Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano
.
Los residuos de alimentos son el componente principal de los residuos sólidos municipales y dado su elevado contenido de materia orgánica tienen alto potencial de producción de metano, mediante la digestión anaerobia; sin embargo, la predominancia de material lignocelulósico dificulta su hidrólisis. En este estudio, mediante ensayos de potencial bioquímico de metano, se evaluó el efecto de diferentes condiciones de pretratamiento térmico del sustrato, aplicando temperaturas entre 72 – 128°C y tiempos de exposición de 15 – 33 minutos sobre el rendimiento de producción de CH4. Para evaluar el efecto de las condiciones de pretratamiento, se empleó la metodología de superficie de respuesta y la aplicación de los modelos cinéticos de primer orde... Ver más
0123-4226
2619-2551
22
2019-06-30
Brayan Alexis Parra-Orobio, Carlos Vásquez-Franco, Wilmar Alexander Torres-López, Luis Fernando Marmolejo-Rebellón, Patricia Torres-Lozada - 2019
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1220 |
---|---|
record_format |
ojs |
spelling |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano Effect of the thermal pretreatment of from food waste on methane production Los residuos de alimentos son el componente principal de los residuos sólidos municipales y dado su elevado contenido de materia orgánica tienen alto potencial de producción de metano, mediante la digestión anaerobia; sin embargo, la predominancia de material lignocelulósico dificulta su hidrólisis. En este estudio, mediante ensayos de potencial bioquímico de metano, se evaluó el efecto de diferentes condiciones de pretratamiento térmico del sustrato, aplicando temperaturas entre 72 – 128°C y tiempos de exposición de 15 – 33 minutos sobre el rendimiento de producción de CH4. Para evaluar el efecto de las condiciones de pretratamiento, se empleó la metodología de superficie de respuesta y la aplicación de los modelos cinéticos de primer orden y de ajuste de Gompertz modificado. Los parámetros cinéticos identificados fueron validados, mediante niveles de confianza, usando la matriz de información de fisher. Se encontró que la región óptima, para alcanzar un mayor rendimiento en la digestión anaerobia, en cuanto a la producción de CH4, superior a 150mLCH4 gSV-1 y tiempos de la fase de latencia menores a 1 día, fue alrededor de 100°C, con tiempos de exposición cercanos a 15 minutos, condición en que se alcanzó una mayor solubilidad y mejorando positivamente la etapa hidrolítica del proceso anaerobio. Food waste are the main component of the municipal solid waste and given their high content of organic matter, have high potential for methane production through the anaerobic digestion. However, the predominance of lignocellulosic material hinders its hydrolysis. In this study, by means of assays of biochemical methane potential, the effect of different thermal pre-treatment conditions of the substrate was evaluated by applying temperatures between 72 - 128°C and exposure times of 15 - 33 minutes on the conditions on the performance of CH4. To evaluate the effect of pretreatment, we used the Response Surface Methodology accompanied by the application of first order kinetic and modified Gompertz models. The identified kinetic parameters were validated using confidence levels using the fisher information matrix. It was found that the optimal region, to reach a higher yield in the anaerobic digestion with regard to the production of CH4 