Titulo:

Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
.

Sumario:

Las bacterias nitrificantes son esenciales en los sistemas acuapónicos porque transforman los desechos nitrogenados en nutrientes útiles para las plantas, evitando la toxicidad por amonio en los peces. Este estudio buscó cuantificar y caracterizar las bacterias nitrificantes cultivables en un sistema acuapónico a lo largo del tiempo, utilizando dos sistemas replicados con la planta berro (Nasturtium officinale), y los peces tilapia del Nilo (Oreochromis niloticus), tilapia roja (Oreochromis sp.) y cachama blanca (Piaractus orinoquensis). Se tomaron muestras en tres momentos (0, 3 y 6 meses) del tanque de peces, hidrociclón y biofiltro. La mayor abundancia bacteriana se detectó en los tanques de peces, probablemente debido a mayores niveles... Ver más

Guardado en:

0123-4226

2619-2551

28

2025-06-30

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Natalia Naranjo-Robayo, Maribeb Castro-González, Edwin Gómez-Ramírez - 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

id metarevistapublica_udca_revistau.d.c.aactualidad_divulgacioncientifica_94-article-2653
record_format ojs
spelling Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
Agricultura sostenible
Revista U.D.C.A Actualidad & Divulgación Científica
Artículo de revista
Núm. 1 , Año 2025 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
1
28
Sistemas de recirculación de nutrientes
Piscicultura
Nitrificación
Hidroponía
Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
Castro-González, Maribeb
Gómez-Ramírez, Edwin
Naranjo-Robayo, Natalia
Las bacterias nitrificantes son esenciales en los sistemas acuapónicos porque transforman los desechos nitrogenados en nutrientes útiles para las plantas, evitando la toxicidad por amonio en los peces. Este estudio buscó cuantificar y caracterizar las bacterias nitrificantes cultivables en un sistema acuapónico a lo largo del tiempo, utilizando dos sistemas replicados con la planta berro (Nasturtium officinale), y los peces tilapia del Nilo (Oreochromis niloticus), tilapia roja (Oreochromis sp.) y cachama blanca (Piaractus orinoquensis). Se tomaron muestras en tres momentos (0, 3 y 6 meses) del tanque de peces, hidrociclón y biofiltro. La mayor abundancia bacteriana se detectó en los tanques de peces, probablemente debido a mayores niveles de oxígeno y disponibilidad de nutrientes, observándose un incremento a lo largo del tiempo. El análisis de correlación indicó que ciertos nutrientes como potasio, fosfato, manganeso y nitrato podrían favorecer la proliferación de bacterias nitrificantes.  Se aislaron y caracterizaron fenotípicamente nueve morfotipos bacterianos, la mayoría de los cuales presentó tinción Gram positiva e hidrólisis de urea negativa. Se proporciona información sobre la dinámica espaciotemporal de las bacterias nitrificantes en sistemas acuapónicos, destacando su papel en el reciclaje de nutrientes. La elevada abundancia bacteriana registrada resalta el potencial del sistema para la reutilización eficiente de nutrientes. Se recomienda aplicar técnicas moleculares, como la secuenciación del gen 16S rRNA y el análisis metagenómico, para identificar los morfotipos y entender mejor la comunidad microbiana. Estos hallazgos refuerzan la importancia de las bacterias nitrificantes en el rendimiento del sistema y el avance de prácticas agrícolas sostenibles.
http://purl.org/coar/resource_type/c_1843
MUNGUIA-FRAGOZO, P.; ALATORRE-JACOME, O.; RICO-GARCIA, E.; TORRES-PACHECO, I.; CRUZ-HERNANDEZ, A.; OCAMPO-VELAZQUEZ, R.V.; GARCIA-TREJO, J.F.; GUEVARA-GONZALEZ, R.G. 2015. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Research International. 2015:480386. https://doi.org/10.1155/2015/480386
PROSSER, J.I. 1990. Autotrophic nitrification in bacteria. Advances in Microbial Physiology. 30:125-181. https://doi.org/10.1016/S0065-2911(08)60112-5
PAPP, B.; TÖRÖK, T.; SÁNDOR, E.; FEKETE, E.; FLIPPHI, M.; KARAFFA, L. 2016. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Folia Microbiologica. 61(3):191-198. https://doi.org/10.1007/s12223-015-0425-8
OWEN, A.; JONES, D. 2001. Competition for acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry. 33(4-5):651-657. https://doi.org/10.1016/S0038-0717(00)00235-4
OLIVER, A.; LILLEY, A.K.; VAN DER GAST, C.J. 2012. Species-time relationships for bacteria. In: Franklin, R.; Mills, A. (eds). Microbial Ecological Theory: Current Perspectives. ASM Press. Washington, DC, USA. p.71-86.
NISHIO, T.; SHINYA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2002. Effects of phosphate on nitrifying activity in a water treatment plant at low temperature. Japanese Journal of Water Treatment Biology. 38(1):21-28. https://doi.org/10.2521/JSWTB.38.21
NISHIO, T.; SHINYA, M.; FUJIWARA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2008. Phosphate deficiency and its effect on nitrification in the pond of a sea-based solid waste disposal site. Japanese Journal of Water Treatment Biology. 44(3):139-148. https://doi.org/10.2521/JSWTB.44.139
MAIER, R. 2000. Biogeochemical cycling. In: Maier, R.; Pepper, I.; Gerba, C. (eds). Environmental Microbiology. Academic Press. San Diego, USA. 585p.
