Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
.
Las bacterias nitrificantes son esenciales en los sistemas acuapónicos porque transforman los desechos nitrogenados en nutrientes útiles para las plantas, evitando la toxicidad por amonio en los peces. Este estudio buscó cuantificar y caracterizar las bacterias nitrificantes cultivables en un sistema acuapónico a lo largo del tiempo, utilizando dos sistemas replicados con la planta berro (Nasturtium officinale), y los peces tilapia del Nilo (Oreochromis niloticus), tilapia roja (Oreochromis sp.) y cachama blanca (Piaractus orinoquensis). Se tomaron muestras en tres momentos (0, 3 y 6 meses) del tanque de peces, hidrociclón y biofiltro. La mayor abundancia bacteriana se detectó en los tanques de peces, probablemente debido a mayores niveles... Ver más
0123-4226
2619-2551
28
2025-06-30
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Natalia Naranjo-Robayo, Maribeb Castro-González, Edwin Gómez-Ramírez - 2025
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
id |
metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94-article-2653 |
---|---|
record_format |
ojs |
spelling |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico Agricultura sostenible Revista U.D.C.A Actualidad & Divulgación Científica Artículo de revista Núm. 1 , Año 2025 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio 1 28 Sistemas de recirculación de nutrientes Piscicultura Nitrificación Hidroponía Universidad de Ciencias Aplicadas y Ambientales U.D.C.A Castro-González, Maribeb Gómez-Ramírez, Edwin Naranjo-Robayo, Natalia Las bacterias nitrificantes son esenciales en los sistemas acuapónicos porque transforman los desechos nitrogenados en nutrientes útiles para las plantas, evitando la toxicidad por amonio en los peces. Este estudio buscó cuantificar y caracterizar las bacterias nitrificantes cultivables en un sistema acuapónico a lo largo del tiempo, utilizando dos sistemas replicados con la planta berro (Nasturtium officinale), y los peces tilapia del Nilo (Oreochromis niloticus), tilapia roja (Oreochromis sp.) y cachama blanca (Piaractus orinoquensis). Se tomaron muestras en tres momentos (0, 3 y 6 meses) del tanque de peces, hidrociclón y biofiltro. La mayor abundancia bacteriana se detectó en los tanques de peces, probablemente debido a mayores niveles de oxígeno y disponibilidad de nutrientes, observándose un incremento a lo largo del tiempo. El análisis de correlación indicó que ciertos nutrientes como potasio, fosfato, manganeso y nitrato podrían favorecer la proliferación de bacterias nitrificantes. Se aislaron y caracterizaron fenotípicamente nueve morfotipos bacterianos, la mayoría de los cuales presentó tinción Gram positiva e hidrólisis de urea negativa. Se proporciona información sobre la dinámica espaciotemporal de las bacterias nitrificantes en sistemas acuapónicos, destacando su papel en el reciclaje de nutrientes. La elevada abundancia bacteriana registrada resalta el potencial del sistema para la reutilización eficiente de nutrientes. Se recomienda aplicar técnicas moleculares, como la secuenciación del gen 16S rRNA y el análisis metagenómico, para identificar los morfotipos y entender mejor la comunidad microbiana. Estos hallazgos refuerzan la importancia de las bacterias nitrificantes en el rendimiento del sistema y el avance de prácticas agrícolas sostenibles. http://purl.org/coar/resource_type/c_1843 MUNGUIA-FRAGOZO, P.; ALATORRE-JACOME, O.; RICO-GARCIA, E.; TORRES-PACHECO, I.; CRUZ-HERNANDEZ, A.; OCAMPO-VELAZQUEZ, R.V.; GARCIA-TREJO, J.F.; GUEVARA-GONZALEZ, R.G. 2015. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Research International. 2015:480386. https://doi.org/10.1155/2015/480386 PROSSER, J.I. 1990. Autotrophic nitrification in bacteria. Advances in Microbial Physiology. 30:125-181. https://doi.org/10.1016/S0065-2911(08)60112-5 PAPP, B.; TÖRÖK, T.; SÁNDOR, E.; FEKETE, E.; FLIPPHI, M.; KARAFFA, L. 2016. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Folia Microbiologica. 61(3):191-198. https://doi.org/10.1007/s12223-015-0425-8 OWEN, A.; JONES, D. 2001. Competition for acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry. 33(4-5):651-657. https://doi.org/10.1016/S0038-0717(00)00235-4 OLIVER, A.; LILLEY, A.K.; VAN DER GAST, C.J. 2012. Species-time relationships for bacteria. In: Franklin, R.; Mills, A. (eds). Microbial Ecological Theory: Current Perspectives. ASM Press. Washington, DC, USA. p.71-86. NISHIO, T.; SHINYA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2002. Effects of phosphate on nitrifying activity in a water treatment plant at low temperature. Japanese Journal of Water Treatment Biology. 