Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
.
El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.
2248-6046
2011-7663
16
2024-07-24
Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_ucatolica_revistafinanzasypoliticaeconomica_16_article_5726 |
---|---|
record_format |
ojs |
spelling |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones Financial Effects of the Covid 19 Pandemic on Stock Prices of Dow Jones Index El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS. The objective was to analyze the financial effects produced by the COVD-19 Pandemic in the companies that make up the Dow Jones Industrial Average (DJIA) index. The Event Study technique was applied to 30 entities that make up the DJIA, considering the financial impact of the dates of the World Health Organization (WHO) communications on stock returns. The results of the analysis prove the existence of favorable evidence in relation to the market efficiency of the DJIA, in addition, it was possible to demonstrate that the stock market benefits of the organizations that make up the technology sector have a positive performance in light of the reports on health crises disseminated by the OMS. Saavedra García, Maria Luisa Valdés Medina, Filiberto Enrique Dow Jones Covid 19 Mercado eficiente Estudio de Eventos Dow Jones Covid 19 efficient market Event study 16 2 Artículo de revista Journal article 2024-07-24T11:11:06Z 2024-07-24T11:11:06Z 2024-07-24 Universidad Católica de Colombia Revista Finanzas y Política Económica 2248-6046 2011-7663 https://revfinypolecon.ucatolica.edu.co/article/view/5726 10.14718/revfinanzpolitecon.v16.n2.2024.9 https://doi.org/10.14718/revfinanzpolitecon.v16.n2.2024.9 spa https://creativecommons.org/licenses/by-nc-sa/4.0 Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. The Review of Economic Studies, 72(1), 1-19. Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), 493-505. Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. American Journal of Political Science, 59(2), 495-510. Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93(1), 113-132. Abraham, F., Leliaert, H., & Heremans, D. (1991). Foreign Dependence of Individual Stock Prices: The Role of Aggregate Product Market Developments. Open Economies Review, 2(1), 1-26. https://doi.org/10.1007/BF01886132 Ahmed, R. R., Streimikiene, D., Rolle, J. A., & Pham, A. D. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01 Alajbeg, D., Bubaš, Z., & Šonje, V. (2012). The efficient market hypothesis: problems with interpretations of empirical tests. Financial Theory and Practice, 36(1), 53-72. https://doi.org/10.3326/fintp.36.1.3 Ali, I., & Alharbi, O. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861 Andoh-Baidoo, F. K., Osei-Bryson, K. M., & Amoako-Gyampah, K. (2012). A hybrid decision tree based methodology for event studies and its application to e-commerce initiative announcements. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 44(1), 78-101. https://doi.org/10.1145/2436239.2436244 Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press. Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The Economics of Science and Technology. The Journal of Technology Transfer, 27(2), 155–203. https://doi.org/10.1023/A:1014382532639 Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). John Wiley & Sons. Basse Mama, H., Mueller, S., & Pape, U. (2017). What’s in the news? The ambiguity of the information content of index reconstitutions in Germany. Review of Quantitative Finance and Accounting, 49(4), 1087–1119. https://doi.org/10.1007/s11156-017-0617-1 Benninga, S. (2014). Financial Modeling. MIT Press. Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006 Cave, J., Chaudhuri, K., & Kumbhakar, S. C. (2020). Do banking sector and stock market development matter for economic growth? Empirical Economics, 59, 1513–1535. https://doi.org/10.1007/s00181-019-01692-7 Chung, R., Fung, S., Shilling, J. D., & Simmons, T. (2011). What Determines Stock Price Synchronicity in REITs? Journal of Real Estate Finance and Economics, 43(1), 73–98. https://doi.org/10.1007/s11146-010-9254-3 Clayman, M. R., Fridson, M. S., & Troughton, G. H. (2012). Corporate Finance: A Practical Approach (Vol. 42). John Wiley & Sons. Davis, M., Braunholtz-Speight, T., & Wardrop, R. (2020). Crowdfunding as Democratic Finance? Understanding How and Why UK Investors Trust these Markets. Revista Internacional de Sociología, 78(4), e173. https://doi.org/10.3989/ris.2020.78.4.m20.005 Eckbo, B. E., Masulis, R. W., & Norli, Ø. (2007). Security offerings. Handbook of Empirical Corporate Finance, 233-373. https://doi.org/10.1016/B978-0-444-53265-7.50020-2 Eder, L., Filimonova, V., Provornaya, V., & Nemov, V. (2017). The current state of the petroleum industry and the problems of the development of the Russian economy. IOP Conference Series: Earth and Environmental Science, 84(1), 012012. https://doi.org/10.1088/1755-1315/84/1/012012 Fama, E. F., & Malkiel, B. G. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. www.jstor.org/stable/2325486 Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1-21. https://doi.org/10.2307/2525569 Guiso, L., & Jappelli, T. (2005). Awareness and stock market participation. CFS Working Paper, No. 2005/29, Goethe University Frankfurt, Center for Financial Studies (CFS). https://EconPapers.repec.org/RePEc:zbw:cfswop:200529 Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2011). The economics of climate change impacts and policy benefits at city scale: a conceptual framework. Climatic Change, 104(1), 51–87. https://doi.org/10.1007/s10584-010-9976-5 Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209. Hardin, W. G., Liano, K., & Huang, G. C. (2005). REIT Stock Splits and Market Efficiency. Journal of Real Estate Finance and Economics, 30(2), 297–315. https://doi.org/10.1007/s11146-005-6409-8 Hays, J. N. (2005). Epidemics and Pandemics: Their Impacts on Human History (Vol. I). ABC-CLIO. DOI: https://iucat.iu.edu/iuk/6403443 He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s impact on stock prices across different sectors—An event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198-2212. https://doi.org/10.1080/1540496X.2020.1785865 Hoesli, M., Milcheva, S., & Moss, A. (2020). Is Financial Regulation Good or Bad for Real Estate Companies? – An Event Study. Journal of Real Estate Finance and Economics, 61, 369–407. https://doi.org/10.1007/s11146-017-9634-z Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press. Hsieh, Y., Wu, T., Liu, D., Shao, P., Chang, L., Lu, C., Lee, C., Huang, F., & Huang, L. (2006). Influenza Pandemics: Past, Present and Future. Journal of the Formosan Medical Association, 105(1), 1-6. https://doi.org/10.1016/S0929-6646(09)60102-9 Hsu, S., & Melchor, A. C. (2016). China’s structural transformation: reaching potential GDP in the financial services sector. China Finance and Economic Review, 4(3). https://doi.org/10.1186/s40589-016-0027-x Huynh, T. L. D., Foglia, M., Nasir, M. A., & Angelini, E. (2021). Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 188, 1088-1108. https://doi.org/10.1016/j.jebo.2021.06.016 Ichev, R., & Marine, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153-166. https://doi.org/10.1016/j.irfa.2017.12.004 Iqbal, S., Bilal, A. R., Nurunnabi, M., et al. (2021). It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environmental Science and Pollution Research, 28, 19008–19020. https://doi.org/10.1007/s11356-020-11462-z Jaramillo, J., & García, M. (2012). Reacción del Mercado de Valores Mexicano ante los Escándalos Financieros, Evidencia Empírica. Revista Mexicana de Economía y Finanzas, 7(2), 129-153. https://doi.org/10.21919/remef.v7i2.32 Kang, H. J., Lee, S. G., & Park, S. Y. (2022). Information efficiency in the cryptocurrency market: The efficient-market hypothesis. Journal of Computer Information Systems, 62(3), 622-631. https://doi.org/10.1080/08874417.2021.1872046 Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., & Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11, 543-554. https://doi.org/10.1007/s10198-009-0210-1 Kimmich, D., Hildt, E., & Mac Donagh, P. (2019). Value recovery with harvester applying bucking optimization technology. Scientia Forestalis, 47(122), 1-8. https://dx.doi.org/10.18671/scifor.v47n122.03 Kolari, J., & Pynnonen, S. (2011). Nonparametric rank tests for event studies. Journal of Empirical Finance, 18(5), 953-971. https://doi.org/10.1016/j.jempfin.2011.08.003 Konchitchki, Y., & O'Leary, D. E. (2011). Event study methodologies in information systems research. International Journal of Accounting Information Systems, 12(2), 99-115. https://doi.org/10.1016/j.accinf.2011.01.002 Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., & Canadian Critical Care Trials Group H1N1 Collaborative (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879. https://doi.org/10.1001/jama.2009.1496 Lazaro, M. I. (2023). Dow Jones Industrial Average. Dow Jones Industrial Average. Diccionario Económico. Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48(2), 281-355. Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 Outbreak and Affected Countries Stock Markets Response. International Journal of Environmental Research and Public Health, 17(8), 1-19. https://doi.org/10.3390/ijerph17082800 Lubys, J., & Panda, P. (2020). US and EU unconventional monetary policy spillover on BRICS financial markets: an event study. Empirica, 48, 353–371. https://doi.org/10.1007/s10663-020-09480-8 MacKinlay, A. C. (1997). Event Studies in Economics and Finance. Journal of Economic Literature, 35(1), 13-39. Maul, D., & Schiereck, D. (2017). The bond event study methodology since 1974. Review of Quantitative Finance and Accounting, 48, 749-787. https://doi.org/10.1007/s11156-016-0562-4 McMillen, C. (2016). Pandemics: A Very Short Introduction. Oxford University Press. Md Rajib, K., Ferdous, M., & Mozaffar, M. (2022). Stock market reactions of Maritime shipping industry in the time of COVID-19 pandemic crisis: An empirical investigation. Maritime Policy & Management, 49(8), 1184-1199. https://doi.org/10.1080/03088839.2021.1954255 Mishra, P., & Mishra, S. (2020). Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia, 11(3), 341-365. https://doi.org/10.1177/0976399620952354 Mnif, E., Salhi, B., & Jarboui, A. (2020). Herding behaviour and Islamic market efficiency assessment: case of Dow Jones and Sukuk market. International Journal of Islamic and Middle Eastern Finance and Management, 13(1), 24-41. https://doi.org/10.1108/IMEFM-10-2018-0354 Oler, D. K., Harrison, J. S., & Allen, M. R. (2008). The danger of misinterpreting short-window event study findings in strategic management research: An empirical illustration using horizontal acquisitions. Strategic Organization, 6(2), 151-184. https://doi.org/10.1177/1476127008090008 Patell, J. (1976). Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 14(2), 246-276. https://doi.org/10.2307/2490543 Peón, D., Antelo, M., & Calvo, A. (2019). A guide on empirical tests of the EMH. Review of Accounting and Finance, 18(2), 268-295. https://doi.org/10.1108/RAF-02-2016-0031 Phylaktis, K., & Ravazzolo, F. (2005). Stock prices and exchange rate dynamics. Journal of International Money and Finance, 24(7), 1031-1053. https://doi.org/10.1016/j.jimonfin.2005.08.001 Pinho, C., & Madaleno, M. (2016). Oil prices and stock returns: nonlinear links across sectors. Portuguese Economic Journal, 15(2), 79–97. https://doi.org/10.1007/s10258-016-0117-6 Pooja, M., & Jaya, G. (2021). Impact of COVID-19 on Indian Migrant Workers: Decoding Twitter Data by Text Mining. The Indian Journal of Labour Economics, 64, 731-747. https://doi.org/10.1007/s41027-021-00324-y Ritter, J. R. (1991). The Long Run Performance of Initial Public Offerings. The Journal of Finance, 46(1), 3-27. https://doi.org/10.1111/j.1540-6261.1991.tb03743.x Rizwan, M., Ahmad, G., & Ashraf, D. (2020). Systemic risk: The impact of COVID-19. Finance Research Letters, 36, 101682. https://doi.org/10.1016/j.frl.2020.101682 Salisu, A. A., & Obiora, K. (2021). COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations. Financial Innovation, 7(34). https://doi.org/10.1186/s40854-021-00253-1 Schipper, K., & Smith, A. (1983). Effects of recontracting on shareholder wealth: The case of voluntary spin-offs. Journal of Financial Economics, 12(4), 437-467. https://doi.org/10.1016/0304-405X(83)90043-0 Shaikh, I. (2022). Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 55, 433–484. https://doi.org/10.1007/s10644-021-09320-0 Siu, A., & Wong, R. (2004). Economic Impact of SARS: The Case of Hong Kong. Asian Economic Papers, 3(1), 62–83. https://doi.org/10.1162/1535351041747996 Small, K., Ionici, O., & Zhu, H. (2007). Size Does Matter: An Examination of the Economic Impact of Sarbanes-Oxley. Review of Business, 27(3), 47-55. https://www.proquest.com/docview/220956058 Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45, 186-207. https://doi.org/10.1007/s11747-017-0516-y Stout, L. A. (2003). The Mechanisms of Market Inefficiency: An Introduction to the New Finance. Cornell Law Faculty Publications. Paper 450. http://scholarship.law.cornell.edu/facpub/450 Thomson, L. (2021). Abnormal returns of corporations adopting Bitcoin as a treasury asset: An event study. MSc Behavioural Economics: Master Thesis. Erasmus School of Economics, Erasmus University Rotterdam. https://osf.io/25qg8/download Tomé, L. C. (2017). La paradoja de la recurrencia. Culturacientifica.com. https://culturacientifica.com/2017/11/07/la-paradoja-la-recurrencia/#:~:text=Seg%C3%BAn%20este%20mito%2C%20la%20historia,una%20forma%20concreta%20por%20casualidad Velásquez, G. (2009). El impacto de anuncio de eventos en el mercado accionario Colombiano. Maestría en Ciencias en Finanzas, Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/253 Verikios, G., McCaw, J., McVernon, J., & Harris, A. (2012). H1N1 Influenza and the Australian Macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. https://doi.org/10.1080/13547860.2012.639999 Waheed, R., Wei, C., Sarwar, S., & Yulan, L. (2018). Impact of oil prices on firm stock return: industry-wise analysis. Empirical Economics, 55(3), 765–780. https://doi.org/10.1007/s00181-017-1296-4 Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968 Yuen, K., & Lee, T. (2003). Could mood state affect risk-taking decisions? Journal of Affective Disorders, 75(1), 11-18. https://doi.org/10.1016/S0165-0327(02)00022-8 Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528 Zou, L., & Robert, W. (2017). How important are earnings announcements in China? Pacific Accounting Review, 29(3), 380-396. https://doi.org/10.1108/PAR-02-2017-0011 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD CATÓLICA DE COLOMBIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png |
country_str |
Colombia |
collection |
Revista Finanzas y Política Económica |
title |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
spellingShingle |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones Saavedra García, Maria Luisa Valdés Medina, Filiberto Enrique Dow Jones Covid 19 Mercado eficiente Estudio de Eventos Dow Jones Covid 19 efficient market Event study |
title_short |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_full |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_fullStr |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_full_unstemmed |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_sort |
efectos financieros del covid 19 en los beneficios bursátiles de las emisoras integrantes del índice dow jones |
title_eng |
Financial Effects of the Covid 19 Pandemic on Stock Prices of Dow Jones Index |
description |
El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.
|
description_eng |
The objective was to analyze the financial effects produced by the COVD-19 Pandemic in the companies that make up the Dow Jones Industrial Average (DJIA) index. The Event Study technique was applied to 30 entities that make up the DJIA, considering the financial impact of the dates of the World Health Organization (WHO) communications on stock returns. The results of the analysis prove the existence of favorable evidence in relation to the market efficiency of the DJIA, in addition, it was possible to demonstrate that the stock market benefits of the organizations that make up the technology sector have a positive performance in light of the reports on health crises disseminated by the OMS.
|
author |
Saavedra García, Maria Luisa Valdés Medina, Filiberto Enrique |
author_facet |
Saavedra García, Maria Luisa Valdés Medina, Filiberto Enrique |
topicspa_str_mv |
Dow Jones Covid 19 Mercado eficiente Estudio de Eventos |
topic |
Dow Jones Covid 19 Mercado eficiente Estudio de Eventos Dow Jones Covid 19 efficient market Event study |
topic_facet |
Dow Jones Covid 19 Mercado eficiente Estudio de Eventos Dow Jones Covid 19 efficient market Event study |
citationvolume |
16 |
citationissue |
2 |
publisher |
Universidad Católica de Colombia |
ispartofjournal |
Revista Finanzas y Política Económica |
source |