MEHRANI, M.J.; SOBOTKA, D.; KOWAL, P.; CIESIELSKI, S.; MAKINIA, J. 2020. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology. 3:13-21.
MASMELA-MENDOZA, J.E.; LIZARAZO-FORERO, L.M.; ARANGUREN RIAÑO, N.J. 2019. Bacterias nitrificantes cultivables de la zona limnética del lago de Tota, Boyacá. Revista U.D.C.A Actualidad & Divulgación Científica. 22(2):1378. https://doi.org/10.31910/rudca.v22.n2.2019.1378
SCHMAUTZ, Z.; ESPINAL, C.A.; BOHNY, A.M.; REZZONICO, F.; JUNGE, R.; FROSSARD, E.; SMITS, T.H. 2021. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiology. 21:12. https://doi.org/10.1186/s12866-021-02027-2
LOVE, D.C.; UHL, M.S.; GENELLO, L. 2015. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 68:19-27. https://doi.org/10.1016/j.aquaeng.2015.02.002
LOVE, D.C.; FRY, J.P.; GENELLO, L.; HILL, E.S.; FREDERICK, J.A.; LI, X.; SEMMENS, K. 2014. An international survey of aquaponics practitioners. PLoS One. 9:1-10. https://doi.org/10.1371/journal.pone.0113883
LI, P.; TONG, L.; LIU, K.; WANG, Y.; WANG, Y. 2009. Indole degrading of ammonia oxidizing bacteria isolated from swine wastewater treatment system. Water Science & Technology. 59(12):2405-2410. https://doi.org/10.2166/wst.2009.312
LEES, H.; QUASTEL, J.H. 1945. Bacteriostatic effects of potassium chlorate on soil nitrification. Nature. 155(3931):276-278. https://doi.org/10.1038/155276A0
LAL, J.; VAISHNAV, A.; DEB, S.; KASHYAP, S.; DEBBARMA, P.; DEVATI; GAUTAM, P.; PAVANKALYAN, M.; KUMARI, K.; VERMA, D.K. 2024. Re-circulatory aquaculture systems: A pathway to sustainable fish farming. Archives of Current Research International. 24(5):799-810. https://doi.org/10.9734/acri/2024/v24i5756
KOUKI, S.; SAIDI, N.; M’HIRI, F.; NASR, H.; CHERIF, H.; OUZARI, H.; HASSEN, A. 2011. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands. Journal of Environmental Sciences. 23(10):1699-1708.
RAMÍREZ SÁNCHEZ, L.M.; PÉREZ TRUJILLO, M.M.; JIMÉNEZ, P.; HURTADO GIRALDO, H.; GÓMEZ RAMÍREZ, E. 2011. Evaluación preliminar de sistemas acuapónicos e hidropónicos en cama flotante para el cultivo de orégano (Origanum vulgare: Lamiaceae). Revista Facultad de Ciencias Básicas. 7(2):242-259.
TORRES-MESA, A.; CIFUENTES-TORRES, L.; HURTADO-GIRALDO, H.; GOMÉZ-RAMIREZ, E. 2023. Evaluation of plant-fish ratio in an aquaponic system with different stocking densities of Cyprinus carpio and Carassius auratus. AACL Bioflux. 16(1):606-615.
SOMERVILLE, C.; COHEN, M.; PANTANELLA, E.; STANKUS, A.; LOVATELLI, A. 2014. Small-scale aquaponic food production. Integrated fish and plant farming; FAO Fisheries and Aquaculture Technical Paper. Food and Agriculture Organization of the United Nations. Rome, Italy. 589p.
