Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión
.
La biorremediación ha demostrado ser una alternativa para establecer nuevos sistemas de depuración de aguas residuales y optimizar los sistemas convencionales existentes. El objetivo de este artículo de revisión es identificar y analizar los factores clave en procesos de biorremediación para la depuración de aguas residuales, a nivel mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q). Los resultados mostraron la existencia de seis factores clave en procesos de biorremediación para la depuración de aguas residuales: pH (Q3) > temperatura (Q2) > oxígeno (Q2) > nitrógeno (Q2) > fósforo (Q1) > DBO5 (Q1)... Ver más
0123-4226
2619-2551
21
2019-12-31
573
585
Óscar Ome Barrera, Carlos Zafra Mejía - 2018
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94_article_1037 |
---|---|
record_format |
ojs |
spelling |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión Key factors in bioremediation processes for the wastewater treatment. A review La biorremediación ha demostrado ser una alternativa para establecer nuevos sistemas de depuración de aguas residuales y optimizar los sistemas convencionales existentes. El objetivo de este artículo de revisión es identificar y analizar los factores clave en procesos de biorremediación para la depuración de aguas residuales, a nivel mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q). Los resultados mostraron la existencia de seis factores clave en procesos de biorremediación para la depuración de aguas residuales: pH (Q3) > temperatura (Q2) > oxígeno (Q2) > nitrógeno (Q2) > fósforo (Q1) > DBO5 (Q1). No existieron diferencias significativas entre las tecnologías de bioaumentación y bioestimulación en relación a los seis factores clave identificados. No se evidenció, en el ámbito mundial, una tendencia en el uso de alguna de estas dos tecnologías; sin embargo, en Asía, Europa y Norte América, se detectó un mayor número de reportes en el uso de la tecnología de bioaumentación y, en Sur América y África, existió mayor empleo de la tecnología de bioestimulación. Las tecnologías de biorremediación (Q1), probablemente, se encontraron en una fase inicial de desarrollo y aplicación en sistemas de depuración para aguas residuales, debido a que las tecnologías químicas (Q2) y físicas (Q2) presentaron un mayor reporte, a nivel mundial. Finalmente, los resultados de esta revisión son un punto de referencia para las instituciones ambientales, encargadas del control de la calidad del agua y diseñadores y operadores en sistemas de depuración. Bioremediation has proven to be an alternative to establishing new wastewater treatment systems and optimizing the existing conventional systems. The objective of this review paper is to identify and analyze the key factors in bioremediation processes for wastewater treatment worldwide. A systematic review method of literature was used, which included a citation frequency index using quartiles (Q). The results showed the existence of six key factors in bioremediation processes for wastewater treatment: pH (Q3) > temperature (Q2) > oxygen (Q2) > nitrogen (Q2) > phosphorus (Q1) > BOD5 (Q1). There were no significant differences between bioaugmentation and biostimulation technologies in relation to the six key factors identified. A trend in the use of some of these technologies was not demonstrated at the global level. However, in Asia, Europe, and North America there was a greater report on the use of bioaugmentation technology; and in South America and Africa, there was a greater report of biostimulation technology. Bioremediation technologies (Q1) were probably in an initial phase of development and application in wastewater treatment systems because chemical (Q2) and physical technologies (Q2) presented a larger worldwide report. Finally, the results of this study are a reference point for environmental