38(1):21-28. https://doi.org/10.2521/JSWTB.38.21 NISHIO, T.; SHINYA, M.; FUJIWARA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2008. Phosphate deficiency and its effect on nitrification in the pond of a sea-based solid waste disposal site. Japanese Journal of Water Treatment Biology. 44(3):139-148. https://doi.org/10.2521/JSWTB.44.139 MAIER, R. 2000. Biogeochemical cycling. In: Maier, R.; Pepper, I.; Gerba, C. (eds). Environmental Microbiology. Academic Press. San Diego, USA. 585p. MEHRANI, M.J.; SOBOTKA, D.; KOWAL, P.; CIESIELSKI, S.; MAKINIA, J. 2020. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology. 3:13-21. MASMELA-MENDOZA, J.E.; LIZARAZO-FORERO, L.M.; ARANGUREN RIAÑO, N.J. 2019. Bacterias nitrificantes cultivables de la zona limnética del lago de Tota, Boyacá. Revista U.D.C.A Actualidad & Divulgación Científica. 22(2):1378. https://doi.org/10.31910/rudca.v22.n2.2019.1378 SCHMAUTZ, Z.; ESPINAL, C.A.; BOHNY, A.M.; REZZONICO, F.; JUNGE, R.; FROSSARD, E.; SMITS, T.H. 2021. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiology. 21:12. https://doi.org/10.1186/s12866-021-02027-2 LOVE, D.C.; UHL, M.S.; GENELLO, L. 2015. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 68:19-27. https://doi.org/10.1016/j.aquaeng.2015.02.002 LOVE, D.C.; FRY, J.P.; GENELLO, L.; HILL, E.S.; FREDERICK, J.A.; LI, X.; SEMMENS, K. 2014. An international survey of aquaponics practitioners. PLoS One. 9:1-10. https://doi.org/10.1371/journal.pone.0113883 LI, P.; TONG, L.; LIU, K.; WANG, Y.; WANG, Y. 2009. Indole degrading of ammonia oxidizing bacteria isolated from swine wastewater treatment system. Water Science & Technology. 59(12):2405-2410. https://doi.org/10.2166/wst.2009.312 LEES, H.; QUASTEL, J.H. 1945. Bacteriostatic effects of potassium chlorate on soil nitrification. Nature. 155(3931):276-278. https://doi.org/10.1038/155276A0 LAL, J.; VAISHNAV, A.; DEB, S.; KASHYAP, S.; DEBBARMA, P.; DEVATI; GAUTAM, P.; PAVANKALYAN, M.; KUMARI, K.; VERMA, D.K. 2024. Re-circulatory aquaculture systems: A pathway to sustainable fish farming. Archives of Current Research International. 24(5):799-810. https://doi.org/10.9734/acri/2024/v24i5756 KOUKI, S.; SAIDI, N.; M’HIRI, F.; NASR, H.; CHERIF, H.; OUZARI, H.; HASSEN, A. 2011. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands. Journal of Environmental Sciences. 23(10):1699-1708. RAMÍREZ SÁNCHEZ, L.M.; PÉREZ TRUJILLO, M.M.; JIMÉNEZ, P.; HURTADO GIRALDO, H.; GÓMEZ RAMÍREZ, E. 2011. Evaluación preliminar de sistemas acuapónicos e hidropónicos en cama flotante para el cultivo de orégano (Origanum vulgare: Lamiaceae). Revista Facultad de Ciencias Básicas. 7(2):242-259. TORRES-MESA, A.; CIFUENTES-TORRES, L.; HURTADO-GIRALDO, H.; GOMÉZ-RAMIREZ, E. 2023. Evaluation of plant-fish ratio in an aquaponic system with different stocking densities of Cyprinus carpio and Carassius auratus. AACL Bioflux. 16(1):606-615. SOMERVILLE, C.; COHEN, M.; PANTANELLA, E.; STANKUS, A.; LOVATELLI, A. 2014. Small-scale aquaponic food production. Integrated fish and plant farming; FAO Fisheries and Aquaculture Technical Paper. Food and Agriculture Organization of the United Nations. Rome, Italy. 589p. YOUSUF, S.; KARLINSEY, J.E.; NEVILLE, S.L.; MCDEVITT, C.A.; LIBBY, S.J.; FANG, F.C.; FRAWLEY, E.R. 2020. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics (United Kingdom). 12(11):1791-1801. https://doi.org/10.1039/d0mt00178c http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article ZERFAß, C.; CHRISTIE-OLEZA, J.A.; SOYER, O.S. 2018. Manganese oxide biomineralization is a social trait protecting against nitrite toxicity. BioRxiv 294975. 85(92).26. https://doi.org/10.1128/AEM.02129-18 WONGKIEW, S.; POPP, B.N.; KIM, H.; KHANAL, S.K. 2017. Fate of nitrogen in floating-raft aquaponic systems using natural abundance nitrogen isotopic compositions. International Biodeterioration & Biodegradation. 