YOUSUF, S.; KARLINSEY, J.E.; NEVILLE, S.L.; MCDEVITT, C.A.; LIBBY, S.J.; FANG, F.C.; FRAWLEY, E.R. 2020. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics (United Kingdom). 12(11):1791-1801. https://doi.org/10.1039/d0mt00178c
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
ZERFAß, C.; CHRISTIE-OLEZA, J.A.; SOYER, O.S. 2018. Manganese oxide biomineralization is a social trait protecting against nitrite toxicity. BioRxiv 294975. 85(92).26. https://doi.org/10.1128/AEM.02129-18
WONGKIEW, S.; POPP, B.N.; KIM, H.; KHANAL, S.K. 2017. Fate of nitrogen in floating-raft aquaponic systems using natural abundance nitrogen isotopic compositions. International Biodeterioration & Biodegradation. 125:24-32. https://doi.org/10.1016/j.ibiod.2017.08.020
SUJITH, P.P.; BHARATHI, P.A. 2011. Manganese oxidation by bacteria: biogeochemical aspects. In: Müller, W. (eds). Molecular Biomineralization. Progress in Molecular and Subcellular Biology. Volume 52. Springer. Berlin, Heidelberg. p.49-76. https://doi.org/10.1007/978-3-642-21230-7_3
WONGKIEW, S.; POPP, B.N.; KHANAL, S.K. 2018. Nitrogen recovery and nitrous oxide (N2O) emissions from aquaponic systems: influence of plant species and dissolved oxygen. International Biodeterioration & Biodegradation. 134:117-126. https://doi.org/10.1016/j.ibiod.2018.08.008
KIM, B.H.; GADD, G.M. 2008. Bacterial physiology and metabolism. Cambridge University Press. United Kingdom. 512p. https://doi.org/10.1017/CBO9780511790461
WELCH, L.F.; SCOTT, A.D. 1959. Nitrification in nutrient solutions with low levels of potassium. Canandian Journal of Microbiology. 5(5):425-430. https://doi.org/10.1139/M59-053
VERHAGEN, M.; LAANBROCK, J. 1991. Competition for limiting amounts of ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology. 57:3255-3263. https://doi.org/10.1128/AEM.57.11.3255-3263.1991
VADIVELU, V.M.; KELLER, J.; YUAN, Z. 2007. Effect of free ammonia on the respiration and growth processes of an enriched Nitrosomonas culture. Water Research. 41(4):826-834. https://doi.org/10.1016/j.watres.2006.11.030
UNDERHILL, S.E.; PROSSER, J.I. 1985. Inhibition of nitrification by potassium ethyl xanthate in soil and in liquid culture. Soil Biology and Biochemistry. 17(2):229-233. https://doi.org/10.1016/0038-0717(85)90119-1
info:eu-repo/semantics/publishedVersion
KOOPS, H.P.; PURKHOLD, U.; POMMERENING-RÖSER, A.; TIMMERMANN, G.; WAGNER, M. 2006. The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. (eds). The Prokaryotes: A Handbook on the Biology of Bacteria. 3rd ed., Volume 5, Proteobacteria: Alpha and Beta Subclasses. Springer. Germany. p.778-812.
CHANDRAPATI, S.; WILLIAMS, M.G. 2014. Total viable counts | Most Probable Number (MPN). In: Batt, C.A.; Tortorello, M.L. (Eds.). Encyclopedia of Food Microbiology. Second Edition. Academic Press. p. 621-624. https://doi.org/10.1016/B978-0-12-384730-0.00333-5
HERNÁNDEZ, E.; AGUIRRE, N.; PALACIO, J.; RAMÍREZ, J.J.; DUQUE, S.R.; GUISANDE, C.; ARANGUREN, N.; MOGOLLÓN, M. 2013. Evaluación comparativa de algunas características limnológicas de seis ambientes leníticos de Colombia. Revista Facultad de Ingeniería Universidad de Antioquia. 69:216-228. https://doi.org/10.17533/udea.redin.18151
AGUIRRE, J.P.; TORRES-MESA, A.; PÉREZ-TRUJILLO, M.M.; RUBIO-CASTRO, S.A.; GÓMEZ-RAMÍREZ, E. 2023. Evaluation of Fragaria x ananassa in an aquaponic system with Oncorhynchus mykiss and substrate culture conditions. AACL Bioflux. 16(5):2589-2600.
Nitrifying bacteria are essential in aquaponic systems because they transform nitrogenous waste into useful plant nutrients, preventing ammonium toxicity in fish. This study aimed to quantify and characterize cultivable nitrifying bacteria in an aquaponic system over time, using two replicated systems with watercress (Nasturtium officinale), and the fishes Nile tilapia (Oreochromis niloticus), red tilapia (Oreochromis sp.), and white pacu (Piaractus orinoquensis). Samples were collected at three moments (0, 3, and 6 months) from the fish tank, hydrocyclone, and biofilter. The highest bacterial abundance was detected in the fish tanks, likely due to higher oxygen levels and nutrient availability, with a consistent increase over time. Correlation analysis indicated that certain nutrients, such as potassium, phosphate, manganese, and nitrate, could favor the proliferation of nitrifying bacteria. Nine bacterial morphotypes were isolated and phenotypically characterized, with most displaying Gram-positive staining and negative urea hydrolysis. This study provides insight into the spatiotemporal dynamics of nitrifying bacteria in aquaponic systems, highlighting their role in nutrient cycling. The high bacterial abundance observed underscores the system’s potential for efficient nutrient reuse. Molecular techniques such as 16S rRNA gene sequencing and metagenomics are recommended to confirm bacterial identity and better understand community structure. These findings reinforce the ecological importance of nitrifying bacteria in system performance and advancing sustainable agricultural practices.
Hydroponics
Nitrification
Pisciculture
Recirculating nutrient systems
Sustainable agriculture
Journal article
text/xml
application/pdf
https://revistas.udca.edu.co/index.php/ruadc/article/view/2653
Inglés
GYAMFI, S.; EDZIYIE, R.E.; OBIRIKORANG, K.A.; ADJEI-BOATENG, D.; SKOV, P.V. 2024. Nile tilapia (Oreochromis niloticus) show high tolerance to acute ammonia exposure but lose metabolic scope during prolonged exposure at low concentration. Aquatic Toxicology. 271:106932. https://doi.org/10.1016/j.aquatox.2024.106932
Natalia Naranjo-Robayo, Maribeb Castro-González, Edwin Gómez-Ramírez - 2025
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
http://creativecommons.org/licenses/by-nc/4.0
AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. 2017. Standard methods for the examination of water and wastewater. Volume 3. Andesite Press. 138p.