institutions responsible for water quality control, and designers and supervisors in water treatment systems. Ome Barrera, Óscar Zafra Mejía, Carlos aguas residuales bioaumentación bioestimulación biorremediación fitorremediación bioremediation wastewater bioaugmentation biostimulation phytoremediation 21 2 Núm. 2 , Año 2018 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre Artículo de revista Journal article 2018-12-31T00:00:00Z 2018-12-31T00:00:00Z 2019-12-31 application/pdf application/xml Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Revista U.D.C.A Actualidad & Divulgación Científica 0123-4226 2619-2551 https://revistas.udca.edu.co/index.php/ruadc/article/view/1037 10.31910/rudca.v21.n2.2018.1037 https://doi.org/10.31910/rudca.v21.n2.2018.1037 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ Óscar Ome Barrera, Carlos Zafra Mejía - 2018 573 585 ABDEL-KADER, A.M. 2013. Studying the efficiency of grey water treatment by using rotating biological contactors system. J. King. Saud. Univ. Eng. Sci. 25(2):89-95. https://doi.org/10.1016/j.jksues.2012.05.003 ABOU-ELELA, S.I.; FAWZY, M.E.; EL-GENDY, A.S. 2015. Potential of using biological aerated filter as a post treatment for municipal wastewater. Ecol. Eng. 84:53-57. https://doi.org/10.1016/j.ecoleng.2015.07.022 BEHNOOD, M.; NASERNEJAD, B.; NIKAZAR, M. 2014. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. J. Ind. Eng. Chem. 20(4):1879-1885. https://doi.org/10.1016/j.jiec.2013.09.007 CASTILLO, E.; LIZAMA, C.; MÉNDEZ, R.; GARCÍA, J.; ESPADAS, A.; PAT, R. 2011. Tratamiento de efluentes de fosas sépticas por el proceso de lodos activados. Ingeniería. 15(3):529-565. CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol. 183:25-32. https://doi.org/10.1016/j.biortech.2015.02.022 DANALEWICH, J.R.; PAPAGIANNIS, T.G.; BELYEA, R.L.; TUMBLESON, M.E.; RASKIN, L. 1998. Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res. 32(12):3555-3568. https://doi.org/10.1016/S0043-1354(98)00160-2 DAS GUPTA, A.; SARKAR, S.; GHOSH, P.; SAHA, T.; SIL, A.K. 2016. Phosphorous dynamics of the aquatic system constitutes an important axis for waste water purification in natural treatment pond(s) in East Kolkata Wetlands. Ecol. Eng. 90:63-67. https://doi.org/10.1016/j.ecoleng.2016.01.056 DIBBLE, J.T.; BARTHA, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37(4):729-739. DUKE, N.C.; BURNS, K.A.; SWANNELL, R.P.J.; DALHAUS, O.; RUPP, R.J. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves:the Gladstone field trials. Mar. Pollut. Bull. 41(7-12):403-412. https://doi.org/10.1016/S0025-326X(00)00133-8 ERMAWATI, R.; MORIMURA, S.; TANG, Y.; LIU, K.; KIDA, K. 2007. Degradation and behavior of natural steroid hormones in cow manure waste during biological treatments and ozone oxidation. J. Biosci. Bioeng. 103(1):27-31. https://doi.org/10.1263/jbb.103.27 FANG, F.; QIAO, L.; CAO, J.; LI, Y.; XIE, W.; SHENG, G.; YU, H. 2016. Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. Sep. Purif. Technol. 166:164-170. https://doi.org/10.1016/j.seppur.2016.04.036 GAO, P.; LI, G.; DAI, X.; DAI, L.; WANG, H.; ZHAO, L.; CHEN, Y.; MA, T. 2013. Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J. Microbiol. Biotechnol. 29(11):2045-2054. https://doi.org/10.1007/s11274-013-1367-4 GARCÍA, S.; VENOSA, A.D.; SUIDAN, M.T.; LEE, K.; COBANLI, S.; HAINES, J.R. 2007. Biostimulation for the treatment of an oil contaminated coastal salt march. Biodegradation. 18(1):1-15. https://doi.org/10.1007/s10532-005-9029-3 GONG, X. 2012. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified fenton oxidation. Int. Biodeterior. Biodegrad. 70:89-95. https://doi.org/10.1016/j.ibiod.2012.02.004 GUO, J.; WANG, J.; CUI, D.; WANG, L.; MA, F.; CHANG, C.; YANG, J. 2010. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresour. Technol. 101(17):6622-6629. https://doi.org/10.1016/j.biortech.2010.03.093 HASSANSHAHIAN, M.; AHMADINEJAD, M.; TEBYANIAN, H.; KARIMINIK, A. 2013. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar. Pollut. Bull. 73(1):300-305. https://doi.org/10.1016/j.marpolbul.2013.05.002 HONG, S.U.; OUYANG, L.; BRUENING, M.L. 2009. Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Membrane Sci. 327(1-2):2-5. https://doi.org/10.1016/j.memsci.2008.11.035 JI, G.; TONG, J.; TAN, Y. 2011. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresour. Technol. 102(2):550-557. https://doi.org/10.1016/j.biortech.2010.07.075 KAHMARK, K.A.; UNWIN, J.P. 1998. Pulp and paper effluent management. Water Environ. Res. 70(4):667-690. https://doi.org/10.2175/106143098X134406 KUMAR, A.; DHALL, P.; KUMAR, R. 2010. Redefining BOD: COD ratio of pulp mill industrial wastewaters in BOD analysis by formulating a specific microbial seed. Int. Biodeterior. Biodegrad. 64(3):197-202. https://doi.org/10.1016/j.ibiod.2010.01.005 KYRIACOU, A.; LASARIDI, K.E.; KOTSOU, M.; BALIS, C.; PILIDIS, G. 2005. Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem. 40(3-4):1401-1408. https://doi.org/10.1016/j.procbio.2004.06.001 LIM, S.; CHU, W.; PHANG, S. 2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101(19):7314-7322. https://doi.org/10.1016/j.biortech.2010.04.092 LIU, H.W.; LO, S.N.; LAVALLEE, H.C. 1996. Theoretical study on two-stage anaerobic biological treatment of a CTMP effluent. Part I: effects of operating conditions on system behaviour. Water Qual. Res. J. Can. 31(1):1-19. LU, H.; YUAN, Y.; CAMPBELL, D.E.; QIN, P.; CUI, L. 2014. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecol. Eng. 69:244-254. https://doi.org/10.1016/j.ecoleng.2014.04.024 MARCELINO, R.B.P.; LEÃO, M.M.D.; LAGO, R.M.; AMORIM, C.C. 2017. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J. Environ. Manage. 195(2):110-116. https://doi.org/10.1016/j.jenvman.2016.04.041 MARGESIN, R.; SCHINNER, F. 1998. Low-temperature bioremediation of a waste water contaminated with anionic surfactants and fuel oil. Appl. Microbiol. Biotechnol. 49(4):482-486. https://doi.org/10.1007/s002530051202 MARINHO-SORIANO, E.; AZEVEDO, C.A.A.; TRIGUEIRO, T.G.; PEREIRA, D.C.; CARNEIRO, M.A.A.; CAMARA, M.R. 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 65(1):253-257. https://doi.org/10.1016/j.ibiod.2010.10.001 NANNIPIERI, P.; ASCHER, J.; CECCHERINI, M.T.; LANDI, L.; PIETRAMELLARA, G.; RENELLA, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54(4):655-670. https://doi.org/10.1111/ejss.4_12398 NI, S.Q.; WANG, Z.; LV, L.; LIANG, X.; REN, L.; ZHOU, Q. 2015. Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge. Colloids Surf. B Biointerfaces. 128:522-527. https://doi.org/10.1016/j.colsurfb.2015.03.003 NIEVAS, M.L.; COMMENDATORE, M.G.; ESTEVES, J.L.; BUCALÁ, V. 2005. Effect of pH modification on bilge waste biodegradation by a native microbial community. Inter. Biodeterior. Biodegrad. 56(3):151-157. https://doi.org/10.1016/j.ibiod.2005.06.006 NIKOLOPOULOU, M.; KALOGERAKIS, N. 2009. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J. Chem. Tec. & Biotechn. 84(6):802-807. https://doi.org/10.1002/jctb.2182 NTENGWE, F.W. 2005. The cost benefit and efficiency of waste water treatment using domestic ponds - The ultimate solution in Southern Africa. Phys. Chem. Earth. 30(11.16):735-743. https://doi.org/10.1016/j.pce.2005.08.015 OSUOLALE, O.; OKOH, A. 2015. Assessment of the physicochemical qualities and prevalence of Escherichia coli and Vibrios in the final effluents of two wastewater treatment plants in South Africa: Ecological and public health implications. Int. J. Environ. Res. Public Health. 12(10):13399-13412. https://doi.org/10.3390/ijerph121013399 PREVOST, B.; LUCAS, F.S.; GONCALVES, A.; RICHARD, F.; MOULIN, L.; WURTZER, S. 2015. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environ. Int. 79:383-396. https://doi.org/10.1016/j.envint.2015.03.004 QUAN, Y.; HAN, H.; ZHENG, S. 2012. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater. Bioresour. Technol.120:1-5. https://doi.org/10.1016/j.biortech.2012.06.019 RAJENDRAN, R.; SOORA, M.; DANANJEYAN, B.; RATERING, S.; KRISHNAMURTHY, K.; BENCKISER, G. 2012. Microbial community diversity of organically rich cassava sago factory waste waters and their ability to use nitrate and N2O added as external N-sources for enhancing biomethanation and the purification efficiency. J. Biotechnol. 164(2):266-275. https://doi.org/10.1016/j.jbiotec.2012.11.013 RANA, R.; SINGH, P.; KANDARI, V.; SINGH, R.; DOBHAL, R.; GUPTA, S. 2017. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl. Water Sci. 7(1):1-12. https://doi.org/10.1007/s13201-014-0225-3 SALINAS, A.; SANTOS, M.; SOTO, O.; DELGADO, E.; PÉREZ, H.; HÁUAD, L.A.; MEDRANO, H. 2008. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J. Environ. Manage. 88(1):115-119. https://doi.org/10.1016/j.jenvman.2007.01.038 SANSCARTIER, D.; LAING, T.; REIMER, K.; ZEEB, B. 2009. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere. 77(8):1121-1126. https://doi.org/10.1016/j.chemosphere.2009.09.006 SARATALE, R.G.; SARATALE, G.D.; CHANG, J.S.; GOVINDWAR, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42(1):138-157. https://doi.org/10.1016/j.jtice.2010.06.006 SARKAR, D.; FERGUSON, M.; DATTA, R.; BIRNBAUM, S. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136(1):187-195. https://doi.org/10.1016/j.envpol.2004.09.025 SODE, S.; BRUHN, A.; BALSBY, T.J.S.; LARSEN, M.M.; GOTFREDSEN, A.; RASMUSSEN, M.B. 2013. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresour. Technol. 146:426-435. https://doi.org/10.1016/j.biortech.2013.06.062 STOLL, A.; DUNCAN, J.R. 1997. Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial wastewater. Environ. Pollut. 97(3):247-251. https://doi.org/10.1016/S0269-7491(97)00094-8 TANG, H.L.; CHEN, H. 2015. Nitrification at full-scale municipal wastewater treatment plants: Evaluation of inhibition and bioaugmentation of nitrifiers. Bioresour. Technol. 190:76-81. https://doi.org/10.1016/j.biortech.2015.04.063 TYAGI, M.; FONSECA, M.M.R.; CARVALHO, C.C.C.R. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22(2):231-241. https://doi.org/10.1007/s10532-010-9394-4 VERMA, R.; SUTHAR, S. 2014. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 64:337-343. https://doi.org/10.1016/j.ecoleng.2013.12.055 WANG, C.; ZHENG, S.; WANG, P.; QIAN, J. 2014. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 26(4):497-511. https://doi.org/10.1016/S1001-6058(14)60057-3 WANI, D.; PANDIT A.K.; KAMILI, A.N. 2013. Microbial assessment and effect of seasonal change on the removal efficiency of FAB based sewage treatment plant. J. Environ. Eng. Ecol. Sci. 2:1-4. https://doi.org/10.7243/2050-1323-2-1 WEN, D.; ZHANG, J.; XIONG, R.; LIU, R.; CHEN, L. 2013. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J. Environ. Sci. 25(11):2265-2271. https://doi.org/10.1016/S1001-0742(12)60278-2 ZAFRA, C.; TEMPRANO, J.; TEJERO, I.; 2017. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 14(6):639-649. https://doi.org/10.1080/1573062X.2016.1223320 ZHOU, D.; LI, Y.; ZHANG, Y.; ZHANG, C.; LI, X.; CHEN, Z; HUANG, J.; LI, X.; FLORES, G.; KAMON, M. 2014. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 168:1-16. https://doi.org/10.1016/j.jconhyd.2014.09.003 https://revistas.udca.edu.co/index.php/ruadc/article/download/1037/1525 https://revistas.udca.edu.co/index.php/ruadc/article/download/1037/1699 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_1843 info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión |
spellingShingle |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión Ome Barrera, Óscar Zafra Mejía, Carlos aguas residuales bioaumentación bioestimulación biorremediación fitorremediación bioremediation wastewater bioaugmentation biostimulation phytoremediation |
title_short |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión |
title_full |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión |
title_fullStr |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión |
title_full_unstemmed |
Factores clave en procesos de biorremediación para la depuración de aguas residuales. Una revisión |
title_sort |
factores clave en procesos de biorremediación para la depuración de aguas residuales. una revisión |
title_eng |
Key factors in bioremediation processes for the wastewater treatment. A review |
description |
La biorremediación ha demostrado ser una alternativa para establecer nuevos sistemas de depuración de aguas residuales y optimizar los sistemas convencionales existentes. El objetivo de este artículo de revisión es identificar y analizar los factores clave en procesos de biorremediación para la depuración de aguas residuales, a nivel mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q). Los resultados mostraron la existencia de seis factores clave en procesos de biorremediación para la depuración de aguas residuales: pH (Q3) > temperatura (Q2) > oxígeno (Q2) > nitrógeno (Q2) > fósforo (Q1) > DBO5 (Q1). No existieron diferencias significativas entre las tecnologías de bioaumentación y bioestimulación en relación a los seis factores clave identificados. No se evidenció, en el ámbito mundial, una tendencia en el uso de alguna de estas dos tecnologías; sin embargo, en Asía, Europa y Norte América, se detectó un mayor número de reportes en el uso de la tecnología de bioaumentación y, en Sur América y África, existió mayor empleo de la tecnología de bioestimulación. Las tecnologías de biorremediación (Q1), probablemente, se encontraron en una fase inicial de desarrollo y aplicación en sistemas de depuración para aguas residuales, debido a que las tecnologías químicas (Q2) y físicas (Q2) presentaron un mayor reporte, a nivel mundial. Finalmente, los resultados de esta revisión son un punto de referencia para las instituciones ambientales, encargadas del control de la calidad del agua y diseñadores y operadores en sistemas de depuración.
|
description_eng |
Bioremediation has proven to be an alternative to establishing new wastewater treatment systems and optimizing the existing conventional systems. The objective of this review paper is to identify and analyze the key factors in bioremediation processes for wastewater treatment worldwide. A systematic review method of literature was used, which included a citation frequency index using quartiles (Q). The results showed the existence of six key factors in bioremediation processes for wastewater treatment: pH (Q3) > temperature (Q2) > oxygen (Q2) > nitrogen (Q2) > phosphorus (Q1) > BOD5 (Q1). There were no significant differences between bioaugmentation and biostimulation technologies in relation to the six key factors identified. A trend in the use of some of these technologies was not demonstrated at the global level. However, in Asia, Europe, and North America there was a greater report on the use of bioaugmentation technology; and in South America and Africa, there was a greater report of biostimulation technology. Bioremediation technologies (Q1) were probably in an initial phase of development and application in wastewater treatment systems because chemical (Q2) and physical technologies (Q2) presented a larger worldwide report. Finally, the results of this study are a reference point for environmental institutions responsible for water quality control, and designers and supervisors in water treatment systems.
|
author |
Ome Barrera, Óscar Zafra Mejía, Carlos |
author_facet |
Ome Barrera, Óscar Zafra Mejía, Carlos |
topicspa_str_mv |
aguas residuales bioaumentación bioestimulación biorremediación fitorremediación |
topic |
aguas residuales bioaumentación bioestimulación biorremediación fitorremediación bioremediation wastewater bioaugmentation biostimulation phytoremediation |
topic_facet |