higher than 150mLCH4 gVS-1 and lag-phase times less than 1 day, was around 100°C with exposure times close to 15 minutes, condition in which a greater solubility was reached and positively improving the hydrolytic stage of the anaerobic process. Parra-Orobio, Brayan Alexis Vásquez-Franco, Carlos Torres-López, Wilmar Alexander Marmolejo-Rebellón, Luis Fernando Torres-Lozada, Patricia cinética digestión anaerobia metano residuos sólidos temperatura anaerobic digestion kinetic methane solid waste temperature 22 1 Núm. 1 , Año 2019 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio Artículo de revista Journal article 2019-06-30T00:00:00Z 2019-06-30T00:00:00Z 2019-06-30 application/xml application/pdf Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1220 10.31910/rudca.v22.n1.2019.1220 https://doi.org/10.31910/rudca.v22.n1.2019.1220 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ Brayan Alexis Parra-Orobio, Carlos Vásquez-Franco, Wilmar Alexander Torres-López, Luis Fernando Marmolejo-Rebellón, Patricia Torres-Lozada - 2019 ANGELIDAKI, I.; ALVES, M.; BOLZONELLA, D.; BORZACCONI, L.; CAMPOS, J.L.; GUWY, A.J.; KALYUZHNYI, S.; JENICEK, P.; VAN LIER, J.B. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology. 59:927-934. https://doi.org/10.2166/wst.2009.040 AMERICAN PUBLIC HEALTH ASSOCIATION-APHA 2005. Standard methods for examination of water and wastewater. American Water Works Association and Water Environment Federation. Washington D.C. AQUINO, S.F.; CHERNICHARO, L.C.A.; FORESTI, E.; FLORENCIO, D.S.M.D.L. 2007. Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios. Eng. Sanit. Ambient. 12:192-201. http://dx.doi.org/10.1590/S1413-41522007000200010 ARIUNBAATAR, J.; PANICO, A.; ESPOSITO, G.; PIROZZI, F.; LENS, P.N.L. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy. 123:143-156. https://doi.org/10.1016/j.apenergy.2014.02.035 CABEZA, I.; THOMAS, M.; VÁSQUEZ, A.; ACEVEDO, P.; HERNÁNDEZ, M. 2016. Anaerobic Co-digestion of Organic Residues from DifferentProductive Sectors in Colombia: Biomethanation Potential Assessment. Chemical Engineering Transactions. 49:385-390. https://doi.org/10.3303/CET1649065 CÁRDENAS-CLEVES, L.M.; MARMOLEJO-REBELLÓN, L.F.; TORRES-LOZADA, P. 2018. Anaerobic co-digestion of sugarcane press mud with food waste: Effects on hydrolysis stage, methane yield and synergistic effects. Internal J. Chemical Engineering. 2018(2):1-8. https://doi.org/10.1155/2018/9351848 DHAMODHARAN, K.; KUMAR, V.; KALAMDHAD, A.S. 2015. Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresource Technology. 180:237-241. https://doi.org/10.1016/j.biortech.2014.12.066 DONOSO-BRAVO, A.; FDZ-POLANCO, M. 2013. Anaerobic co-digestion of sewage sludge and grease trap: Assessment of enzyme addition. Process Biochemistry. 48(5):936-940. https://doi.org/10.1016/j.procbio.2013.04.005 DONOSO-BRAVO, A.; PÉREZ-ELVIRA, S.; FDZ-POLANCO, F. 2015. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge. Environmental Technology. (United Kingdom). 36(10):1334-1346. https://doi.org/10.1080/09593330.2014.988186 DWYER, J.; STARRENBURG, D.; TAIT, S.; BARR, K.; BATSTONE, D.J.; LANT, P. 2008. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research. 42(18):4699-4709. https://doi.org/10.1016/j.watres.2008.08.019 FERREIRA, L.C.; DONOSO-BRAVO, A.; NILSEN, P.J.; FDZ-POLANCO, F.; PÉREZ-ELVIRA, S.I. 2013. Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresource Technology. 143:251-257. https://doi.org/10.1016/j.biortech.2013.05.065 FUJISHIMA, S.; MIYAHARA, T.; NOIKE, T. 2000. Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production. Water Sci. Technol. 41(3):119-127. HENDRIKS, A.; ZEEMAN, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology. 100(1):10-18. https://doi.org/10.1016/j.biortech.2008.05.027 HOLLIGER, C.; ALVES, M.; ANDRADE, D.; ANGELIDAKI, I.; ASTALS, S; BAIER, U.; BOUGRIER, C.; BUFFIÈRE, P.; CARBALLA, M.; DE WILDE, V.; EBERTSEDER, F.; FERNÁNDEZ, B.; FICARA, E.; FOTIDIS, I.; FRIGON, J.C.; FRUTEAU DE LACLOS, H.; GHASIMI, D.S.M.; HACK, G.; HARTEL, M.; HEERENKLAGE, J.; SARVARI HORVATH, I.; JENICEK, P.; KOCH, K.; KRAUTWALD, J.; LIZASOAIN, J.; LIU, J.; MOSBERGER, L.; NISTOR, M.; OECHSNER, H.; OLIVEIRA, J.V.; PATERSON, M.; PAUSS, A.; POMMIER, S.; PORQUEDDU, I.; RAPOSO, F.; RIBEIRO, T.; RÜSCH PFUND, F.; STRÖMBERG, S.; TORRIJOS, M.; VAN EEKERT, M.; VAN LIER, J.; WEDWITSCHKA, H.; WIERINCK, I. 2016. Towards a standardization of biomethane potential tests. Water Science and Technology. 74(11):2515-2522. https://doi.org/10.2166/wst.2016.336 INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN-ICONTEC 2004. Norma Técnica Colombiana 5167. Productos para la industria agrícola, productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo. 32p. INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN-ICONTEC 2009. Gestión ambiental. Residuos sólidos. Guía para la separación en la fuente. Guía Técnica Colombia GTC-24. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá D.C. 3p. IZUMI, K.; OKISHIO, Y.K.; NAGAO, N.; NIWA, C.; YAMAMOTO, S.; TODA, T. 2010. Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation. 64:601-608. https://doi.org/10.1016/j.ibiod.2010.06.013 JIN, Y.; LI, Y.; LI, J. 2016. Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion. J. Environmental Management. 180:291-300. https://doi.org/10.1016/j.jenvman.2016.05.047 KEMPEGOWDA, R.S.; SKREIBERG, Ø.; TRAN, K.Q.; SELVAM, P.V.P. 2017. Techno-economic assessment of thermal co-pretreatment and co-digestion of food wastes and sewage sludge for heat, power and biochar production. Energy Procedia. 105:1737-1742. https://doi.org/10.1016/j.egypro.2017.03.498 LI, Y.; JIN, Y.; LI, J.; LI, H.; YU, Z. 2016. Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied Energy. 172:47-58. https://doi.org/10.1016/j.apenergy.2016.03.080 LIU, X.; WANG, W.; GAO, X.; ZHOU, Y.; SHEN, R. 2012. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management. 32(2):249-255. https://doi.org/10.1016/j.wasman.2011.09.027 MA, C.; LIU, J.; YE, M.; ZOU, L.; QIAN, G.; LI, Y.Y. 2018. Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renewable and Sustainable Energy Reviews. 90:700-709. https://doi.org/10.1016/j.rser.2018.03.110 MAILARD, L.C. 1916. Synthesis of humus-like substances by the interaction of amino acids and reducing sugars. Ann Chim. 5:258-317. MIRMASOUMI, S.; EBRAHIMI, S.; SARAY, R.K. 2018. Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions. Energy. 157:707-717. https://doi.org/10.1016/j.energy.2018.06.003 NEVES, L.; OLIVEIRA, R.; ALVES, M.M. 2006. Anaerobic co-digestion of coffee waste and sewage sludge. Waste Management. 26(2):176-181. https://doi.org/10.1016/j.wasman.2004.12.022 OVIEDO-OCAÑA, E.R.; MARMOLEJO-REBELLÓN, L.F.; TORRES-LOZADA, P. 2014. Influencia de la frecuencia de volteo para el control de la humedad de los sustratos en el compostaje de biorresiduos de origen municipal. Rev. Internal Contaminación Ambiental. 30:91-100. PABÓN, P.C.P.; CASTAÑARES, G.; VAN LIER, J.B. 2012. An OxiTop® protocol for screening plant material for its biochemical methane potential (BMP). Water Science and Technology. 