Titulo:

Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
.

Sumario:

El pH es un parámetro fundamental a considerarse en el momento de diseñar películas multicomponentes, debido a que interviene en la compatibilidad e interacciones que se generan entre los componentes de la matriz, determina la funcionalidad de las mismas y como se demuestra en este estudio, el pH tiene una influencia significativa en las propiedades mecánicas, fisicoquímicas y morfologías de las películas. Con ese objetivo, se sometieron películas a base de goma gellan, gelatina, caseinato de calcio, aceite de canola, glicerol, tween 80 y natamisina, a cuatro niveles de pH T1:6,6 T2:6,2 T3:5,8 T4:5,4 para evaluar y determinar la influencia del pH en las propiedades finales de las películas. Como resultado obtenido en las propiedades, se pre... Ver más

Guardado en:

0123-4226

2619-2551

23

2020-06-30

Meliza Moreno Henao, Yanneth Bohórquez Pérez, Leidy Ayala Sánchez, Claudia Valenzuela Real - 2020

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1457
record_format ojs
spelling Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
Effect of pH on mechanical, physicochemical and morphological properties in multicomponent edible films
El pH es un parámetro fundamental a considerarse en el momento de diseñar películas multicomponentes, debido a que interviene en la compatibilidad e interacciones que se generan entre los componentes de la matriz, determina la funcionalidad de las mismas y como se demuestra en este estudio, el pH tiene una influencia significativa en las propiedades mecánicas, fisicoquímicas y morfologías de las películas. Con ese objetivo, se sometieron películas a base de goma gellan, gelatina, caseinato de calcio, aceite de canola, glicerol, tween 80 y natamisina, a cuatro niveles de pH T1:6,6 T2:6,2 T3:5,8 T4:5,4 para evaluar y determinar la influencia del pH en las propiedades finales de las películas. Como resultado obtenido en las propiedades, se presentaron diferencias significativas (α=0,05), influenciadas por la modificación del pH, de modo que, en las películas sometidas a un pH de T4=5,4 se generó una mejor compatibilidad de los componentes, por las condiciones del medio que permitieron obtener interacciones por fuerzas electrostáticas entre los polímeros y el aceite, evidenciándose en el mejor comportamiento mecánico con una elongación de 10,6 ± 1,8%, mayor permeabilidad al vapor de agua, solubilidad de 51 ± 0,02% y un contenido de humedad de 9 ± 3,0%; a diferencia de las películas de T1, en las cuales, predominaron las interacciones a través de los enlaces de hidrógeno, afectando la permeabilidad y el comportamiento mecánico de las mismas. En películas multicomponentes a base polímeros y lípidos para garantizar mayor compatibilidad e interacciones que se reflejan en mejores propiedades mecánicas, fisicoquímicas y morfológicas entre los componentes se deben elaborar películas a pH de 5,4 o, en caso contrario, en los cuales, las propiedades deban permitir mayores interacciones entre grupos polares de los componentes utilizar pH más básicos, como pH de 6,6.
pH is a fundamental parameter to be considered when designing multicomponent films, because it intervenes in the compatibility and interactions that are generated between the components of the matrix, determines their functionality and as demonstrated in this study the pH has a significant influence on the mechanical, physicochemical and morphological properties of films. With this objective, films based on gellan gum, gelatin, calcium caseinate and canola oil were subjected to four levels of pH T1 = 6.6 T2 = 6.2 T3 = 5.8 T4 = 5.4 to evaluate and determine the influence of pH on the final properties of the films. As a result obtained in the properties there were significant differences (α = 0.05) influenced by the modification of the pH so that in the films subjected to a pH of T4 = 5.4 a better compatibility of the components was generated by the conditions of the medium that allowed to obtain interactions by electrostatic forces between the polymers and the oil, being evident in the best mechanical behavior with an elongation of 10.6 ± 1.8%, greater water vapor permeability, solubility of 51 ± 0.02% and a moisture content of 9 ± 3.0%; unlike the T1 films in which the interactions through hydrogen bonds predominated, affecting their permeability and mechanical behavior. Finally, as a conclusion in multi-component films based on polymers and lipids to ensure greater compatibility and interactions that are reflected in better mechanical, physicochemical and morphological properties between the components, films at pH 5.4 or otherwise in the which properties should allow greater interactions between polar groups of the components to use more basic pH such as pH 6.6.