aguas residuales bioaumentación bioestimulación biorremediación fitorremediación bioremediation wastewater bioaugmentation biostimulation phytoremediation |
citationvolume |
21 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2018 :Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1037 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Óscar Ome Barrera, Carlos Zafra Mejía - 2018 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
ABDEL-KADER, A.M. 2013. Studying the efficiency of grey water treatment by using rotating biological contactors system. J. King. Saud. Univ. Eng. Sci. 25(2):89-95. https://doi.org/10.1016/j.jksues.2012.05.003 ABOU-ELELA, S.I.; FAWZY, M.E.; EL-GENDY, A.S. 2015. Potential of using biological aerated filter as a post treatment for municipal wastewater. Ecol. Eng. 84:53-57. https://doi.org/10.1016/j.ecoleng.2015.07.022 BEHNOOD, M.; NASERNEJAD, B.; NIKAZAR, M. 2014. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. J. Ind. Eng. Chem. 20(4):1879-1885. https://doi.org/10.1016/j.jiec.2013.09.007 CASTILLO, E.; LIZAMA, C.; MÉNDEZ, R.; GARCÍA, J.; ESPADAS, A.; PAT, R. 2011. Tratamiento de efluentes de fosas sépticas por el proceso de lodos activados. Ingeniería. 15(3):529-565. CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour. Technol. 183:25-32. https://doi.org/10.1016/j.biortech.2015.02.022 DANALEWICH, J.R.; PAPAGIANNIS, T.G.; BELYEA, R.L.; TUMBLESON, M.E.; RASKIN, L. 1998. Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res. 32(12):3555-3568. https://doi.org/10.1016/S0043-1354(98)00160-2 DAS GUPTA, A.; SARKAR, S.; GHOSH, P.; SAHA, T.; SIL, A.K. 2016. Phosphorous dynamics of the aquatic system constitutes an important axis for waste water purification in natural treatment pond(s) in East Kolkata Wetlands. Ecol. Eng. 90:63-67. https://doi.org/10.1016/j.ecoleng.2016.01.056 DIBBLE, J.T.; BARTHA, R. 1979. Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37(4):729-739. DUKE, N.C.; BURNS, K.A.; SWANNELL, R.P.J.; DALHAUS, O.; RUPP, R.J. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves:the Gladstone field trials. Mar. Pollut. Bull. 41(7-12):403-412. https://doi.org/10.1016/S0025-326X(00)00133-8 ERMAWATI, R.; MORIMURA, S.; TANG, Y.; LIU, K.; KIDA, K. 2007. Degradation and behavior of natural steroid hormones in cow manure waste during biological treatments and ozone oxidation. J. Biosci. Bioeng. 103(1):27-31. https://doi.org/10.1263/jbb.103.27 FANG, F.; QIAO, L.; CAO, J.; LI, Y.; XIE, W.; SHENG, G.; YU, H. 2016. Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. Sep. Purif. Technol. 166:164-170. https://doi.org/10.1016/j.seppur.2016.04.036 GAO, P.; LI, G.; DAI, X.; DAI, L.; WANG, H.; ZHAO, L.; CHEN, Y.; MA, T. 2013. Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J. Microbiol. Biotechnol. 29(11):2045-2054. https://doi.org/10.1007/s11274-013-1367-4 GARCÍA, S.; VENOSA, A.D.; SUIDAN, M.T.; LEE, K.; COBANLI, S.; HAINES, J.R. 2007. Biostimulation for the treatment of an oil contaminated coastal salt march. Biodegradation. 18(1):1-15. https://doi.org/10.1007/s10532-005-9029-3 GONG, X. 2012. Remediation of weathered petroleum oil-contaminated soil using a combination of biostimulation and modified fenton oxidation. Int. Biodeterior. Biodegrad. 70:89-95. https://doi.org/10.1016/j.ibiod.2012.02.004 GUO, J.; WANG, J.; CUI, D.; WANG, L.; MA, F.; CHANG, C.; YANG, J. 2010. Application of bioaugmentation in the rapid start-up and stable operation of biological processes for municipal wastewater treatment at low temperatures. Bioresour. Technol. 101(17):6622-6629. https://doi.org/10.1016/j.biortech.2010.03.093 HASSANSHAHIAN, M.; AHMADINEJAD, M.; TEBYANIAN, H.; KARIMINIK, A. 2013. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar. Pollut. Bull. 73(1):300-305. https://doi.org/10.1016/j.marpolbul.2013.05.002 HONG, S.U.; OUYANG, L.; BRUENING, M.L. 2009. Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Membrane Sci. 327(1-2):2-5. https://doi.org/10.1016/j.memsci.2008.11.035 JI, G.; TONG, J.; TAN, Y. 2011. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresour. Technol. 102(2):550-557. https://doi.org/10.1016/j.biortech.2010.07.075 KAHMARK, K.A.; UNWIN, J.P. 1998. Pulp and paper effluent management. Water Environ. Res. 70(4):667-690. https://doi.org/10.2175/106143098X134406 KUMAR, A.; DHALL, P.; KUMAR, R. 2010. Redefining BOD: COD ratio of pulp mill industrial wastewaters in BOD analysis by formulating a specific microbial seed. Int. Biodeterior. Biodegrad. 64(3):197-202. https://doi.org/10.1016/j.ibiod.2010.01.005 KYRIACOU, A.; LASARIDI, K.E.; KOTSOU, M.; BALIS, C.; PILIDIS, G. 2005. Combined bioremediation and advanced oxidation of green table olive processing wastewater. Process Biochem. 40(3-4):1401-1408. https://doi.org/10.1016/j.procbio.2004.06.001 LIM, S.; CHU, W.; PHANG, S. 2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 101(19):7314-7322. https://doi.org/10.1016/j.biortech.2010.04.092 LIU, H.W.; LO, S.N.; LAVALLEE, H.C. 1996. Theoretical study on two-stage anaerobic biological treatment of a CTMP effluent. Part I: effects of operating conditions on system behaviour. Water Qual. Res. J. Can. 31(1):1-19. LU, H.; YUAN, Y.; CAMPBELL, D.E.; QIN, P.; CUI, L. 2014. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water. Ecol. Eng. 69:244-254. https://doi.org/10.1016/j.ecoleng.2014.04.024 MARCELINO, R.B.P.; LEÃO, M.M.D.; LAGO, R.M.; AMORIM, C.C. 2017. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J. Environ. Manage. 195(2):110-116. https://doi.org/10.1016/j.jenvman.2016.04.041 MARGESIN, R.; SCHINNER, F. 1998. Low-temperature bioremediation of a waste water contaminated with anionic surfactants and fuel oil. Appl. Microbiol. Biotechnol. 49(4):482-486. https://doi.org/10.1007/s002530051202 MARINHO-SORIANO, E.; AZEVEDO, C.A.A.; TRIGUEIRO, T.G.; PEREIRA, D.C.; CARNEIRO, M.A.A.; CAMARA, M.R. 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int. Biodeterior. Biodegrad. 65(1):253-257. https://doi.org/10.1016/j.ibiod.2010.10.001 NANNIPIERI, P.; ASCHER, J.; CECCHERINI, M.T.; LANDI, L.; PIETRAMELLARA, G.; RENELLA, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54(4):655-670. https://doi.org/10.1111/ejss.4_12398 NI, S.Q.; WANG, Z.; LV, L.; LIANG, X.; REN, L.; ZHOU, Q. 2015. Bioremediation of wastewaters with decabromodiphenyl ether by anaerobic granular sludge. Colloids Surf. B Biointerfaces. 128:522-527. https://doi.org/10.1016/j.colsurfb.2015.03.003 NIEVAS, M.L.; COMMENDATORE, M.G.; ESTEVES, J.L.; BUCALÁ, V. 2005. Effect of pH modification on bilge waste biodegradation by a native microbial community. Inter. Biodeterior. Biodegrad. 56(3):151-157. https://doi.org/10.1016/j.ibiod.2005.06.006 NIKOLOPOULOU, M.; KALOGERAKIS, N. 2009. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J. Chem. Tec. & Biotechn. 84(6):802-807. https://doi.org/10.1002/jctb.2182 NTENGWE, F.W. 2005. The cost benefit and efficiency of waste water treatment using domestic ponds - The ultimate solution in Southern Africa. Phys. Chem. Earth. 30(11.16):735-743. https://doi.org/10.1016/j.pce.2005.08.015 OSUOLALE, O.; OKOH, A. 2015. Assessment of the physicochemical qualities and prevalence of Escherichia coli and Vibrios in the final effluents of two wastewater treatment plants in South Africa: Ecological and public health implications. Int. J. Environ. Res. Public Health. 12(10):13399-13412. https://doi.org/10.3390/ijerph121013399 PREVOST, B.; LUCAS, F.S.; GONCALVES, A.; RICHARD, F.; MOULIN, L.; WURTZER, S. 2015. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population. Environ. Int. 79:383-396. https://doi.org/10.1016/j.envint.2015.03.004 QUAN, Y.; HAN, H.; ZHENG, S. 2012. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater. Bioresour. Technol.120:1-5. https://doi.org/10.1016/j.biortech.2012.06.019 RAJENDRAN, R.; SOORA, M.; DANANJEYAN, B.; RATERING, S.; KRISHNAMURTHY, K.; BENCKISER, G. 2012. Microbial community diversity of organically rich cassava sago factory waste waters and their ability to use nitrate and N2O added as external N-sources for enhancing biomethanation and the purification efficiency. J. Biotechnol. 164(2):266-275. https://doi.org/10.1016/j.jbiotec.2012.11.013 RANA, R.; SINGH, P.; KANDARI, V.; SINGH, R.; DOBHAL, R.; GUPTA, S. 2017. A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl. Water Sci. 7(1):1-12. https://doi.org/10.1007/s13201-014-0225-3 SALINAS, A.; SANTOS, M.; SOTO, O.; DELGADO, E.; PÉREZ, H.; HÁUAD, L.A.; MEDRANO, H. 2008. Development of a bioremediation process by biostimulation of native microbial consortium through the heap leaching technique. J. Environ. Manage. 88(1):115-119. https://doi.org/10.1016/j.jenvman.2007.01.038 SANSCARTIER, D.; LAING, T.; REIMER, K.; ZEEB, B. 2009. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies. Chemosphere. 77(8):1121-1126. https://doi.org/10.1016/j.chemosphere.2009.09.006 SARATALE, R.G.; SARATALE, G.D.; CHANG, J.S.; GOVINDWAR, S.P. 2011. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42(1):138-157. https://doi.org/10.1016/j.jtice.2010.06.006 SARKAR, D.; FERGUSON, M.; DATTA, R.; BIRNBAUM, S. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 136(1):187-195. https://doi.org/10.1016/j.envpol.2004.09.025 SODE, S.; BRUHN, A.; BALSBY, T.J.S.; LARSEN, M.M.; GOTFREDSEN, A.; RASMUSSEN, M.B. 2013. Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresour. Technol. 146:426-435. https://doi.org/10.1016/j.biortech.2013.06.062 STOLL, A.; DUNCAN, J.R. 1997. Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial wastewater. Environ. Pollut. 97(3):247-251. https://doi.org/10.1016/S0269-7491(97)00094-8 TANG, H.L.; CHEN, H. 2015. Nitrification at full-scale municipal wastewater treatment plants: Evaluation of inhibition and bioaugmentation of nitrifiers. Bioresour. Technol. 190:76-81. https://doi.org/10.1016/j.biortech.2015.04.063 TYAGI, M.; FONSECA, M.M.R.; CARVALHO, C.C.C.R. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. 22(2):231-241. https://doi.org/10.1007/s10532-010-9394-4 VERMA, R.; SUTHAR, S. 2014. Synchronized urban wastewater treatment and biomass production using duckweed Lemna gibba L. Ecol. Eng. 64:337-343. https://doi.org/10.1016/j.ecoleng.2013.12.055 WANG, C.; ZHENG, S.; WANG, P.; QIAN, J. 2014. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 26(4):497-511. https://doi.org/10.1016/S1001-6058(14)60057-3 WANI, D.; PANDIT A.K.; KAMILI, A.N. 2013. Microbial assessment and effect of seasonal change on the removal efficiency of FAB based sewage treatment plant. J. Environ. Eng. Ecol. Sci. 2:1-4. https://doi.org/10.7243/2050-1323-2-1 WEN, D.; ZHANG, J.; XIONG, R.; LIU, R.; CHEN, L. 2013. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J. Environ. Sci. 25(11):2265-2271. https://doi.org/10.1016/S1001-0742(12)60278-2 ZAFRA, C.; TEMPRANO, J.; TEJERO, I.; 2017. The physical factors affecting heavy metals accumulated in the sediment deposited on road surfaces in dry weather: A review. Urban Water J. 14(6):639-649. https://doi.org/10.1080/1573062X.2016.1223320 ZHOU, D.; LI, Y.; ZHANG, Y.; ZHANG, C.; LI, X.; CHEN, Z; HUANG, J.; LI, X.; FLORES, G.; KAMON, M. 2014. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 168:1-16. https://doi.org/10.1016/j.jconhyd.2014.09.003 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2019-12-31 |
date_accessioned |
2018-12-31T00:00:00Z |
date_available |
2018-12-31T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/1037 |
url_doi |
https://doi.org/10.31910/rudca.v21.n2.2018.1037 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v21.n2.2018.1037 |
citationstartpage |
573 |
citationendpage |
585 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1037/1525 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/1037/1699 |
_version_ |
1811201164061966336 |