CASTRO-GONZÁLEZ, M.; MOLINA-TRINCADO, V.; GÓMEZ-RAMÍREZ, E.; NARANJO-ROBAYO, N. 2023. Nitrous oxide production and microbial diversity in an aquaponic system. AACL Bioflux. 16(6):3032-3047.
GODDEK, S.; ESPINAL, C.A.; DELAIDE, B.; JIJAKLI, M.H.; SCHMAUTZ, Z.; WUERTZ, S.; KEESMAN, K.J. 2016. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water. 8:303. https://doi.org/10.3390/w8070303
FRENCH, E.; KOZLOWSKI, J.A.; MUKHERJEE, M.; BULLERJAHN, G.; BOLLMANN, A. 2012. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Applied and Environmental Microbiology. 78(16):5773-5780. https://doi.org/10.1128/AEM.00432-12
FERNÁNDEZ, A.; GARCIA DE LA FUENTE, C.; SAEZ, J.; VALDEZATE, S. 2010. Métodos de identificación bacteriana en el laboratorio de microbiología. Seimc. 9(1):1-28.
FARGES, B.; POUGHON, L.; RORIZ, D.; CREULY, C.; DUSSAP, C.G.; LASSEUR, C. 2012. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies. Applied Biochemistry and Biotechnology. 167(5):1076-1091. https://doi.org/10.1007/s12010-012-9651-6
CHAUHAN, A.; JINDAL, T. 2020. Biochemical and molecular methods for bacterial identification. In: Chauhan, A.; Jindal, T. Microbiological methods for environment, food and pharmaceutical analysis. Springer. p. 425-468. https://doi.org/10.1007/978-3-030-52024-3_10
Quantification and characterization of nitrifying bacteria isolated from an aquaponic system
CAYCEDO LOZANO, L.; CORRALES RAMÍREZ, L.C.; TRUJILLO SUÁREZ, D.M. 2021. Las bacterias, su nutrición y crecimiento: una mirada desde la química. Nova. 19(36):49-94. https://doi.org/10.22490/24629448.5293.
BARTELME, R.P.; OYSERMAN, B.O.; BLOM, J.E.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2018. Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Frontiers in Microbiology. 9:8. https://doi.org/10.3389/fmicb.2018.00008
Publication
CASTELLANOS-ROZO, J.; RAMOS-PARRA, Y.J. 2015. Caracterización de bacterias oxidadoras de amonio aisladas del humedal de la planta de tratamiento de aguas residuales de la Universidad de Boyacá. I3+. 2(1):82-95. https://doi.org/10.24267/23462329.78
CARRASQUERO FERRER, S.J.; PIRE SIERRA, M.C.; COLINA ANDRADE, G.; MAS Y RUBÍ, M.; MARTÍNEZ, D.; DÍAZ MONTIEL, A. 2014. Tasas de nitrificación y desnitrificación durante el tratamiento biológico de efluentes de tenerías en un reactor por carga secuencial. Boletín del Centro de Investigaciones Biológicas. 47(3):220-234.
CANFIELD, D.E.; GLAZER, A.N.; FALKOWSKI, P.G. 2010. The evolution and future of earth's nitrogen cycle. Science. 84(330):192-196. https://doi.org/10.1126/science.1186120
BRITTO, D.T.; KRONZUCKER, H.J. 2013. Ecological significance and complexity of N-source preference in plants. Annals of Botany. 112(6):957-963. https://doi.org/10.1093/aob/mct157
BIROLO, M.; BORDIGNON, F.; TROCINO, A.; FASOLATO, L.; PASCUAL, A.; GODOY, S.; NICOLETTI, C.; MAUCIERI, C.; XICCATO, G. 2020. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture. 529:735653. https://doi.org/10.1016/j.aquaculture.2020.735653
BARTELME, R.P.; SMITH, M.C.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2019. Component microenvironments and system biogeography structure microorganism distributions in recirculating aquaculture and aquaponic systems. mSphere. 3(4):143-19. https://doi.org/10.1128/mSphereDirect.00019-19
0123-4226
2619-2551
2025-06-30T00:00:00Z
https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3442
https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3443
2025-06-30T00:00:00Z
10.31910/rudca.v28.n1.2025.2653
https://doi.org/10.31910/rudca.v28.n1.2025.2653
2025-06-30
institution UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADDECIENCIASAPLICADASYAMBIENTALES/logo.png
country_str Colombia
collection Revista U.D.C.A Actualidad & Divulgación Científica
title Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
spellingShingle Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
Castro-González, Maribeb
Gómez-Ramírez, Edwin
Naranjo-Robayo, Natalia
Agricultura sostenible
Sistemas de recirculación de nutrientes
Piscicultura
Nitrificación
Hidroponía
Hydroponics
Nitrification
Pisciculture
Recirculating nutrient systems
Sustainable agriculture
title_short Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
title_full Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
title_fullStr Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
title_full_unstemmed Cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
title_sort cuantificación y caracterización de bacterias nitrificantes aisladas de un sistema acuapónico
title_eng Quantification and characterization of nitrifying bacteria isolated from an aquaponic system