Henao, Meliza Moreno
Bohórquez Pérez, Yanneth
Ayala Sánchez, Leidy
Valenzuela Real, Claudia
biopolímeros
compatibilidad
interacciones
permeabilidad
elasticidad
biopolymers
compatibility
interactions
permeability
elasticity
23
1
Núm. 1 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
Artículo de revista
Journal article
2020-06-30T00:00:00Z
2020-06-30T00:00:00Z
2020-06-30
application/xml
application/pdf
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Revista U.D.C.A Actualidad & Divulgación Científica
0123-4226
2619-2551
https://revistas.udca.edu.co/index.php/ruadc/article/view/1457
10.31910/rudca.v23.n1.2020.1457
https://doi.org/10.31910/rudca.v23.n1.2020.1457
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Meliza Moreno Henao, Yanneth Bohórquez Pérez, Leidy Ayala Sánchez, Claudia Valenzuela Real - 2020
ACOSTA, S.; JIMÉNEZ, A.; CHÁFER, M.; GONZÁLEZ-MARTÍNEZ, C.; CHIRALT, A. 2015. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids. (Netherlands). 49:135-143. https://doi.org/10.1016/j.foodhyd.2015.03.015
AHMADI, R.; KALBASI-ASHTARI, A.; OROMIEHIE, A.; YARMAND, M.-S.; JAHANDIDEH, F. 2012. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J. Food Engineering. (Netherlands). 109(4):745-751. https://doi.org/10.1016/j.jfoodeng.2011.11.010
ARRIETA, M.P.; PELTZER, M.A.; GARRIGÓS, M. DEL C.; JIMÉNEZ, A. 2013. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Engineering. 114(4):486-494. https://doi.org/10.1016/j.jfoodeng.2012.09.002
ARRIETA, M.P.; PELTZER, M.A.; LÓPEZ, J.; GARRIGÓS, M. DEL C.; VALENTE, A.J.M.; JIMÉNEZ, A. 2014. Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J. Food Engineering. 121:94-101. https://doi.org/10.1016/j.jfoodeng.2013.08.015
ASTM INTERNATIONAL. 2002. ASTM D882 - 02. Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
BENAVIDES, S.; VILLALOBOS-CARVAJAL, R.; REYES, J.E. 2012. Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J. Food Engineering. 110(2):232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023
BIERHALZ, A.C.K.; DA SILVA, M.A.; BRAGA, M.E.M.; SOUSA, H.J.C.; KIECKBUSCH, T.G. 2014. Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT - Food Science and Technology. (Estados Unidos). 57(2):494-501. https://doi.org/10.1016/j.lwt.2014.02.021
BONILLA, J.; ATARÉS, L.; VARGAS, M.; CHIRALT, A. 2012. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Engineering. 110(2):208-213. https://doi.org/10.1016/j.jfoodeng.2011.05.034
CAO, N.; FU, Y.; HE, J. 2007. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids. 21(7):1153-1162. https://doi.org/10.1016/j.foodhyd.2006.09.001
CAZÓN, P.; VELAZQUEZ, G.; RAMÍREZ, J.A.; VÁZQUEZ, M. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 68:136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009
CERQUEIRA, M.A.; SOUZA, B.W.S.; TEIXEIRA, J.A.; VICENTE, A. 2012. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids. 27(1):175-184. https://doi.org/10.1016/j.foodhyd.2011.07.007
CHAMBI, H.; GROSSO, C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research Internal. (Netherlands). 39(4):458-466. https://doi.org/10.1016/j.foodres.2005.09.009
DE KRUIF, C.G.; WEINBRECK, F.; DE VRIES, R. 2004. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science. 9(5):340-349. https://doi.org/10.1016/j.cocis.2004.09.006
ESTEGHLAL, S.; NIAKOUSARI, M.; HOSSEINI, S.M.H. 2018. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. Internal J. Biological Macromolecules. (Netherlands). 114:1-9. https://doi.org/10.1016/j.ijbiomac.2018.03.079
GALUS, S.; LENART, A. 2013. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Engineering. 15(4):459-465. https://doi.org/10.1016/j.jfoodeng.2012.03.006
GARAVAND, F.; ROUHI, M.; RAZAVI, S.H.; CACCIOTTI, I.; MOHAMMADI, R. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Internal J. Biological Macromolecules. 104:687-707. https://doi.org/10.1016/j.ijbiomac.2017.06.093
GENNADIOS, A.; WELLER, C.L.; GOODING, C.H. 1994. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Engineering. 21(4):395-409. https://doi.org/10.1016/0260-8774(94)90062-0
