging. p. 362-383. https://doi.org/10.1016/B978-012311632-1/50053-X SANYANG, M.L.; SAPUAN, S.M.; JAWAID, M.; ISHAK, M.R.; SAHARI, J. 2016. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Science and Technology. (United Kingdom). 53(1):326-336. https://doi.org/10.1007/s13197-015-2009-7 TONGNUANCHAN, P.; BENJAKUL, S.; PRODPRAN, T. 2013. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Engineering.117(3):350-360. https://doi.org/10.1016/j.jfoodeng.2013.03.005 YILDIRIM, M.; MAHMUT, S.; SADIKOGL, H. 2019. Development and characterization of edible films based on modified corn starch and grape juice. Food Chemistry. 292:6-13. https://doi.org/10.1016/j.foodchem.2019.04.006 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2020-06-30 |
date_accessioned |
2020-06-30T00:00:00Z |
date_available |
2020-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1457 |
url_doi |
https://doi.org/10.31910/rudca.v23.n1.2020.1457 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v23.n1.2020.1457 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1878 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1893 |
_version_ |
1811201175746248704 |