description Las bacterias nitrificantes son esenciales en los sistemas acuapónicos porque transforman los desechos nitrogenados en nutrientes útiles para las plantas, evitando la toxicidad por amonio en los peces. Este estudio buscó cuantificar y caracterizar las bacterias nitrificantes cultivables en un sistema acuapónico a lo largo del tiempo, utilizando dos sistemas replicados con la planta berro (Nasturtium officinale), y los peces tilapia del Nilo (Oreochromis niloticus), tilapia roja (Oreochromis sp.) y cachama blanca (Piaractus orinoquensis). Se tomaron muestras en tres momentos (0, 3 y 6 meses) del tanque de peces, hidrociclón y biofiltro. La mayor abundancia bacteriana se detectó en los tanques de peces, probablemente debido a mayores niveles de oxígeno y disponibilidad de nutrientes, observándose un incremento a lo largo del tiempo. El análisis de correlación indicó que ciertos nutrientes como potasio, fosfato, manganeso y nitrato podrían favorecer la proliferación de bacterias nitrificantes.  Se aislaron y caracterizaron fenotípicamente nueve morfotipos bacterianos, la mayoría de los cuales presentó tinción Gram positiva e hidrólisis de urea negativa. Se proporciona información sobre la dinámica espaciotemporal de las bacterias nitrificantes en sistemas acuapónicos, destacando su papel en el reciclaje de nutrientes. La elevada abundancia bacteriana registrada resalta el potencial del sistema para la reutilización eficiente de nutrientes. Se recomienda aplicar técnicas moleculares, como la secuenciación del gen 16S rRNA y el análisis metagenómico, para identificar los morfotipos y entender mejor la comunidad microbiana. Estos hallazgos refuerzan la importancia de las bacterias nitrificantes en el rendimiento del sistema y el avance de prácticas agrícolas sostenibles.
description_eng Nitrifying bacteria are essential in aquaponic systems because they transform nitrogenous waste into useful plant nutrients, preventing ammonium toxicity in fish. This study aimed to quantify and characterize cultivable nitrifying bacteria in an aquaponic system over time, using two replicated systems with watercress (Nasturtium officinale), and the fishes Nile tilapia (Oreochromis niloticus), red tilapia (Oreochromis sp.), and white pacu (Piaractus orinoquensis). Samples were collected at three moments (0, 3, and 6 months) from the fish tank, hydrocyclone, and biofilter. The highest bacterial abundance was detected in the fish tanks, likely due to higher oxygen levels and nutrient availability, with a consistent increase over time. Correlation analysis indicated that certain nutrients, such as potassium, phosphate, manganese, and nitrate, could favor the proliferation of nitrifying bacteria. Nine bacterial morphotypes were isolated and phenotypically characterized, with most displaying Gram-positive staining and negative urea hydrolysis. This study provides insight into the spatiotemporal dynamics of nitrifying bacteria in aquaponic systems, highlighting their role in nutrient cycling. The high bacterial abundance observed underscores the system’s potential for efficient nutrient reuse. Molecular techniques such as 16S rRNA gene sequencing and metagenomics are recommended to confirm bacterial identity and better understand community structure. These findings reinforce the ecological importance of nitrifying bacteria in system performance and advancing sustainable agricultural practices.
author Castro-González, Maribeb
Gómez-Ramírez, Edwin
Naranjo-Robayo, Natalia
author_facet Castro-González, Maribeb
Gómez-Ramírez, Edwin
Naranjo-Robayo, Natalia
topicspa_str_mv Agricultura sostenible
Sistemas de recirculación de nutrientes
Piscicultura
Nitrificación
Hidroponía
topic Agricultura sostenible
Sistemas de recirculación de nutrientes
Piscicultura
Nitrificación
Hidroponía
Hydroponics
Nitrification
Pisciculture
Recirculating nutrient systems
Sustainable agriculture
topic_facet Agricultura sostenible
Sistemas de recirculación de nutrientes
Piscicultura
Nitrificación
Hidroponía
Hydroponics
Nitrification
Pisciculture
Recirculating nutrient systems
Sustainable agriculture
citationvolume 28
citationissue 1
citationedition Núm. 1 , Año 2025 :Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junio
publisher Universidad de Ciencias Aplicadas y Ambientales U.D.C.A
ispartofjournal Revista U.D.C.A Actualidad & Divulgación Científica
source https://revistas.udca.edu.co/index.php/ruadc/article/view/2653
language Inglés
format Article
rights info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Natalia Naranjo-Robayo, Maribeb Castro-González, Edwin Gómez-Ramírez - 2025
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
http://creativecommons.org/licenses/by-nc/4.0
references_eng MUNGUIA-FRAGOZO, P.; ALATORRE-JACOME, O.; RICO-GARCIA, E.; TORRES-PACHECO, I.; CRUZ-HERNANDEZ, A.; OCAMPO-VELAZQUEZ, R.V.; GARCIA-TREJO, J.F.; GUEVARA-GONZALEZ, R.G. 2015. Perspective for Aquaponic Systems: “Omic” Technologies for Microbial Community Analysis. BioMed Research International. 2015:480386. https://doi.org/10.1155/2015/480386
PROSSER, J.I. 1990. Autotrophic nitrification in bacteria. Advances in Microbial Physiology. 30:125-181. https://doi.org/10.1016/S0065-2911(08)60112-5
PAPP, B.; TÖRÖK, T.; SÁNDOR, E.; FEKETE, E.; FLIPPHI, M.; KARAFFA, L. 2016. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. Folia Microbiologica. 61(3):191-198. https://doi.org/10.1007/s12223-015-0425-8
OWEN, A.; JONES, D. 2001. Competition for acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry. 33(4-5):651-657. https://doi.org/10.1016/S0038-0717(00)00235-4
OLIVER, A.; LILLEY, A.K.; VAN DER GAST, C.J. 2012. Species-time relationships for bacteria. In: Franklin, R.; Mills, A. (eds). Microbial Ecological Theory: Current Perspectives. ASM Press. Washington, DC, USA. p.71-86.