66(7):1416-1423. https://doi.org/10.2166/wst.2012.305 PARRA-OROBIO, B.A.; ANGULO-MOSQUERA, L.S.; LOAIZA-GUALTERO, J.S.; TORRES-LÓPEZ, W.A.; TORRES-LOZADA, P. 2018. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J. Environmental Chemical Engineering. 6(1):1529-1535. https://doi.org/10.1016/j.jece.2018.01.048 PARRA-OROBIO, B.A.; TORRES-LOZADA, P.; MARMOLEJO-REBELLÓN, L.F. 2017. Anaerobic digestion of municipal biowaste for the production of renewable energy: Effect of particle size. Brazilian J. Chemical Engineering. 34:481-491. http://dx.doi.org/10.1590/0104-6632.20170342s20150331 PARRA-OROBIO, B.A.; TORRES-LOZADA, P.; MARMOLEJO-REBELLÓN, L.F.; CÁRDENAS-CLEVES, L.M.; VÁSQUEZ-FRANCO, C.H.; TORRES-LÓPEZ, W.A.; ORDÓÑEZ-ANDRADE, J.A. 2014. Influencia del pH sobre la digestión anaerobia de biorresiduos de origen municipal. Rev. U.D.C.A Act. & Div. Cient. 17(2):553-562. http://dx.doi.org/10.31910/rudca.v17.n2.2014.421 PARRA-OROBIO, B.A.; TORRES, L.P.; MARMOLEJO, L.F.; CÁRDENES, C.L.M.; VÁSQUEZ, F.C.; TORRES, L.W.A.; ORDOÑEZ, A.J.A. 2015. Efecto de la relación sustrato-inóculo sobre el potencial bioquímico de metano de biorresiduos de origen municipal. Ingeniería Investigación y Tecnología. 16(4):515-526. PARTHIBA KARTHIKEYAN, O.; TRABLY, E.; MEHARIYA, S.; BERNET, N.; WONG, J.W.C.; CARRERE, H. 2018. Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology. 249:1025-1039. RAPOSO, F.; DE LA RUBIA, M.; FERNÁNDEZ-CEGRÍ, V.; BORJA, R. 2012. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. 16(1):861-877. https://doi.org/10.1016/j.rser.2011.09.008 SÁNCHEZ-REYES, C.; PATIÑO-IGLESIAS, M.E.; ALCÁNTARA-FLORES, J.L.; REYES-ORTEGA, Y.; PÉREZ-CRUZ, M.A.; ORTÍZ-MUÑOZ, E. 2016. Determinación del potencial bioquímico de metano (PBM) de residuos de frutas y verduras en hogares. Rev. Internal Contaminacion Ambiental 32(2):191-198. http://dx.doi.org/10.20937/RICA.2016.32.02.05 SEPÚLVEDA, J.A.M. 2016. Outlook of municipal solid waste in Bogota (Colombia). American J. Engineering and Applied Sciences. 9(3):477-483. https://doi.org/10.3844/ajeassp.2016.477.483 SOTO-PAZ, J.; OVIEDO-OCAÑA, E.R.; MANYOMA, P.C.; MARMOLEJO-REBELLÓN, L.F.; TORRES-LOZADA, P.; BARRENA, R.; SÁNCHEZ, A.; KOMILIS, D. 2019. Influence of mixing ratio and turning frequency on the co-composting of biowaste with sugarcane filter cake: a mixture experimental design. Waste and Biomass. Valorization.1:1-15. https://doi.org/10.1007/s12649-019-00592-2 SURENDRA, K.C.; TAKARA, D.; HASHIMOTO, A.G.; KHANAL, S.K. 2014. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews. 31:846-859. https://doi.org/10.1016/j.rser.2013.12.015 THI, N.B.D.; KUMAR, G.; LIN, C.Y. 2015. An overview of food waste management in developing countries: Current status and future perspective. J. Environmental Management 157:220-229. https://doi.org/10.1016/j.jenvman.2015.04.022 TORRES, L.P.; PÉREZ, A. 2010. Actividad metanogénica específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Revista EIDENAR. (9):5-14. ZHAI, N.; ZHANG, T.; YIN, D.; YANG, G.; WANG, X.; REN, G.; FENG, Y. 2015. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Management. 38:126-131. https://doi.org/10.1016/j.wasman.2014.12.027 ZHANG, C.; SU, H.; BAEYENS, J.; TAN, T. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews. 38:383-392. https://doi.org/10.1016/j.rser.2014.05.038 https://revistas.udca.edu.co/index.php/ruadc/article/download/1220/1721 https://revistas.udca.edu.co/index.php/ruadc/article/download/1220/1741 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano |
spellingShingle |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano Parra-Orobio, Brayan Alexis Vásquez-Franco, Carlos Torres-López, Wilmar Alexander Marmolejo-Rebellón, Luis Fernando Torres-Lozada, Patricia cinética digestión anaerobia metano residuos sólidos temperatura anaerobic digestion kinetic methane solid waste temperature |
title_short |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano |
title_full |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano |
title_fullStr |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano |
title_full_unstemmed |
Efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano |
title_sort |
efecto del pretratamiento térmico de residuos de alimentos sobre la producción de metano |
title_eng |
Effect of the thermal pretreatment of from food waste on methane production |
description |
Los residuos de alimentos son el componente principal de los residuos sólidos municipales y dado su elevado contenido de materia orgánica tienen alto potencial de producción de metano, mediante la digestión anaerobia; sin embargo, la predominancia de material lignocelulósico dificulta su hidrólisis. En este estudio, mediante ensayos de potencial bioquímico de metano, se evaluó el efecto de diferentes condiciones de pretratamiento térmico del sustrato, aplicando temperaturas entre 72 – 128°C y tiempos de exposición de 15 – 33 minutos sobre el rendimiento de producción de CH4. Para evaluar el efecto de las condiciones de pretratamiento, se empleó la metodología de superficie de respuesta y la aplicación de los modelos cinéticos de primer orden y de ajuste de Gompertz modificado. Los parámetros cinéticos identificados fueron validados, mediante niveles de confianza, usando la matriz de información de fisher. Se encontró que la región óptima, para alcanzar un mayor rendimiento en la digestión anaerobia, en cuanto a la producción de CH4, superior a 150mLCH4 gSV-1 y tiempos de la fase de latencia menores a 1 día, fue alrededor de 100°C, con tiempos de exposición cercanos a 15 minutos, condición en que se alcanzó una mayor solubilidad y mejorando positivamente la etapa hidrolítica del proceso anaerobio.
|
description_eng |
Food waste are the main component of the municipal solid waste and given their high content of organic matter, have high potential for methane production through the anaerobic digestion. However, the predominance of lignocellulosic material hinders its hydrolysis. In this study, by means of assays of biochemical methane potential, the effect of different thermal pre-treatment conditions of the substrate was evaluated by applying temperatures between 72 - 128°C and exposure times of 15 - 33 minutes on the conditions on the performance of CH4. To evaluate the effect of pretreatment, we used the Response Surface Methodology accompanied by the application of first order kinetic and modified Gompertz models. The identified kinetic parameters were validated using confidence levels using the fisher information matrix. It was found that the optimal region, to reach a higher yield in the anaerobic digestion with regard to the production of CH4 higher than 150mLCH4 gVS-1 and lag-phase times less than 1 day, was around 100°C with exposure times close to 15 minutes, condition in which a greater solubility was reached and positively improving the hydrolytic stage of the anaerobic process.