GHASEMLOU, M.; KHODAIYAN, F.; OROMIEHIE, A. 2011. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers. (United Kingdom). 84(1):477-483. https://doi.org/10.1016/j.carbpol.2010.12.010
HAN, J.H.; FLOROS, J.D. 1997. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plastic Film & Sheeting. (United States). 13(4):287-298. https://doi.org/10.1177/875608799701300405
HASSAN, B.; CHATHA, S.A.S.; HUSSAIN, A.I.; ZIA, K.M.; AKHTAR, N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Internal J. Biological Macromolecules. 109:1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
JIMÉNEZ, A.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2012. Effect of re-crystallization on tensile, optical and water vapor barrier properties of corn starch films containing fatty acids. Food Hydrocolloids. 26(1):302-310. https://doi.org/10.1016/j.foodhyd.2011.06.009
JRIDI, M.; HAJJI, S.; AYED, H.; LASSOUED, I.; MBAREK, A.; KAMMOUN, M.; SOUISSI, N.; NASRI, M. 2014. Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Internal J. Biological Macromolecules. 67:373-379. https://doi.org/10.1016/j.ijbiomac.2014.03.054
KHODAEI, D.; OLTROGGE, K.; HAMIDI-ESFAHANI, Z. 2019. Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT. 117(2020):108617. https://doi.org/10.1016/j.lwt.2019.108617
LEE, K.Y.; SHIM, J.; LEE, H.G. 2004. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers. 56(2):251-254. https://doi.org/10.1016/j.carbpol.2003.04.001
MANRICH, A.; MOREIRA, F.K.V.; OTONI, C.G.; LOREVICE, M.V.; MARTINS, M.A.; MATTOSO, L.H.C. 2017. Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers. 164:83-91. https://doi.org/10.1016/j.carbpol.2017.01.075
McCLEMENTS, D.J. 2005. Colloidal Interactions. Chapter 3. In: Food Emulsions: Principles, Practices, and Techniques. 3rd Edition. London. CRC Press. p.39-82.
MONEDERO, F.M.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2010. Effect of calcium and sodium caseinates on physical characteristics of soy protein isolate–lipid films. J. Food Engineering. 97(2):228-234. https://doi.org/10.1016/j.jfoodeng.2009.10.014
PAN, H.; JIANG, B.; CHEN, J.; JIN, Z. 2014. Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chemistry. (Netherlands). 151:1-6. https://doi.org/10.1016/j.foodchem.2013.11.075
PEREDA, M.; PONCE, A.G.; MARCOVICH, N.E.; RUSECKAITE, R.A.; MARTUCCI, J.F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25(5):1372-1381. https://doi.org/10.1016/j.foodhyd.2011.01.001
QI, G.; LI, N.; SUN, X.S.; SHI, Y.; WANG, D. 2016. Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers. 152:747-754. https://doi.org/10.1016/j.carbpol.2016.07.068
RHIM, J.W.; SHELLHAMMER, T.H. 2005. Lipid-based edible films and coatings. In: Innovations in Food Packaging. p. 362-383. https://doi.org/10.1016/B978-012311632-1/50053-X
SANYANG, M.L.; SAPUAN, S.M.; JAWAID, M.; ISHAK, M.R.; SAHARI, J. 2016. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Science and Technology. (United Kingdom). 53(1):326-336. https://doi.org/10.1007/s13197-015-2009-7
TONGNUANCHAN, P.; BENJAKUL, S.; PRODPRAN, T. 2013. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Engineering.117(3):350-360. https://doi.org/10.1016/j.jfoodeng.2013.03.005
YILDIRIM, M.; MAHMUT, S.; SADIKOGL, H. 2019. Development and characterization of edible films based on modified corn starch and grape juice. Food Chemistry. 292:6-13. https://doi.org/10.1016/j.foodchem.2019.04.006
https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1878
https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1893
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_1843
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
spellingShingle Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
Henao, Meliza Moreno
Bohórquez Pérez, Yanneth
Ayala Sánchez, Leidy
Valenzuela Real, Claudia
biopolímeros
compatibilidad
interacciones
permeabilidad
elasticidad
biopolymers
compatibility
interactions
permeability
elasticity
title_short Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
title_full Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