NISHIO, T.; SHINYA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2002. Effects of phosphate on nitrifying activity in a water treatment plant at low temperature. Japanese Journal of Water Treatment Biology. 38(1):21-28. https://doi.org/10.2521/JSWTB.38.21
NISHIO, T.; SHINYA, M.; FUJIWARA, Y.; YOSHIKURA, T.; FUKUYAMA, J. 2008. Phosphate deficiency and its effect on nitrification in the pond of a sea-based solid waste disposal site. Japanese Journal of Water Treatment Biology. 44(3):139-148. https://doi.org/10.2521/JSWTB.44.139
MAIER, R. 2000. Biogeochemical cycling. In: Maier, R.; Pepper, I.; Gerba, C. (eds). Environmental Microbiology. Academic Press. San Diego, USA. 585p.
MEHRANI, M.J.; SOBOTKA, D.; KOWAL, P.; CIESIELSKI, S.; MAKINIA, J. 2020. The occurrence and role of Nitrospira in nitrogen removal systems. Bioresource Technology. 3:13-21.
MASMELA-MENDOZA, J.E.; LIZARAZO-FORERO, L.M.; ARANGUREN RIAÑO, N.J. 2019. Bacterias nitrificantes cultivables de la zona limnética del lago de Tota, Boyacá. Revista U.D.C.A Actualidad & Divulgación Científica. 22(2):1378. https://doi.org/10.31910/rudca.v22.n2.2019.1378
SCHMAUTZ, Z.; ESPINAL, C.A.; BOHNY, A.M.; REZZONICO, F.; JUNGE, R.; FROSSARD, E.; SMITS, T.H. 2021. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiology. 21:12. https://doi.org/10.1186/s12866-021-02027-2
LOVE, D.C.; UHL, M.S.; GENELLO, L. 2015. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 68:19-27. https://doi.org/10.1016/j.aquaeng.2015.02.002
LOVE, D.C.; FRY, J.P.; GENELLO, L.; HILL, E.S.; FREDERICK, J.A.; LI, X.; SEMMENS, K. 2014. An international survey of aquaponics practitioners. PLoS One. 9:1-10. https://doi.org/10.1371/journal.pone.0113883
LI, P.; TONG, L.; LIU, K.; WANG, Y.; WANG, Y. 2009. Indole degrading of ammonia oxidizing bacteria isolated from swine wastewater treatment system. Water Science & Technology. 59(12):2405-2410. https://doi.org/10.2166/wst.2009.312
LEES, H.; QUASTEL, J.H. 1945. Bacteriostatic effects of potassium chlorate on soil nitrification. Nature. 155(3931):276-278. https://doi.org/10.1038/155276A0
LAL, J.; VAISHNAV, A.; DEB, S.; KASHYAP, S.; DEBBARMA, P.; DEVATI; GAUTAM, P.; PAVANKALYAN, M.; KUMARI, K.; VERMA, D.K. 2024. Re-circulatory aquaculture systems: A pathway to sustainable fish farming. Archives of Current Research International. 24(5):799-810. https://doi.org/10.9734/acri/2024/v24i5756
KOUKI, S.; SAIDI, N.; M’HIRI, F.; NASR, H.; CHERIF, H.; OUZARI, H.; HASSEN, A. 2011. Isolation and characterization of facultative mixotrophic ammonia-oxidizing bacteria from constructed wetlands. Journal of Environmental Sciences. 23(10):1699-1708.
RAMÍREZ SÁNCHEZ, L.M.; PÉREZ TRUJILLO, M.M.; JIMÉNEZ, P.; HURTADO GIRALDO, H.; GÓMEZ RAMÍREZ, E. 2011. Evaluación preliminar de sistemas acuapónicos e hidropónicos en cama flotante para el cultivo de orégano (Origanum vulgare: Lamiaceae). Revista Facultad de Ciencias Básicas. 7(2):242-259.