https://revfinypolecon.ucatolica.edu.co/article/view/5726 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0 Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. The Review of Economic Studies, 72(1), 1-19. Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), 493-505. Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. American Journal of Political Science, 59(2), 495-510. Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93(1), 113-132. Abraham, F., Leliaert, H., & Heremans, D. (1991). Foreign Dependence of Individual Stock Prices: The Role of Aggregate Product Market Developments. Open Economies Review, 2(1), 1-26. https://doi.org/10.1007/BF01886132 Ahmed, R. R., Streimikiene, D., Rolle, J. A., & Pham, A. D. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01 Alajbeg, D., Bubaš, Z., & Šonje, V. (2012). The efficient market hypothesis: problems with interpretations of empirical tests. Financial Theory and Practice, 36(1), 53-72. https://doi.org/10.3326/fintp.36.1.3 Ali, I., & Alharbi, O. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861 Andoh-Baidoo, F. K., Osei-Bryson, K. M., & Amoako-Gyampah, K. (2012). A hybrid decision tree based methodology for event studies and its application to e-commerce initiative announcements. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 44(1), 78-101. https://doi.org/10.1145/2436239.2436244 Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press. Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The Economics of Science and Technology. The Journal of Technology Transfer, 27(2), 155–203. https://doi.org/10.1023/A:1014382532639 Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). John Wiley & Sons. Basse Mama, H., Mueller, S., & Pape, U. (2017). What’s in the news? The ambiguity of the information content of index reconstitutions in Germany. Review of Quantitative Finance and Accounting, 49(4), 1087–1119. https://doi.org/10.1007/s11156-017-0617-1 Benninga, S. (2014). Financial Modeling. MIT Press. Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006 Cave, J., Chaudhuri, K., & Kumbhakar, S. C. (2020). Do banking sector and stock market development matter for economic growth? Empirical Economics, 59, 1513–1535. https://doi.org/10.1007/s00181-019-01692-7 Chung, R., Fung, S., Shilling, J. D., & Simmons, T. (2011). What Determines Stock Price Synchronicity in REITs? Journal of Real Estate Finance and Economics, 43(1), 73–98. https://doi.org/10.1007/s11146-010-9254-3 Clayman, M. R., Fridson, M. S., & Troughton, G. H. (2012). Corporate Finance: A Practical Approach (Vol. 42). John Wiley & Sons. Davis, M., Braunholtz-Speight, T., & Wardrop, R. (2020). Crowdfunding as Democratic Finance? Understanding How and Why UK Investors Trust these Markets. Revista Internacional de Sociología, 78(4), e173. https://doi.org/10.3989/ris.2020.78.4.m20.005 Eckbo, B. E., Masulis, R. W., & Norli, Ø. (2007). Security offerings. Handbook of Empirical Corporate Finance, 233-373. https://doi.org/10.1016/B978-0-444-53265-7.50020-2 Eder, L., Filimonova, V., Provornaya, V., & Nemov, V. (2017). The current state of the petroleum industry and the problems of the development of the Russian economy. IOP Conference Series: Earth and Environmental Science, 84(1), 012012. https://doi.org/10.1088/1755-1315/84/1/012012 Fama, E. F., & Malkiel, B. G. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. www.jstor.org/stable/2325486 Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1-21. https://doi.org/10.2307/2525569 Guiso, L., & Jappelli, T. (2005). Awareness and stock market participation. CFS Working Paper, No. 2005/29, Goethe University Frankfurt, Center for Financial Studies (CFS). https://EconPapers.repec.org/RePEc:zbw:cfswop:200529 Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2011). The economics of climate change impacts and policy benefits at city scale: a conceptual framework. Climatic Change, 104(1), 51–87. https://doi.org/10.1007/s10584-010-9976-5 Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209. Hardin, W. G., Liano, K., & Huang, G. C. (2005). REIT Stock Splits and Market Efficiency. Journal of Real Estate Finance and Economics, 30(2), 297–315. https://doi.org/10.1007/s11146-005-6409-8 Hays, J. N. (2005). Epidemics and Pandemics: Their Impacts on Human History (Vol. I). ABC-CLIO. DOI: https://iucat.iu.edu/iuk/6403443 He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s impact on stock prices across different sectors—An event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198-2212. https://doi.org/10.1080/1540496X.2020.1785865 Hoesli, M., Milcheva, S., & Moss, A. (2020). Is Financial Regulation Good or Bad for Real Estate Companies? – An Event Study. Journal of Real Estate