125:24-32. https://doi.org/10.1016/j.ibiod.2017.08.020 SUJITH, P.P.; BHARATHI, P.A. 2011. Manganese oxidation by bacteria: biogeochemical aspects. In: Müller, W. (eds). Molecular Biomineralization. Progress in Molecular and Subcellular Biology. Volume 52. Springer. Berlin, Heidelberg. p.49-76. https://doi.org/10.1007/978-3-642-21230-7_3 WONGKIEW, S.; POPP, B.N.; KHANAL, S.K. 2018. Nitrogen recovery and nitrous oxide (N2O) emissions from aquaponic systems: influence of plant species and dissolved oxygen. International Biodeterioration & Biodegradation. 134:117-126. https://doi.org/10.1016/j.ibiod.2018.08.008 KIM, B.H.; GADD, G.M. 2008. Bacterial physiology and metabolism. Cambridge University Press. United Kingdom. 512p. https://doi.org/10.1017/CBO9780511790461 WELCH, L.F.; SCOTT, A.D. 1959. Nitrification in nutrient solutions with low levels of potassium. Canandian Journal of Microbiology. 5(5):425-430. https://doi.org/10.1139/M59-053 VERHAGEN, M.; LAANBROCK, J. 1991. Competition for limiting amounts of ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology. 57:3255-3263. https://doi.org/10.1128/AEM.57.11.3255-3263.1991 VADIVELU, V.M.; KELLER, J.; YUAN, Z. 2007. Effect of free ammonia on the respiration and growth processes of an enriched Nitrosomonas culture. Water Research. 41(4):826-834. https://doi.org/10.1016/j.watres.2006.11.030 UNDERHILL, S.E.; PROSSER, J.I. 1985. Inhibition of nitrification by potassium ethyl xanthate in soil and in liquid culture. Soil Biology and Biochemistry. 17(2):229-233. https://doi.org/10.1016/0038-0717(85)90119-1 info:eu-repo/semantics/publishedVersion KOOPS, H.P.; PURKHOLD, U.; POMMERENING-RÖSER, A.; TIMMERMANN, G.; WAGNER, M. 2006. The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. (eds). The Prokaryotes: A Handbook on the Biology of Bacteria. 3rd ed., Volume 5, Proteobacteria: Alpha and Beta Subclasses. Springer. Germany. p.778-812. CHANDRAPATI, S.; WILLIAMS, M.G. 2014. Total viable counts | Most Probable Number (MPN). In: Batt, C.A.; Tortorello, M.L. (Eds.). Encyclopedia of Food Microbiology. Second Edition. Academic Press. p. 621-624. https://doi.org/10.1016/B978-0-12-384730-0.00333-5 HERNÁNDEZ, E.; AGUIRRE, N.; PALACIO, J.; RAMÍREZ, J.J.; DUQUE, S.R.; GUISANDE, C.; ARANGUREN, N.; MOGOLLÓN, M. 2013. Evaluación comparativa de algunas características limnológicas de seis ambientes leníticos de Colombia. Revista Facultad de Ingeniería Universidad de Antioquia. 69:216-228. https://doi.org/10.17533/udea.redin.18151 AGUIRRE, J.P.; TORRES-MESA, A.; PÉREZ-TRUJILLO, M.M.; RUBIO-CASTRO, S.A.; GÓMEZ-RAMÍREZ, E. 2023. Evaluation of Fragaria x ananassa in an aquaponic system with Oncorhynchus mykiss and substrate culture conditions. AACL Bioflux. 16(5):2589-2600. Nitrifying bacteria are essential in aquaponic systems because they transform nitrogenous waste into useful plant nutrients, preventing ammonium toxicity in fish. This study aimed to quantify and characterize cultivable nitrifying bacteria in an aquaponic system over time, using two replicated systems with watercress (Nasturtium officinale), and the fishes Nile tilapia (Oreochromis niloticus), red tilapia (Oreochromis sp.), and white pacu (Piaractus orinoquensis). Samples were collected at three moments (0, 3, and 6 months) from the fish tank, hydrocyclone, and biofilter. The highest bacterial abundance was detected in the fish tanks, likely due to higher oxygen levels and nutrient availability, with a consistent increase over time. Correlation analysis indicated that certain nutrients, such as potassium, phosphate, manganese, and nitrate, could favor the proliferation of nitrifying bacteria. Nine bacterial morphotypes were isolated and phenotypically characterized, with most displaying Gram-positive staining and negative urea hydrolysis. This study provides insight into the spatiotemporal dynamics of nitrifying bacteria in aquaponic systems, highlighting their role in nutrient cycling. The high bacterial abundance observed underscores the system’s potential for efficient nutrient reuse. Molecular techniques such as 16S rRNA gene sequencing and metagenomics are recommended to confirm bacterial identity and better understand community structure. These findings reinforce the ecological importance of nitrifying bacteria in system performance and advancing sustainable agricultural practices. Hydroponics Nitrification Pisciculture Recirculating nutrient systems Sustainable agriculture Journal article text/xml application/pdf https://revistas.udca.edu.co/index.php/ruadc/article/view/2653 Inglés GYAMFI, S.; EDZIYIE, R.E.; OBIRIKORANG, K.A.; ADJEI-BOATENG, D.; SKOV, P.V. 2024. Nile tilapia (Oreochromis niloticus) show high tolerance to acute ammonia exposure but lose metabolic scope during prolonged exposure at low concentration. Aquatic Toxicology. 