title_fullStr Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
title_full_unstemmed Efecto del pH sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
title_sort efecto del ph sobre propiedades mecánicas, fisicoquímicas y morfológicas en películas comestibles multicomponentes
title_eng Effect of pH on mechanical, physicochemical and morphological properties in multicomponent edible films
description El pH es un parámetro fundamental a considerarse en el momento de diseñar películas multicomponentes, debido a que interviene en la compatibilidad e interacciones que se generan entre los componentes de la matriz, determina la funcionalidad de las mismas y como se demuestra en este estudio, el pH tiene una influencia significativa en las propiedades mecánicas, fisicoquímicas y morfologías de las películas. Con ese objetivo, se sometieron películas a base de goma gellan, gelatina, caseinato de calcio, aceite de canola, glicerol, tween 80 y natamisina, a cuatro niveles de pH T1:6,6 T2:6,2 T3:5,8 T4:5,4 para evaluar y determinar la influencia del pH en las propiedades finales de las películas. Como resultado obtenido en las propiedades, se presentaron diferencias significativas (α=0,05), influenciadas por la modificación del pH, de modo que, en las películas sometidas a un pH de T4=5,4 se generó una mejor compatibilidad de los componentes, por las condiciones del medio que permitieron obtener interacciones por fuerzas electrostáticas entre los polímeros y el aceite, evidenciándose en el mejor comportamiento mecánico con una elongación de 10,6 ± 1,8%, mayor permeabilidad al vapor de agua, solubilidad de 51 ± 0,02% y un contenido de humedad de 9 ± 3,0%; a diferencia de las películas de T1, en las cuales, predominaron las interacciones a través de los enlaces de hidrógeno, afectando la permeabilidad y el comportamiento mecánico de las mismas. En películas multicomponentes a base polímeros y lípidos para garantizar mayor compatibilidad e interacciones que se reflejan en mejores propiedades mecánicas, fisicoquímicas y morfológicas entre los componentes se deben elaborar películas a pH de 5,4 o, en caso contrario, en los cuales, las propiedades deban permitir mayores interacciones entre grupos polares de los componentes utilizar pH más básicos, como pH de 6,6.
description_eng pH is a fundamental parameter to be considered when designing multicomponent films, because it intervenes in the compatibility and interactions that are generated between the components of the matrix, determines their functionality and as demonstrated in this study the pH has a significant influence on the mechanical, physicochemical and morphological properties of films. With this objective, films based on gellan gum, gelatin, calcium caseinate and canola oil were subjected to four levels of pH T1 = 6.6 T2 = 6.2 T3 = 5.8 T4 = 5.4 to evaluate and determine the influence of pH on the final properties of the films. As a result obtained in the properties there were significant differences (α = 0.05) influenced by the modification of the pH so that in the films subjected to a pH of T4 = 5.4 a better compatibility of the components was generated by the conditions of the medium that allowed to obtain interactions by electrostatic forces between the polymers and the oil, being evident in the best mechanical behavior with an elongation of 10.6 ± 1.8%, greater water vapor permeability, solubility of 51 ± 0.02% and a moisture content of 9 ± 3.0%; unlike the T1 films in which the interactions through hydrogen bonds predominated, affecting their permeability and mechanical behavior. Finally, as a conclusion in multi-component films based on polymers and lipids to ensure greater compatibility and interactions that are reflected in better mechanical, physicochemical and morphological properties between the components, films at pH 5.4 or otherwise in the which properties should allow greater interactions between polar groups of the components to use more basic pH such as pH 6.6.