TORRES-MESA, A.; CIFUENTES-TORRES, L.; HURTADO-GIRALDO, H.; GOMÉZ-RAMIREZ, E. 2023. Evaluation of plant-fish ratio in an aquaponic system with different stocking densities of Cyprinus carpio and Carassius auratus. AACL Bioflux. 16(1):606-615.
SOMERVILLE, C.; COHEN, M.; PANTANELLA, E.; STANKUS, A.; LOVATELLI, A. 2014. Small-scale aquaponic food production. Integrated fish and plant farming; FAO Fisheries and Aquaculture Technical Paper. Food and Agriculture Organization of the United Nations. Rome, Italy. 589p.
YOUSUF, S.; KARLINSEY, J.E.; NEVILLE, S.L.; MCDEVITT, C.A.; LIBBY, S.J.; FANG, F.C.; FRAWLEY, E.R. 2020. Manganese import protects Salmonella enterica serovar Typhimurium against nitrosative stress. Metallomics (United Kingdom). 12(11):1791-1801. https://doi.org/10.1039/d0mt00178c
ZERFAß, C.; CHRISTIE-OLEZA, J.A.; SOYER, O.S. 2018. Manganese oxide biomineralization is a social trait protecting against nitrite toxicity. BioRxiv 294975. 85(92).26. https://doi.org/10.1128/AEM.02129-18
WONGKIEW, S.; POPP, B.N.; KIM, H.; KHANAL, S.K. 2017. Fate of nitrogen in floating-raft aquaponic systems using natural abundance nitrogen isotopic compositions. International Biodeterioration & Biodegradation. 125:24-32. https://doi.org/10.1016/j.ibiod.2017.08.020
SUJITH, P.P.; BHARATHI, P.A. 2011. Manganese oxidation by bacteria: biogeochemical aspects. In: Müller, W. (eds). Molecular Biomineralization. Progress in Molecular and Subcellular Biology. Volume 52. Springer. Berlin, Heidelberg. p.49-76. https://doi.org/10.1007/978-3-642-21230-7_3
WONGKIEW, S.; POPP, B.N.; KHANAL, S.K. 2018. Nitrogen recovery and nitrous oxide (N2O) emissions from aquaponic systems: influence of plant species and dissolved oxygen. International Biodeterioration & Biodegradation. 134:117-126. https://doi.org/10.1016/j.ibiod.2018.08.008
KIM, B.H.; GADD, G.M. 2008. Bacterial physiology and metabolism. Cambridge University Press. United Kingdom. 512p. https://doi.org/10.1017/CBO9780511790461
WELCH, L.F.; SCOTT, A.D. 1959. Nitrification in nutrient solutions with low levels of potassium. Canandian Journal of Microbiology. 5(5):425-430. https://doi.org/10.1139/M59-053
VERHAGEN, M.; LAANBROCK, J. 1991. Competition for limiting amounts of ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology. 57:3255-3263. https://doi.org/10.1128/AEM.57.11.3255-3263.1991
VADIVELU, V.M.; KELLER, J.; YUAN, Z. 2007. Effect of free ammonia on the respiration and growth processes of an enriched Nitrosomonas culture. Water Research. 41(4):826-834. https://doi.org/10.1016/j.watres.2006.11.030
UNDERHILL, S.E.; PROSSER, J.I. 1985. Inhibition of nitrification by potassium ethyl xanthate in soil and in liquid culture. Soil Biology and Biochemistry. 17(2):229-233. https://doi.org/10.1016/0038-0717(85)90119-1
KOOPS, H.P.; PURKHOLD, U.; POMMERENING-RÖSER, A.; TIMMERMANN, G.; WAGNER, M. 2006. The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.H.; Stackebrandt, E. (eds). The Prokaryotes: A Handbook on the Biology of Bacteria. 3rd ed., Volume 5, Proteobacteria: Alpha and Beta Subclasses. Springer. Germany. p.778-812.
CHANDRAPATI, S.; WILLIAMS, M.G. 2014. Total viable counts | Most Probable Number (MPN). In: Batt, C.A.; Tortorello, M.L. (Eds.). Encyclopedia of Food Microbiology. Second Edition. Academic Press. p. 621-624. https://doi.org/10.1016/B978-0-12-384730-0.00333-5
HERNÁNDEZ, E.; AGUIRRE, N.; PALACIO, J.; RAMÍREZ, J.J.; DUQUE, S.R.; GUISANDE, C.; ARANGUREN, N.; MOGOLLÓN, M. 2013. Evaluación comparativa de algunas características limnológicas de seis ambientes leníticos de Colombia. Revista Facultad de Ingeniería Universidad de Antioquia. 69:216-228. https://doi.org/10.17533/udea.redin.18151
AGUIRRE, J.P.; TORRES-MESA, A.; PÉREZ-TRUJILLO, M.M.; RUBIO-CASTRO, S.A.; GÓMEZ-RAMÍREZ, E. 2023. Evaluation of Fragaria x ananassa in an aquaponic system with Oncorhynchus mykiss and substrate culture conditions. AACL Bioflux. 16(5):2589-2600.