271:106932. https://doi.org/10.1016/j.aquatox.2024.106932 Natalia Naranjo-Robayo, Maribeb Castro-González, Edwin Gómez-Ramírez - 2025 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. http://creativecommons.org/licenses/by-nc/4.0 AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. 2017. Standard methods for the examination of water and wastewater. Volume 3. Andesite Press. 138p. CASTRO-GONZÁLEZ, M.; MOLINA-TRINCADO, V.; GÓMEZ-RAMÍREZ, E.; NARANJO-ROBAYO, N. 2023. Nitrous oxide production and microbial diversity in an aquaponic system. AACL Bioflux. 16(6):3032-3047. GODDEK, S.; ESPINAL, C.A.; DELAIDE, B.; JIJAKLI, M.H.; SCHMAUTZ, Z.; WUERTZ, S.; KEESMAN, K.J. 2016. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water. 8:303. https://doi.org/10.3390/w8070303 FRENCH, E.; KOZLOWSKI, J.A.; MUKHERJEE, M.; BULLERJAHN, G.; BOLLMANN, A. 2012. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Applied and Environmental Microbiology. 78(16):5773-5780. https://doi.org/10.1128/AEM.00432-12 FERNÁNDEZ, A.; GARCIA DE LA FUENTE, C.; SAEZ, J.; VALDEZATE, S. 2010. Métodos de identificación bacteriana en el laboratorio de microbiología. Seimc. 9(1):1-28. FARGES, B.; POUGHON, L.; RORIZ, D.; CREULY, C.; DUSSAP, C.G.; LASSEUR, C. 2012. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies. Applied Biochemistry and Biotechnology. 167(5):1076-1091. https://doi.org/10.1007/s12010-012-9651-6 CHAUHAN, A.; JINDAL, T. 2020. Biochemical and molecular methods for bacterial identification. In: Chauhan, A.; Jindal, T. Microbiological methods for environment, food and pharmaceutical analysis. Springer. p. 425-468. https://doi.org/10.1007/978-3-030-52024-3_10 Quantification and characterization of nitrifying bacteria isolated from an aquaponic system CAYCEDO LOZANO, L.; CORRALES RAMÍREZ, L.C.; TRUJILLO SUÁREZ, D.M. 2021. Las bacterias, su nutrición y crecimiento: una mirada desde la química. Nova. 19(36):49-94. https://doi.org/10.22490/24629448.5293. BARTELME, R.P.; OYSERMAN, B.O.; BLOM, J.E.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2018. Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Frontiers in Microbiology. 9:8. https://doi.org/10.3389/fmicb.2018.00008 Publication CASTELLANOS-ROZO, J.; RAMOS-PARRA, Y.J. 2015. Caracterización de bacterias oxidadoras de amonio aisladas del humedal de la planta de tratamiento de aguas residuales de la Universidad de Boyacá. I3+. 2(1):82-95. https://doi.org/10.24267/23462329.78 CARRASQUERO FERRER, S.J.; PIRE SIERRA, M.C.; COLINA ANDRADE, G.; MAS Y RUBÍ, M.; MARTÍNEZ, D.; DÍAZ MONTIEL, A. 2014. Tasas de nitrificación y desnitrificación durante el tratamiento biológico de efluentes de tenerías en un reactor por carga secuencial. Boletín del Centro de Investigaciones Biológicas. 47(3):220-234. CANFIELD, D.E.; GLAZER, A.N.; FALKOWSKI, P.G. 2010. The evolution and future of earth's nitrogen cycle. Science. 84(330):192-196. https://doi.org/10.1126/science.1186120 BRITTO, D.T.; KRONZUCKER, H.J. 2013. Ecological significance and complexity of N-source preference in plants. Annals of Botany. 112(6):957-963. https://doi.org/10.1093/aob/mct157 BIROLO, M.; BORDIGNON, F.; TROCINO, A.; FASOLATO, L.; PASCUAL, A.; GODOY, S.; NICOLETTI, C.; MAUCIERI, C.; XICCATO, G. 2020. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture. 529:735653. https://doi.org/10.1016/j.aquaculture.2020.735653 BARTELME, R.P.; SMITH, M.C.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2019. Component microenvironments and system biogeography structure microorganism distributions in recirculating aquaculture and aquaponic systems. mSphere. 3(4):143-19. https://doi.org/10.1128/mSphereDirect.00019-19 0123-4226 2619-2551 2025-06-30T00:00:00Z https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3442 https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3443 2025-06-30T00:00:00Z 10.31910/rudca.v28.n1.2025.2653 https://doi.org/10.31910/rudca.v28.n1.2025.2653 2025-06-30 |
institution |
UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png |
country_str |
Colombia |
collection |