author Henao, Meliza Moreno
Bohórquez Pérez, Yanneth
Ayala Sánchez, Leidy
Valenzuela Real, Claudia
author_facet Henao, Meliza Moreno
Bohórquez Pérez, Yanneth
Ayala Sánchez, Leidy
Valenzuela Real, Claudia
topicspa_str_mv biopolímeros
compatibilidad
interacciones
permeabilidad
elasticidad
topic biopolímeros
compatibilidad
interacciones
permeabilidad
elasticidad
biopolymers
compatibility
interactions
permeability
elasticity
topic_facet biopolímeros
compatibilidad
interacciones
permeabilidad
elasticidad
biopolymers
compatibility
interactions
permeability
elasticity
citationvolume 23
citationissue 1
citationedition Núm. 1 , Año 2020 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/1457
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Meliza Moreno Henao, Yanneth Bohórquez Pérez, Leidy Ayala Sánchez, Claudia Valenzuela Real - 2020
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references ACOSTA, S.; JIMÉNEZ, A.; CHÁFER, M.; GONZÁLEZ-MARTÍNEZ, C.; CHIRALT, A. 2015. Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids. (Netherlands). 49:135-143. https://doi.org/10.1016/j.foodhyd.2015.03.015
AHMADI, R.; KALBASI-ASHTARI, A.; OROMIEHIE, A.; YARMAND, M.-S.; JAHANDIDEH, F. 2012. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J. Food Engineering. (Netherlands). 109(4):745-751. https://doi.org/10.1016/j.jfoodeng.2011.11.010
ARRIETA, M.P.; PELTZER, M.A.; GARRIGÓS, M. DEL C.; JIMÉNEZ, A. 2013. Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J. Food Engineering. 114(4):486-494. https://doi.org/10.1016/j.jfoodeng.2012.09.002
ARRIETA, M.P.; PELTZER, M.A.; LÓPEZ, J.; GARRIGÓS, M. DEL C.; VALENTE, A.J.M.; JIMÉNEZ, A. 2014. Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J. Food Engineering. 121:94-101. https://doi.org/10.1016/j.jfoodeng.2013.08.015
ASTM INTERNATIONAL. 2002. ASTM D882 - 02. Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
BENAVIDES, S.; VILLALOBOS-CARVAJAL, R.; REYES, J.E. 2012. Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. J. Food Engineering. 110(2):232-239. https://doi.org/10.1016/j.jfoodeng.2011.05.023
BIERHALZ, A.C.K.; DA SILVA, M.A.; BRAGA, M.E.M.; SOUSA, H.J.C.; KIECKBUSCH, T.G. 2014. Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT - Food Science and Technology. (Estados Unidos). 57(2):494-501. https://doi.org/10.1016/j.lwt.2014.02.021
BONILLA, J.; ATARÉS, L.; VARGAS, M.; CHIRALT, A. 2012. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Engineering. 110(2):208-213. https://doi.org/10.1016/j.jfoodeng.2011.05.034
CAO, N.; FU, Y.; HE, J. 2007. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids. 21(7):1153-1162. https://doi.org/10.1016/j.foodhyd.2006.09.001
CAZÓN, P.; VELAZQUEZ, G.; RAMÍREZ, J.A.; VÁZQUEZ, M. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 68:136-148. https://doi.org/10.1016/j.foodhyd.2016.09.009
CERQUEIRA, M.A.; SOUZA, B.W.S.; TEIXEIRA, J.A.; VICENTE, A. 2012. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films – A comparative study. Food Hydrocolloids. 27(1):175-184. https://doi.org/10.1016/j.foodhyd.2011.07.007
CHAMBI, H.; GROSSO, C. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Research Internal. (Netherlands). 39(4):458-466. https://doi.org/10.1016/j.foodres.2005.09.009
DE KRUIF, C.G.; WEINBRECK, F.; DE VRIES, R. 2004. Complex coacervation of proteins and anionic polysaccharides. Current Opinion in Colloid & Interface Science. 9(5):340-349. https://doi.org/10.1016/j.cocis.2004.09.006
ESTEGHLAL, S.; NIAKOUSARI, M.; HOSSEINI, S.M.H. 2018. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions. Internal J. Biological Macromolecules. (Netherlands). 114:1-9. https://doi.org/10.1016/j.ijbiomac.2018.03.079
GALUS, S.; LENART, A. 2013. Development and characterization of composite edible films based on sodium alginate and pectin. J. Food Engineering. 15(4):459-465. https://doi.org/10.1016/j.jfoodeng.2012.03.006
GARAVAND, F.; ROUHI, M.; RAZAVI, S.H.; CACCIOTTI, I.; MOHAMMADI, R. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Internal J. Biological Macromolecules. 104:687-707. https://doi.org/10.1016/j.ijbiomac.2017.06.093