|
author |
Parra-Orobio, Brayan Alexis Vásquez-Franco, Carlos Torres-López, Wilmar Alexander Marmolejo-Rebellón, Luis Fernando Torres-Lozada, Patricia |
author_facet |
Parra-Orobio, Brayan Alexis Vásquez-Franco, Carlos Torres-López, Wilmar Alexander Marmolejo-Rebellón, Luis Fernando Torres-Lozada, Patricia |
topicspa_str_mv |
cinética digestión anaerobia metano residuos sólidos temperatura |
topic |
cinética digestión anaerobia metano residuos sólidos temperatura anaerobic digestion kinetic methane solid waste temperature |
topic_facet |
cinética digestión anaerobia metano residuos sólidos temperatura anaerobic digestion kinetic methane solid waste temperature |
citationvolume |
22 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2019 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1220 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Brayan Alexis Parra-Orobio, Carlos Vásquez-Franco, Wilmar Alexander Torres-López, Luis Fernando Marmolejo-Rebellón, Patricia Torres-Lozada - 2019 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ANGELIDAKI, I.; ALVES, M.; BOLZONELLA, D.; BORZACCONI, L.; CAMPOS, J.L.; GUWY, A.J.; KALYUZHNYI, S.; JENICEK, P.; VAN LIER, J.B. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology. 59:927-934. https://doi.org/10.2166/wst.2009.040 AMERICAN PUBLIC HEALTH ASSOCIATION-APHA 2005. Standard methods for examination of water and wastewater. American Water Works Association and Water Environment Federation. Washington D.C. AQUINO, S.F.; CHERNICHARO, L.C.A.; FORESTI, E.; FLORENCIO, D.S.M.D.L. 2007. Metodologias para determinação da atividade metanogênica específica (AME) em lodos anaeróbios. Eng. Sanit. Ambient. 12:192-201. http://dx.doi.org/10.1590/S1413-41522007000200010 ARIUNBAATAR, J.; PANICO, A.; ESPOSITO, G.; PIROZZI, F.; LENS, P.N.L. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Applied Energy. 123:143-156. https://doi.org/10.1016/j.apenergy.2014.02.035 CABEZA, I.; THOMAS, M.; VÁSQUEZ, A.; ACEVEDO, P.; HERNÁNDEZ, M. 2016. Anaerobic Co-digestion of Organic Residues from DifferentProductive Sectors in Colombia: Biomethanation Potential Assessment. Chemical Engineering Transactions. 49:385-390. https://doi.org/10.3303/CET1649065 CÁRDENAS-CLEVES, L.M.; MARMOLEJO-REBELLÓN, L.F.; TORRES-LOZADA, P. 2018. Anaerobic co-digestion of sugarcane press mud with food waste: Effects on hydrolysis stage, methane yield and synergistic effects. Internal J. Chemical Engineering. 2018(2):1-8. https://doi.org/10.1155/2018/9351848 DHAMODHARAN, K.; KUMAR, V.; KALAMDHAD, A.S. 2015. Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresource Technology. 180:237-241. https://doi.org/10.1016/j.biortech.2014.12.066 DONOSO-BRAVO, A.; FDZ-POLANCO, M. 2013. Anaerobic co-digestion of sewage sludge and grease trap: Assessment of enzyme addition. Process Biochemistry. 48(5):936-940. https://doi.org/10.1016/j.procbio.2013.04.005 DONOSO-BRAVO, A.; PÉREZ-ELVIRA, S.; FDZ-POLANCO, F. 2015. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge. Environmental Technology. (United Kingdom). 36(10):1334-1346. https://doi.org/10.1080/09593330.2014.988186 DWYER, J.; STARRENBURG, D.; TAIT, S.; BARR, K.; BATSTONE, D.J.; LANT, P. 2008. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Research. 42(18):4699-4709. https://doi.org/10.1016/j.watres.2008.08.019 FERREIRA, L.C.; DONOSO-BRAVO, A.; NILSEN, P.J.; FDZ-POLANCO, F.; PÉREZ-ELVIRA, S.I. 2013. Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresource Technology. 143:251-257. https://doi.org/10.1016/j.biortech.2013.05.065 FUJISHIMA, S.; MIYAHARA, T.; NOIKE, T. 2000. Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production. Water Sci. Technol. 