Revista U.D.C.A Actualidad & Divulgación Científica |
title |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico |
spellingShingle |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico Castro-González, Maribeb Gómez-Ramírez, Edwin Naranjo-Robayo, Natalia Agricultura sostenible Sistemas de recirculación de nutrientes Piscicultura Nitrificación Hidroponía Hydroponics Nitrification Pisciculture Recirculating nutrient systems Sustainable agriculture |
title_short |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico |
title_full |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico |
title_fullStr |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico |
title_full_unstemmed |
Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico |
title_sort |
cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico |
title_eng |
Quantification and characterization of nitrifying bacteria isolated from an aquaponic system |
description |
Las bacterias nitrificantes son esenciales en los sistemas acuapónicos porque transforman los desechos nitrogenados en nutrientes útiles para las plantas, evitando la toxicidad por amonio en los peces. Este estudio buscó cuantificar y caracterizar las bacterias nitrificantes cultivables en un sistema acuapónico a lo largo del tiempo, utilizando dos sistemas replicados con la planta berro (Nasturtium officinale), y los peces tilapia del Nilo (Oreochromis niloticus), tilapia roja (Oreochromis sp.) y cachama blanca (Piaractus orinoquensis). Se tomaron muestras en tres momentos (0, 3 y 6 meses) del tanque de peces, hidrociclón y biofiltro. La mayor abundancia bacteriana se detectó en los tanques de peces, probablemente debido a mayores niveles de oxígeno y disponibilidad de nutrientes, observándose un incremento a lo largo del tiempo. El análisis de correlación indicó que ciertos nutrientes como potasio, fosfato, manganeso y nitrato podrían favorecer la proliferación de bacterias nitrificantes. Se aislaron y caracterizaron fenotípicamente nueve morfotipos bacterianos, la mayoría de los cuales presentó tinción Gram positiva e hidrólisis de urea negativa. Se proporciona información sobre la dinámica espaciotemporal de las bacterias nitrificantes en sistemas acuapónicos, destacando su papel en el reciclaje de nutrientes. La elevada abundancia bacteriana registrada resalta el potencial del sistema para la reutilización eficiente de nutrientes. Se recomienda aplicar técnicas moleculares, como la secuenciación del gen 16S rRNA y el análisis metagenómico, para identificar los morfotipos y entender mejor la comunidad microbiana. Estos hallazgos refuerzan la importancia de las bacterias nitrificantes en el rendimiento del sistema y el avance de prácticas agrícolas sostenibles.
|
description_eng |
Nitrifying bacteria are essential in aquaponic systems because they transform nitrogenous waste into useful plant nutrients, preventing ammonium toxicity in fish. This study aimed to quantify and characterize cultivable nitrifying bacteria in an aquaponic system over time, using two replicated systems with watercress (Nasturtium officinale), and the fishes Nile tilapia (Oreochromis niloticus), red tilapia (Oreochromis sp.), and white pacu (Piaractus orinoquensis). Samples were collected at three moments (0, 3, and 6 months) from the fish tank, hydrocyclone, and biofilter. The highest bacterial abundance was detected in the fish tanks, likely due to higher oxygen levels and nutrient availability, with a consistent increase over time. Correlation analysis indicated that certain nutrients, such as potassium, phosphate, manganese, and nitrate, could favor the proliferation of nitrifying bacteria. Nine bacterial morphotypes were isolated and phenotypically characterized, with most displaying Gram-positive staining and negative urea hydrolysis. This study provides insight into the spatiotemporal dynamics of nitrifying bacteria in aquaponic systems, highlighting their role in nutrient cycling. The high bacterial abundance observed underscores the system’s potential for efficient nutrient reuse. Molecular techniques such as 16S rRNA gene sequencing and metagenomics are recommended to confirm bacterial identity and better understand community structure. These findings reinforce the ecological importance of nitrifying bacteria in system performance and advancing sustainable agricultural practices.