Finance and Economics, 61, 369–407. https://doi.org/10.1007/s11146-017-9634-z Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press. Hsieh, Y., Wu, T., Liu, D., Shao, P., Chang, L., Lu, C., Lee, C., Huang, F., & Huang, L. (2006). Influenza Pandemics: Past, Present and Future. Journal of the Formosan Medical Association, 105(1), 1-6. https://doi.org/10.1016/S0929-6646(09)60102-9 Hsu, S., & Melchor, A. C. (2016). China’s structural transformation: reaching potential GDP in the financial services sector. China Finance and Economic Review, 4(3). https://doi.org/10.1186/s40589-016-0027-x Huynh, T. L. D., Foglia, M., Nasir, M. A., & Angelini, E. (2021). Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 188, 1088-1108. https://doi.org/10.1016/j.jebo.2021.06.016 Ichev, R., & Marine, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153-166. https://doi.org/10.1016/j.irfa.2017.12.004 Iqbal, S., Bilal, A. R., Nurunnabi, M., et al. (2021). It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environmental Science and Pollution Research, 28, 19008–19020. https://doi.org/10.1007/s11356-020-11462-z Jaramillo, J., & García, M. (2012). Reacción del Mercado de Valores Mexicano ante los Escándalos Financieros, Evidencia Empírica. Revista Mexicana de Economía y Finanzas, 7(2), 129-153. https://doi.org/10.21919/remef.v7i2.32 Kang, H. J., Lee, S. G., & Park, S. Y. (2022). Information efficiency in the cryptocurrency market: The efficient-market hypothesis. Journal of Computer Information Systems, 62(3), 622-631. https://doi.org/10.1080/08874417.2021.1872046 Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., & Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11, 543-554. https://doi.org/10.1007/s10198-009-0210-1 Kimmich, D., Hildt, E., & Mac Donagh, P. (2019). Value recovery with harvester applying bucking optimization technology. Scientia Forestalis, 47(122), 1-8. https://dx.doi.org/10.18671/scifor.v47n122.03 Kolari, J., & Pynnonen, S. (2011). Nonparametric rank tests for event studies. Journal of Empirical Finance, 18(5), 953-971. https://doi.org/10.1016/j.jempfin.2011.08.003 Konchitchki, Y., & O'Leary, D. E. (2011). Event study methodologies in information systems research. International Journal of Accounting Information Systems, 12(2), 99-115. https://doi.org/10.1016/j.accinf.2011.01.002 Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., & Canadian Critical Care Trials Group H1N1 Collaborative (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879. https://doi.org/10.1001/jama.2009.1496 Lazaro, M. I. (2023). Dow Jones Industrial Average. Dow Jones Industrial Average. Diccionario Económico. Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48(2), 281-355. Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 Outbreak and Affected Countries Stock Markets Response. International Journal of Environmental Research and Public Health, 17(8), 1-19. https://doi.org/10.3390/ijerph17082800 Lubys, J., & Panda, P. (2020). US and EU unconventional monetary policy spillover on BRICS financial markets: an event study. Empirica, 48, 353–371. https://doi.org/10.1007/s10663-020-09480-8 MacKinlay, A. C. (1997). Event Studies in Economics and Finance. Journal of Economic Literature, 35(1), 13-39. Maul, D., & Schiereck, D. (2017). The bond event study methodology since 1974. Review of Quantitative Finance and Accounting, 48, 749-787. https://doi.org/10.1007/s11156-016-0562-4 McMillen, C. (2016). Pandemics: A Very Short Introduction. Oxford University Press. Md Rajib, K., Ferdous, M., & Mozaffar, M. (2022). Stock market reactions of Maritime shipping industry in the time of COVID-19 pandemic crisis: An empirical investigation. Maritime Policy & Management, 49(8), 1184-1199. https://doi.org/10.1080/03088839.2021.1954255 Mishra, P., & Mishra, S. (2020). Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia, 11(3), 341-365. https://doi.org/10.1177/0976399620952354 Mnif, E., Salhi, B., & Jarboui, A. (2020). Herding behaviour and Islamic market efficiency assessment: case of Dow Jones and Sukuk market. International Journal of Islamic and Middle Eastern Finance and Management, 13(1), 24-41. https://doi.org/10.1108/IMEFM-10-2018-0354 Oler, D. K., Harrison, J. S., & Allen, M. R. (2008). The danger of misinterpreting short-window event study findings in strategic management research: An empirical illustration using horizontal acquisitions. Strategic Organization, 6(2), 151-184. https://doi.org/10.1177/1476127008090008 Patell, J. (1976). Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 14(2), 246-276. https://doi.org/10.2307/2490543 Peón, D., Antelo, M., & Calvo, A. (2019). A guide on empirical tests of the EMH. Review of Accounting and Finance, 18(2), 268-295. https://doi.org/10.1108/RAF-02-2016-0031 Phylaktis, K., & Ravazzolo, F. (2005). Stock prices and exchange rate dynamics. Journal of International Money and Finance, 24(7), 1031-1053. https://doi.org/10.1016/j.jimonfin.2005.08.001 Pinho, C., & Madaleno, M. (2016). Oil prices and stock returns: nonlinear links across sectors. Portuguese Economic Journal, 15(2), 79–97. https://doi.org/10.1007/s10258-016-0117-6 Pooja, M., & Jaya, G. (2021). Impact of COVID-19 on Indian Migrant Workers: Decoding Twitter Data by Text Mining. The Indian Journal of Labour Economics, 64, 731-747. https://doi.org/10.1007/s41027-021-00324-y Ritter, J. R. (1991). The Long Run Performance of Initial Public Offerings. The Journal of Finance, 46(1), 3-27. https://doi.org/10.1111/j.1540-6261.1991.tb03743.x Rizwan, M., Ahmad, G., & Ashraf, D. (2020). Systemic risk: The impact of COVID-19. Finance Research Letters, 36, 101682. https://doi.org/10.1016/j.frl.2020.101682 Salisu, A. A., & Obiora, K. (2021). COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations. Financial Innovation, 7(34). https://doi.org/10.1186/s40854-021-00253-1 Schipper, K., & Smith, A. (1983). Effects of recontracting on shareholder wealth: The case of voluntary spin-offs. Journal of Financial Economics, 12(4), 437-467. https://doi.org/10.1016/0304-405X(83)90043-0 Shaikh, I. (2022). Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 55, 433–484. https://doi.org/10.1007/s10644-021-09320-0 Siu, A., & Wong, R. (2004). Economic Impact of SARS: The Case of Hong Kong. Asian Economic Papers, 3(1), 62–83. https://doi.org/10.1162/1535351041747996 Small, K., Ionici, O., & Zhu, H. (2007). Size Does Matter: An Examination of the Economic Impact of Sarbanes-Oxley. Review of Business, 27(3), 47-55. https://www.proquest.com/docview/220956058 Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45, 186-207. https://doi.org/10.1007/s11747-017-0516-y Stout, L. A. (2003). The Mechanisms of Market Inefficiency: An Introduction to the New Finance. Cornell Law Faculty Publications. Paper 450. http://scholarship.law.cornell.edu/facpub/450 Thomson, L. (2021). Abnormal returns of corporations adopting Bitcoin as a treasury asset: An event study. MSc Behavioural Economics: Master Thesis. Erasmus School of Economics, Erasmus University Rotterdam. https://osf.io/25qg8/download Tomé, L. C. (2017). La paradoja de la recurrencia. Culturacientifica.com. https://culturacientifica.com/2017/11/07/la-paradoja-la-recurrencia/#:~:text=Seg%C3%BAn%20este%20mito%2C%20la%20historia,una%20forma%20concreta%20por%20casualidad Velásquez, G. (2009). El impacto de anuncio de eventos en el mercado accionario Colombiano. Maestría en Ciencias en Finanzas, Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/253 Verikios, G., McCaw, J., McVernon, J., & Harris, A. (2012). H1N1 Influenza and the Australian Macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. https://doi.org/10.1080/13547860.2012.639999 Waheed, R., Wei, C., Sarwar, S., & Yulan, L. (2018). Impact of oil prices on firm stock return: industry-wise analysis. Empirical Economics, 55(3), 765–780. https://doi.org/10.1007/s00181-017-1296-4 Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968 Yuen, K., & Lee, T. (2003). Could mood state affect risk-taking decisions? Journal of Affective Disorders, 75(1), 11-18. https://doi.org/10.1016/S0165-0327(02)00022-8 Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528 Zou, L., & Robert, W. (2017). How important are earnings announcements in China? Pacific Accounting Review, 29(3), 380-396. https://doi.org/10.1108/PAR-02-2017-0011 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-07-24 |
date_accessioned |
2024-07-24T11:11:06Z |
date_available |
2024-07-24T11:11:06Z |
url |
https://revfinypolecon.ucatolica.edu.co/article/view/5726 |
url_doi |
https://doi.org/10.14718/revfinanzpolitecon.v16.n2.2024.9 |
issn |
2248-6046 |
eissn |
2011-7663 |
doi |
10.14718/revfinanzpolitecon.v16.n2.2024.9 |
_version_ |
1811200176698687488 |