41(3):119-127. HENDRIKS, A.; ZEEMAN, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology. 100(1):10-18. https://doi.org/10.1016/j.biortech.2008.05.027 HOLLIGER, C.; ALVES, M.; ANDRADE, D.; ANGELIDAKI, I.; ASTALS, S; BAIER, U.; BOUGRIER, C.; BUFFIÈRE, P.; CARBALLA, M.; DE WILDE, V.; EBERTSEDER, F.; FERNÁNDEZ, B.; FICARA, E.; FOTIDIS, I.; FRIGON, J.C.; FRUTEAU DE LACLOS, H.; GHASIMI, D.S.M.; HACK, G.; HARTEL, M.; HEERENKLAGE, J.; SARVARI HORVATH, I.; JENICEK, P.; KOCH, K.; KRAUTWALD, J.; LIZASOAIN, J.; LIU, J.; MOSBERGER, L.; NISTOR, M.; OECHSNER, H.; OLIVEIRA, J.V.; PATERSON, M.; PAUSS, A.; POMMIER, S.; PORQUEDDU, I.; RAPOSO, F.; RIBEIRO, T.; RÜSCH PFUND, F.; STRÖMBERG, S.; TORRIJOS, M.; VAN EEKERT, M.; VAN LIER, J.; WEDWITSCHKA, H.; WIERINCK, I. 2016. Towards a standardization of biomethane potential tests. Water Science and Technology. 74(11):2515-2522. https://doi.org/10.2166/wst.2016.336 INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN-ICONTEC 2004. Norma Técnica Colombiana 5167. Productos para la industria agrícola, productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo. 32p. INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN-ICONTEC 2009. Gestión ambiental. Residuos sólidos. Guía para la separación en la fuente. Guía Técnica Colombia GTC-24. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá D.C. 3p. IZUMI, K.; OKISHIO, Y.K.; NAGAO, N.; NIWA, C.; YAMAMOTO, S.; TODA, T. 2010. Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation. 64:601-608. https://doi.org/10.1016/j.ibiod.2010.06.013 JIN, Y.; LI, Y.; LI, J. 2016. Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion. J. Environmental Management. 180:291-300. https://doi.org/10.1016/j.jenvman.2016.05.047 KEMPEGOWDA, R.S.; SKREIBERG, Ø.; TRAN, K.Q.; SELVAM, P.V.P. 2017. Techno-economic assessment of thermal co-pretreatment and co-digestion of food wastes and sewage sludge for heat, power and biochar production. Energy Procedia. 105:1737-1742. https://doi.org/10.1016/j.egypro.2017.03.498 LI, Y.; JIN, Y.; LI, J.; LI, H.; YU, Z. 2016. Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied Energy. 172:47-58. https://doi.org/10.1016/j.apenergy.2016.03.080 LIU, X.; WANG, W.; GAO, X.; ZHOU, Y.; SHEN, R. 2012. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management. 32(2):249-255. https://doi.org/10.1016/j.wasman.2011.09.027 MA, C.; LIU, J.; YE, M.; ZOU, L.; QIAN, G.; LI, Y.Y. 2018. Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renewable and Sustainable Energy Reviews. 90:700-709. https://doi.org/10.1016/j.rser.2018.03.110 MAILARD, L.C. 1916. Synthesis of humus-like substances by the interaction of amino acids and reducing sugars. Ann Chim. 5:258-317. MIRMASOUMI, S.; EBRAHIMI, S.; SARAY, R.K. 2018. Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions. Energy. 157:707-717. https://doi.org/10.1016/j.energy.2018.06.003 NEVES, L.; OLIVEIRA, R.; ALVES, M.M. 2006. Anaerobic co-digestion of coffee waste and sewage sludge. Waste Management. 26(2):176-181. https://doi.org/10.1016/j.wasman.2004.12.022 OVIEDO-OCAÑA, E.R.; MARMOLEJO-REBELLÓN, L.F.; TORRES-LOZADA, P. 2014. Influencia de la frecuencia de volteo para el control de la humedad de los sustratos en el compostaje de biorresiduos de origen municipal. Rev. Internal Contaminación Ambiental. 30:91-100. PABÓN, P.C.P.; CASTAÑARES, G.; VAN LIER, J.B. 2012. An OxiTop® protocol for screening plant material for its biochemical methane potential (BMP). Water Science and Technology. 66(7):1416-1423. https://doi.org/10.2166/wst.2012.305 PARRA-OROBIO, B.A.; ANGULO-MOSQUERA, L.S.; LOAIZA-GUALTERO, J.S.; TORRES-LÓPEZ, W.A.; TORRES-LOZADA, P. 2018. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J. Environmental Chemical Engineering. 6(1):1529-1535. https://doi.org/10.1016/j.jece.2018.01.048 PARRA-OROBIO, B.A.; TORRES-LOZADA, P.; MARMOLEJO-REBELLÓN, L.F. 2017. Anaerobic digestion of municipal biowaste for the production of renewable energy: Effect of particle size. Brazilian J. Chemical Engineering. 34:481-491. http://dx.doi.org/10.1590/0104-6632.20170342s20150331 PARRA-OROBIO, B.A.; TORRES-LOZADA, P.; MARMOLEJO-REBELLÓN, L.F.; CÁRDENAS-CLEVES, L.M.; VÁSQUEZ-FRANCO, C.H.; TORRES-LÓPEZ, W.A.; ORDÓÑEZ-ANDRADE, J.A. 2014. Influencia del pH sobre la digestión anaerobia de biorresiduos de origen municipal. Rev. U.D.C.A Act. & Div. Cient. 17(2):553-562. http://dx.doi.org/10.31910/rudca.v17.n2.2014.421 PARRA-OROBIO, B.A.; TORRES, L.P.; MARMOLEJO, L.F.; CÁRDENES, C.L.M.; VÁSQUEZ, F.C.; TORRES, L.W.A.; ORDOÑEZ, A.J.A. 2015. Efecto de la relación sustrato-inóculo sobre el potencial bioquímico de metano de biorresiduos de origen municipal. Ingeniería Investigación y Tecnología. 16(4):515-526. PARTHIBA KARTHIKEYAN, O.; TRABLY, E.; MEHARIYA, S.; BERNET, N.; WONG, J.W.C.; CARRERE, H. 2018. Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology. 249:1025-1039. RAPOSO, F.; DE LA RUBIA, M.; FERNÁNDEZ-CEGRÍ, V.; BORJA, R. 2012. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. 16(1):861-877. https://doi.org/10.1016/j.rser.2011.09.008 SÁNCHEZ-REYES, C.; PATIÑO-IGLESIAS, M.E.; ALCÁNTARA-FLORES, J.L.; REYES-ORTEGA, Y.; PÉREZ-CRUZ, M.A.; ORTÍZ-MUÑOZ, E. 2016. Determinación del potencial bioquímico de metano (PBM) de residuos de frutas y verduras en hogares. Rev. Internal Contaminacion Ambiental 32(2):191-198. http://dx.doi.org/10.20937/RICA.2016.32.02.05 SEPÚLVEDA, J.A.M. 2016. Outlook of municipal solid waste in Bogota (Colombia). American J. Engineering and Applied Sciences. 9(3):477-483. https://doi.org/10.3844/ajeassp.2016.477.483 SOTO-PAZ, J.; OVIEDO-OCAÑA, E.R.; MANYOMA, P.C.; MARMOLEJO-REBELLÓN, L.F.; TORRES-LOZADA, P.; BARRENA, R.; SÁNCHEZ, A.; KOMILIS, D. 2019. Influence of mixing ratio and turning frequency on the co-composting of biowaste with sugarcane filter cake: a mixture experimental design. Waste and Biomass. Valorization.1:1-15. https://doi.org/10.1007/s12649-019-00592-2 SURENDRA, K.C.; TAKARA, D.; HASHIMOTO, A.G.; KHANAL, S.K. 2014. Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews. 31:846-859. https://doi.org/10.1016/j.rser.2013.12.015 THI, N.B.D.; KUMAR, G.; LIN, C.Y. 2015. An overview of food waste management in developing countries: Current status and future perspective. J. Environmental Management 157:220-229. https://doi.org/10.1016/j.jenvman.2015.04.022 TORRES, L.P.; PÉREZ, A. 2010. Actividad metanogénica específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Revista EIDENAR. (9):5-14. ZHAI, N.; ZHANG, T.; YIN, D.; YANG, G.; WANG, X.; REN, G.; FENG, Y. 2015. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Management. 38:126-131. https://doi.org/10.1016/j.wasman.2014.12.027 ZHANG, C.; SU, H.; BAEYENS, J.; TAN, T. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews. 38:383-392. https://doi.org/10.1016/j.rser.2014.05.038 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2019-06-30 |
date_accessioned |
2019-06-30T00:00:00Z |
date_available |
2019-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1220 |
url_doi |
https://doi.org/10.31910/rudca.v22.n1.2019.1220 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v22.n1.2019.1220 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1220/1721 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1220/1741 |
_version_ |
1811201169531338752 |