|
author |
Castro-González, Maribeb Gómez-Ramírez, Edwin Naranjo-Robayo, Natalia |
author_facet |
Castro-González, Maribeb Gómez-Ramírez, Edwin Naranjo-Robayo, Natalia |
topicspa_str_mv |
Agricultura sostenible Sistemas de recirculación de nutrientes Piscicultura Nitrificación Hidroponía |
topic |
Agricultura sostenible Sistemas de recirculación de nutrientes Piscicultura Nitrificación Hidroponía Hydroponics Nitrification Pisciculture Recirculating nutrient systems Sustainable agriculture |
topic_facet |
Agricultura sostenible Sistemas de recirculación de nutrientes Piscicultura Nitrificación Hidroponía Hydroponics Nitrification Pisciculture Recirculating nutrient systems Sustainable agriculture |
citationvolume |
28 |
citationissue |
1 |
citationedition |
Núm. 1 , Año 2025 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio |
publisher |
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A |
ispartofjournal |
Revista U.D.C.A Actualidad & Divulgación Científica |
source |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2653 |
language |
Inglés |
format |
Article |
rights |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Natalia Naranjo-Robayo, Maribeb Castro-González, Edwin Gómez-Ramírez - 2025 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. http://creativecommons.org/licenses/by-nc/4.0 |
references_eng |
MUNGUIA-FRAGOZO, P.; ALATORRE-JACOME, O.; RICO-GARCIA, E.; TORRES-PACHECO, I.; CRUZ-HERNANDEZ, A.; OCAMPO-VELAZQUEZ, R.V.; GARCIA-TREJO, J.F.; GUEVARA-GONZALEZ, R.G. 2015. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Research International. 2015:480386. https://doi.org/10.1155/2015/480386 PROSSER, J.I. 1990. Autotrophic nitrification in bacteria. Advances in Microbial Physiology. 30:125-181. https://doi.org/10.1016/S0065-2911(08)60112-5 PAPP, B.; TÖRÖK, T.; SÁNDOR, E.; FEKETE, E.; FLIPPHI, M.; KARAFFA, L. 2016. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Folia Microbiologica. 61(3):191-198. https://doi.org/10.1007/s12223-015-0425-8 OWEN, A.; JONES, D. 2001. Competition for acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry. 33(4-5):651-657. https://doi.org/10.1016/S0038-0717(00)00235-4 OLIVER, A.; LILLEY, A.K.; VAN DER GAST, C.J. 2012. Species-time relationships for bacteria. In: Franklin, R.; Mills, A. (eds). Microbial Ecological Theory: Current Perspectives. ASM Press. Washington, DC, USA. p.71-86. NISHIO, T.; SHINYA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2002. Effects of phosphate on nitrifying activity in a water treatment plant at low temperature. Japanese Journal of Water Treatment Biology. 38(1):21-28. https://doi.org/10.2521/JSWTB.38.21 NISHIO, T.; SHINYA, M.; FUJIWARA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2008. Phosphate deficiency and its effect on nitrification in the pond of a sea-based solid waste disposal site. Japanese Journal of Water Treatment Biology. 44(3):139-148. https://doi.org/10.2521/JSWTB.44.139 MAIER, R. 2000. Biogeochemical cycling. In: Maier, R.; Pepper, I.; Gerba, C. (eds). Environmental Microbiology. Academic Press. San Diego, USA. 585p. MEHRANI, M.J.; SOBOTKA, D.; KOWAL, P.; CIESIELSKI, S.; MAKINIA, J. 2020. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology. 3:13-21. MASMELA-MENDOZA, J.E.; LIZARAZO-FORERO, L.M.; ARANGUREN RIAÑO, N.J. 2019. Bacterias nitrificantes cultivables de la zona limnética del lago de Tota, Boyacá. Revista U.D.C.A Actualidad & Divulgación Científica. 22(2):1378. https://doi.org/10.31910/rudca.v22.n2.2019.1378 SCHMAUTZ, Z.; ESPINAL, C.A.; BOHNY, A.M.; REZZONICO, F.; JUNGE, R.; FROSSARD, E.; SMITS, T.H. 2021. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiology. 21:12. https://doi.org/10.1186/s12866-021-02027-2 LOVE, D.C.; UHL, M.S.; GENELLO, L. 2015. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 68:19-27. https://doi.org/10.1016/j.aquaeng.2015.02.002 LOVE, D.C.; FRY, J.P.; GENELLO, L.; HILL, E.S.; FREDERICK, J.A.; LI, X.; SEMMENS, K. 2014. An international survey of aquaponics practitioners. PLoS One. 9:1-10. https://doi.org/10.1371/journal.pone.0113883 LI, P.; TONG, L.; LIU, K.; WANG, Y.; WANG, Y. 2009. Indole degrading of ammonia oxidizing bacteria isolated from swine wastewater treatment system. Water Science & Technology. 59(12):2405-2410. https://doi.org/10.2166/wst.2009.312 LEES, H.; QUASTEL, J.H. 1945. Bacteriostatic effects of potassium chlorate on soil nitrification. Nature. 