GENNADIOS, A.; WELLER, C.L.; GOODING, C.H. 1994. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Engineering. 21(4):395-409. https://doi.org/10.1016/0260-8774(94)90062-0
GHASEMLOU, M.; KHODAIYAN, F.; OROMIEHIE, A. 2011. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers. (United Kingdom). 84(1):477-483. https://doi.org/10.1016/j.carbpol.2010.12.010
HAN, J.H.; FLOROS, J.D. 1997. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plastic Film & Sheeting. (United States). 13(4):287-298. https://doi.org/10.1177/875608799701300405
HASSAN, B.; CHATHA, S.A.S.; HUSSAIN, A.I.; ZIA, K.M.; AKHTAR, N. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Internal J. Biological Macromolecules. 109:1095-1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
JIMÉNEZ, A.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2012. Effect of re-crystallization on tensile, optical and water vapor barrier properties of corn starch films containing fatty acids. Food Hydrocolloids. 26(1):302-310. https://doi.org/10.1016/j.foodhyd.2011.06.009
JRIDI, M.; HAJJI, S.; AYED, H.; LASSOUED, I.; MBAREK, A.; KAMMOUN, M.; SOUISSI, N.; NASRI, M. 2014. Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Internal J. Biological Macromolecules. 67:373-379. https://doi.org/10.1016/j.ijbiomac.2014.03.054
KHODAEI, D.; OLTROGGE, K.; HAMIDI-ESFAHANI, Z. 2019. Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT. 117(2020):108617. https://doi.org/10.1016/j.lwt.2019.108617
LEE, K.Y.; SHIM, J.; LEE, H.G. 2004. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers. 56(2):251-254. https://doi.org/10.1016/j.carbpol.2003.04.001
MANRICH, A.; MOREIRA, F.K.V.; OTONI, C.G.; LOREVICE, M.V.; MARTINS, M.A.; MATTOSO, L.H.C. 2017. Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers. 164:83-91. https://doi.org/10.1016/j.carbpol.2017.01.075
McCLEMENTS, D.J. 2005. Colloidal Interactions. Chapter 3. In: Food Emulsions: Principles, Practices, and Techniques. 3rd Edition. London. CRC Press. p.39-82.
MONEDERO, F.M.; FABRA, M.J.; TALENS, P.; CHIRALT, A. 2010. Effect of calcium and sodium caseinates on physical characteristics of soy protein isolate–lipid films. J. Food Engineering. 97(2):228-234. https://doi.org/10.1016/j.jfoodeng.2009.10.014
PAN, H.; JIANG, B.; CHEN, J.; JIN, Z. 2014. Blend-modification of soy protein/lauric acid edible films using polysaccharides. Food Chemistry. (Netherlands). 151:1-6. https://doi.org/10.1016/j.foodchem.2013.11.075
PEREDA, M.; PONCE, A.G.; MARCOVICH, N.E.; RUSECKAITE, R.A.; MARTUCCI, J.F. 2011. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids. 25(5):1372-1381. https://doi.org/10.1016/j.foodhyd.2011.01.001
QI, G.; LI, N.; SUN, X.S.; SHI, Y.; WANG, D. 2016. Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers. 152:747-754. https://doi.org/10.1016/j.carbpol.2016.07.068
RHIM, J.W.; SHELLHAMMER, T.H. 2005. Lipid-based edible films and coatings. In: Innovations in Food Packaging. p. 362-383. https://doi.org/10.1016/B978-012311632-1/50053-X
SANYANG, M.L.; SAPUAN, S.M.; JAWAID, M.; ISHAK, M.R.; SAHARI, J. 2016. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Science and Technology. (United Kingdom). 53(1):326-336. https://doi.org/10.1007/s13197-015-2009-7
TONGNUANCHAN, P.; BENJAKUL, S.; PRODPRAN, T. 2013. Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J. Food Engineering.117(3):350-360. https://doi.org/10.1016/j.jfoodeng.2013.03.005
YILDIRIM, M.; MAHMUT, S.; SADIKOGL, H. 2019. Development and characterization of edible films based on modified corn starch and grape juice. Food Chemistry. 292:6-13. https://doi.org/10.1016/j.foodchem.2019.04.006
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-06-30
date_accessioned 2020-06-30T00:00:00Z
date_available 2020-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/1457
url_doi https://doi.org/10.31910/rudca.v23.n1.2020.1457
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v23.n1.2020.1457
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1878
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/1457/1893
_version_ 1811201175746248704