GYAMFI, S.; EDZIYIE, R.E.; OBIRIKORANG, K.A.; ADJEI-BOATENG, D.; SKOV, P.V. 2024. Nile tilapia (Oreochromis niloticus) show high tolerance to acute ammonia exposure but lose metabolic scope during prolonged exposure at low concentration. Aquatic Toxicology. 271:106932. https://doi.org/10.1016/j.aquatox.2024.106932
AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. 2017. Standard methods for the examination of water and wastewater. Volume 3. Andesite Press. 138p.
CASTRO-GONZÁLEZ, M.; MOLINA-TRINCADO, V.; GÓMEZ-RAMÍREZ, E.; NARANJO-ROBAYO, N. 2023. Nitrous oxide production and microbial diversity in an aquaponic system. AACL Bioflux. 16(6):3032-3047.
GODDEK, S.; ESPINAL, C.A.; DELAIDE, B.; JIJAKLI, M.H.; SCHMAUTZ, Z.; WUERTZ, S.; KEESMAN, K.J. 2016. Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water. 8:303. https://doi.org/10.3390/w8070303
FRENCH, E.; KOZLOWSKI, J.A.; MUKHERJEE, M.; BULLERJAHN, G.; BOLLMANN, A. 2012. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Applied and Environmental Microbiology. 78(16):5773-5780. https://doi.org/10.1128/AEM.00432-12
FERNÁNDEZ, A.; GARCIA DE LA FUENTE, C.; SAEZ, J.; VALDEZATE, S. 2010. Métodos de identificación bacteriana en el laboratorio de microbiología. Seimc. 9(1):1-28.
FARGES, B.; POUGHON, L.; RORIZ, D.; CREULY, C.; DUSSAP, C.G.; LASSEUR, C. 2012. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies. Applied Biochemistry and Biotechnology. 167(5):1076-1091. https://doi.org/10.1007/s12010-012-9651-6
CHAUHAN, A.; JINDAL, T. 2020. Biochemical and molecular methods for bacterial identification. In: Chauhan, A.; Jindal, T. Microbiological methods for environment, food and pharmaceutical analysis. Springer. p. 425-468. https://doi.org/10.1007/978-3-030-52024-3_10
CAYCEDO LOZANO, L.; CORRALES RAMÍREZ, L.C.; TRUJILLO SUÁREZ, D.M. 2021. Las bacterias, su nutrición y crecimiento: una mirada desde la química. Nova. 19(36):49-94. https://doi.org/10.22490/24629448.5293.
BARTELME, R.P.; OYSERMAN, B.O.; BLOM, J.E.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2018. Stripping away the soil: plant growth promoting microbiology opportunities in aquaponics. Frontiers in Microbiology. 9:8. https://doi.org/10.3389/fmicb.2018.00008
CASTELLANOS-ROZO, J.; RAMOS-PARRA, Y.J. 2015. Caracterización de bacterias oxidadoras de amonio aisladas del humedal de la planta de tratamiento de aguas residuales de la Universidad de Boyacá. I3+. 2(1):82-95. https://doi.org/10.24267/23462329.78
CARRASQUERO FERRER, S.J.; PIRE SIERRA, M.C.; COLINA ANDRADE, G.; MAS Y RUBÍ, M.; MARTÍNEZ, D.; DÍAZ MONTIEL, A. 2014. Tasas de nitrificación y desnitrificación durante el tratamiento biológico de efluentes de tenerías en un reactor por carga secuencial. Boletín del Centro de Investigaciones Biológicas. 47(3):220-234.
CANFIELD, D.E.; GLAZER, A.N.; FALKOWSKI, P.G. 2010. The evolution and future of earth's nitrogen cycle. Science. 84(330):192-196. https://doi.org/10.1126/science.1186120
BRITTO, D.T.; KRONZUCKER, H.J. 2013. Ecological significance and complexity of N-source preference in plants. Annals of Botany. 112(6):957-963. https://doi.org/10.1093/aob/mct157
BIROLO, M.; BORDIGNON, F.; TROCINO, A.; FASOLATO, L.; PASCUAL, A.; GODOY, S.; NICOLETTI, C.; MAUCIERI, C.; XICCATO, G. 2020. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture. 529:735653. https://doi.org/10.1016/j.aquaculture.2020.735653
BARTELME, R.P.; SMITH, M.C.; SEPULVEDA-VILLET, O.J.; NEWTON, R.J. 2019. Component microenvironments and system biogeography structure microorganism distributions in recirculating aquaculture and aquaponic systems. mSphere. 3(4):143-19. https://doi.org/10.1128/mSphereDirect.00019-19
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_1843
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2025-06-30
date_accessioned 2025-06-30T00:00:00Z
date_available 2025-06-30T00:00:00Z
url https://revistas.udca.edu.co/index.php/ruadc/article/view/2653
url_doi https://doi.org/10.31910/rudca.v28.n1.2025.2653
issn 0123-4226
eissn 2619-2551
doi 10.31910/rudca.v28.n1.2025.2653
url4_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3442
url2_str_mv https://revistas.udca.edu.co/index.php/ruadc/article/download/2653/3443
_version_ 1833524618685579264