155(3931):276-278. https://doi.org/10.1038/155276A0 LAL, J.; VAISHNAV, A.; DEB, S.; KASHYAP, S.; DEBBARMA, P.; DEVATI; GAUTAM, P.; PAVANKALYAN, M.; KUMARI, K.; VERMA, D.K. 2024. Re-circulatory aquaculture systems: A pathway to sustainable fish farming. Archives of Current Research International. 24(5):799-810. https://doi.org/10.9734/acri/2024/v24i5756 KOUKI, S.; SAIDI, N.; M’HIRI, F.; NASR, H.; CHERIF, H.; OUZARI, H.; HASSEN, A. 2011. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands. Journal of Environmental Sciences. 23(10):1699-1708. RAMÍREZ SÁNCHEZ, L.M.; PÉREZ TRUJILLO, M.M.; JIMÉNEZ, P.; HURTADO GIRALDO, H.; GÓMEZ RAMÍREZ, E. 2011. Evaluación preliminar de sistemas acuapónicos e hidropónicos en cama flotante para el cultivo de orégano (Origanum vulgare: Lamiaceae). Revista Facultad de Ciencias Básicas. 7(2):242-259. TORRES-MESA, A.; CIFUENTES-TORRES, L.; HURTADO-GIRALDO, H.; GOMÉZ-RAMIREZ, E. 2023. Evaluation of plant-fish ratio in an aquaponic system with different stocking densities of Cyprinus carpio and Carassius auratus. AACL Bioflux. 16(1):606-615. SOMERVILLE, C.; COHEN, M.; PANTANELLA, E.; STANKUS, A.; LOVATELLI, A. 2014. Small-scale aquaponic food production. Integrated fish and plant farming; FAO Fisheries and Aquaculture Technical Paper. Food and Agriculture Organization of the United Nations. Rome, Italy. 589p. YOUSUF, S.; KARLINSEY, J.E.; NEVILLE, S.L.; MCDEVITT, C.A.; LIBBY, S.J.; FANG, F.C.; FRAWLEY, E.R. 2020. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics (United Kingdom). 12(11):1791-1801. https://doi.org/10.1039/d0mt00178c ZERFAß, C.; CHRISTIE-OLEZA, J.A.; SOYER, O.S. 2018. Manganese oxide biomineralization is a social trait protecting against nitrite toxicity. BioRxiv 294975. 85(92).26. https://doi.org/10.1128/AEM.02129-18 WONGKIEW, S.; POPP, B.N.; KIM, H.; KHANAL, S.K. 2017. Fate of nitrogen in floating-raft aquaponic systems using natural abundance nitrogen isotopic compositions. International Biodeterioration & Biodegradation. 125:24-32. https://doi.org/10.1016/j.ibiod.2017.08.020 SUJITH, P.P.; BHARATHI, P.A. 2011. Manganese oxidation by bacteria: biogeochemical aspects. In: Müller, W. (eds). Molecular Biomineralization. Progress in Molecular and Subcellular Biology. Volume 52. Springer. Berlin, Heidelberg. p.49-76. https://doi.org/10.1007/978-3-642-21230-7_3 WONGKIEW, S.; POPP, B.N.; KHANAL, S.K. 2018. Nitrogen recovery and nitrous oxide (N2O) emissions from aquaponic systems: influence of plant species and dissolved oxygen. International Biodeterioration & Biodegradation. 134:117-126. https://doi.org/10.1016/j.ibiod.2018.08.008 KIM, B.H.; GADD, G.M. 2008. Bacterial physiology and metabolism. Cambridge University Press. United Kingdom. 512p. https://doi.org/10.1017/CBO9780511790461 WELCH, L.F.; SCOTT, A.D. 1959. Nitrification in nutrient solutions with low levels of potassium. Canandian Journal of Microbiology. 5(5):425-430. https://doi.org/10.1139/M59-053 VERHAGEN, M.; LAANBROCK, J. 1991. Competition for limiting amounts of ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology. 57:3255-3263. https://doi.org/10.1128/AEM.57.11.3255-3263.1991 VADIVELU, V.M.; KELLER, J.; YUAN, Z. 2007. Effect of free ammonia on the respiration and growth processes of an enriched Nitrosomonas culture. Water Research. 41(4):826-834. https://doi.org/10.1016/j.watres.2006.11.030 UNDERHILL, S.E.; PROSSER, J.I. 1985. Inhibition of nitrification by potassium ethyl xanthate in soil and in liquid culture. Soil Biology and Biochemistry. 17(2):229-233. https://doi.org/10.1016/0038-0717(85)90119-1 KOOPS, H.P.; PURKHOLD, U.; POMMERENING-RÖSER, A.; TIMMERMANN, G.; WAGNER, M. 2006. The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. (eds). The Prokaryotes: A Handbook on the Biology of Bacteria. 3rd ed., Volume 5, Proteobacteria: Alpha and Beta Subclasses. Springer. Germany. p.778-812. CHANDRAPATI, S.; WILLIAMS, M.G. 2014. Total viable counts | Most Probable Number (MPN). In: Batt, C.A.; Tortorello, M.L. (Eds.). Encyclopedia of Food Microbiology. Second Edition. Academic Press. p. 621-624. https://doi.org/10.1016/B978-0-12-384730-0.00333-5 HERNÁNDEZ, E.; AGUIRRE, N.; PALACIO, J.; RAMÍREZ, J.J.; DUQUE, S.R.; GUISANDE, C.; ARANGUREN, N.; MOGOLLÓN, M. 2013. Evaluación comparativa de algunas características limnológicas de seis ambientes leníticos de Colombia. Revista Facultad de Ingeniería Universidad de Antioquia. 69:216-228. https://doi.org/10.17533/udea.redin.18151 AGUIRRE, J.P.; TORRES-MESA, A.; PÉREZ-TRUJILLO, M.M.; RUBIO-CASTRO, S.A.; GÓMEZ-RAMÍREZ, E. 2023. Evaluation of Fragaria x ananassa in an aquaponic system with Oncorhynchus mykiss and substrate culture conditions. AACL Bioflux. 16(5):2589-2600. GYAMFI, S.; EDZIYIE, R.E.; OBIRIKORANG, K.A.; ADJEI-BOATENG, D.; SKOV, P.V. 2024. Nile tilapia (Oreochromis niloticus) show high tolerance to acute ammonia exposure but lose metabolic scope during prolonged exposure at low concentration. Aquatic Toxicology. 271:106932. https://doi.org/10.1016/j.aquatox.2024.106932 AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. 2017. Standard methods for the examination of water and wastewater. Volume 3. Andesite Press. 138p. CASTRO-GONZÁLEZ, M.; MOLINA-TRINCADO, V.; GÓMEZ-RAMÍREZ, E.; NARANJO-ROBAYO, N. 2023. Nitrous oxide production and microbial diversity in an aquaponic system. AACL Bioflux. 16(6):3032-3047. GODDEK, S.; ESPINAL, C.A.; DELAIDE, B.; JIJAKLI, M.H.; SCHMAUTZ, Z.; WUERTZ, S.; KEESMAN, K.J. 2016. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water. 8:303. https://doi.org/10.3390/w8070303 FRENCH, E.; KOZLOWSKI, J.A.; MUKHERJEE, M.; BULLERJAHN, G.; BOLLMANN, A. 2012. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Applied and Environmental Microbiology. 78(16):5773-5780. https://doi.org/10.1128/AEM.00432-12 FERNÁNDEZ, A.; GARCIA DE LA FUENTE, C.; SAEZ, J.; VALDEZATE, S. 2010. Métodos de identificación bacteriana en el laboratorio de microbiología. Seimc. 9(1):1-28. FARGES, B.; POUGHON, L.; RORIZ, D.; CREULY, C.; DUSSAP, C.G.; LASSEUR, C. 2012. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies. Applied Biochemistry and Biotechnology. 167(5):1076-1091. https://doi.org/10.1007/s12010-012-9651-6 CHAUHAN, A.; JINDAL, T. 2020. Biochemical and molecular methods for bacterial identification. In: Chauhan, A.; Jindal, T. Microbiological methods for environment, food and pharmaceutical analysis. Springer. p. 425-468. https://doi.org/10.1007/978-3-030-52024-3_10 CAYCEDO LOZANO, L.; CORRALES RAMÍREZ, L.C.; TRUJILLO SUÁREZ, D.M. 2021. Las bacterias, su nutrición y crecimiento: una mirada desde la química. Nova. 19(36):49-94. https://doi.org/10.22490/24629448.5293. BARTELME, R.P.; OYSERMAN, B.O.; BLOM, J.E.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2018. Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Frontiers in Microbiology. 9:8. https://doi.org/10.3389/fmicb.2018.00008 CASTELLANOS-ROZO, J.; RAMOS-PARRA, Y.J. 2015. Caracterización de bacterias oxidadoras de amonio aisladas del humedal de la planta de tratamiento de aguas residuales de la Universidad de Boyacá. I3+. 2(1):82-95. https://doi.org/10.24267/23462329.78 CARRASQUERO FERRER, S.J.; PIRE SIERRA, M.C.; COLINA ANDRADE, G.; MAS Y RUBÍ, M.; MARTÍNEZ, D.; DÍAZ MONTIEL, A. 2014. Tasas de nitrificación y desnitrificación durante el tratamiento biológico de efluentes de tenerías en un reactor por carga secuencial. Boletín del Centro de Investigaciones Biológicas. 47(3):220-234. CANFIELD, D.E.; GLAZER, A.N.; FALKOWSKI, P.G. 2010. The evolution and future of earth's nitrogen cycle. Science. 84(330):192-196. https://doi.org/10.1126/science.1186120 BRITTO, D.T.; KRONZUCKER, H.J. 2013. Ecological significance and complexity of N-source preference in plants. Annals of Botany. 112(6):957-963. https://doi.org/10.1093/aob/mct157 BIROLO, M.; BORDIGNON, F.; TROCINO, A.; FASOLATO, L.; PASCUAL, A.; GODOY, S.; NICOLETTI, C.; MAUCIERI, C.; XICCATO, G. 2020. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture. 529:735653. https://doi.org/10.1016/j.aquaculture.2020.735653 BARTELME, R.P.; SMITH, M.C.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2019. Component microenvironments and system biogeography structure microorganism distributions in recirculating aquaculture and aquaponic systems. mSphere. 3(4):143-19. https://doi.org/10.1128/mSphereDirect.00019-19 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_1843 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2025-06-30 |
date_accessioned |
2025-06-30T00:00:00Z |
date_available |
2025-06-30T00:00:00Z |
url |
https://revistas.udca.edu.co/index.php/ruadc/article/view/2653 |
url_doi |
https://doi.org/10.31910/rudca.v28.n1.2025.2653 |
issn |
0123-4226 |
eissn |
2619-2551 |
doi |
10.31910/rudca.v28.n1.2025.2653 |
url4_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3442 |
url2_str_mv |
https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3443 |
_version_ |
1833524618685579264 |