Titulo:

“Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
.

Sumario:

Este artículo explora la relación entre el confinamiento residencial para reducir la propagación del virus COVID-19, visto como una política pública, y cómo afecta al sector laboral informal, así como la respuesta de los individuos a la pandemia en los estados de México. La formación de paneles para varios niveles de informalidad aplicada al panel vectorial autorregresivo (PVAR) muestra que la permanenciaen el hogar como política pública es más efectiva a medida que disminuye la informalidad. Además, la respuesta de los individuos a un aumento de la propagación de la pandemia depende del nivel de informalidad: para los estados con menores tasas de informalidad, los individuos responden a una mayor concentración del confinamiento residencial... Ver más

Guardado en:

2248-6046

2011-7663

15

2023-03-23

135

155

Carlos Emmanuel Saldaña Villanueva, Joana Cecilia Chapa Cantú, Edgar Mauricio Luna Domínguez - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_ucatolica_revistafinanzasypoliticaeconomica_16_article_4287
record_format ojs
spelling “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
“Stay at home (if you can)”: informal employment and COVID-19 in Mexico
Este artículo explora la relación entre el confinamiento residencial para reducir la propagación del virus COVID-19, visto como una política pública, y cómo afecta al sector laboral informal, así como la respuesta de los individuos a la pandemia en los estados de México. La formación de paneles para varios niveles de informalidad aplicada al panel vectorial autorregresivo (PVAR) muestra que la permanenciaen el hogar como política pública es más efectiva a medida que disminuye la informalidad. Además, la respuesta de los individuos a un aumento de la propagación de la pandemia depende del nivel de informalidad: para los estados con menores tasas de informalidad, los individuos responden a una mayor concentración del confinamiento residencial. Pero para los estados con un mayor nivel de informalidad, la evidencia no es significativa. El documento considera el papel de la informalidad en el desarrollo de una política pública eficaz.
This paper explores the relationship between residential confinement to reduce the spread of the COVID-19 virus, seen as a public policy, and how it affects the informal labor sector, as well as the responseof individuals to the pandemic in the states of Mexico. Forming panels for various levels of informality applied to panel vector auto-regressive (PVAR) shows that staying at home as public policy becomes more effective as informality decreases. In addition, the response of individuals to an increase in the spread of the pande-mic depends on the level of informality: for states with lower rates of informality, individuals respond to a higher concentration of residential confinement. But for states with a higher level of informality, the evidence is not significant. The paper considers the role of informality in the development of an effective public policy.
Chapa Cantú, Joana Cecilia
Saldaña Villanueva, Carlos Emmanuel
Luna Domínguez, Edgar Mauricio
Covid-19
stay-at-home
panel VAR
informal employment
México
COVID-19
Var de panel
empleo informal
México
15
1
Artículo de revista
Journal article
2023-03-23T00:00:00Z
2023-03-23T00:00:00Z
2023-03-23
text/html
application/pdf
text/xml
Universidad Católica de Colombia
Revista Finanzas y Política Económica
2248-6046
2011-7663
https://revfinypolecon.ucatolica.edu.co/article/view/4287
10.14718/revfinanzpolitecon.v15.n1.2023.6
https://doi.org/10.14718/revfinanzpolitecon.v15.n1.2023.6
eng
https://creativecommons.org/licenses/by-nc-sa/4.0
Carlos Emmanuel Saldaña Villanueva, Joana Cecilia Chapa Cantú, Edgar Mauricio Luna Domínguez - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
135
155
Abrigo, M. R. M., & Love, I. (2016). Estimation of panel vector autoregression in Stata. Stata Journal, 16(3), 778-804. https://doi.org/10.1177/1536867x1601600314
Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243-247. https://doi.org/10.1007/BF02532251
Altamirano, Á., Azuarra, O., González, S., & Banco Interamericano de Desarrollo (BID). (2020). ¿Cómo impactará la COVID-19 al empleo?: Posibles escenarios para América Latina y el Caribe. Banco Interamericano de Desarrollo, 7. https://publications. iadb.org/publications/spanish/document /Cómo_impactará_la_COVID-19_al_em-pleo_Posibles_escenarios_para_América_Latina_y_el_Caribe.pdf
Andersen, M. (2020). Early evidence on social distancing in response to COVID-19 in the United States. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3569368
Banxico (2020). Reporte sobre las economías regionales julio-septiembre 2020. https://www.banxico.org.mx/publicaciones-y-prensa/reportes-sobre-las-economias-regionales/%7B8427BCB2-D8F2-C28A-8DD4-EB8DD9770681%7D.pdf
Bargain, O., & Aminjonov, U. (2020). Trust and compliance to public health policies in times of COVID-19. Journal of Public Economics, 104316. https://doi.org/10.1016/j.jpubeco.2020.104316
Bloomberg (2020a). Coronavirus pandemic: Ranking the best, worst places to be. Bloomberg. https://www.bloomberg.com/graphics/covid-resilience-ranking/?utm_medium=social&cmpid=socialflow-twitter-business&utm_source=twitter&utm_campaign =socialflow-organic&utm_content=business
Bloomberg (2020b). Inside Bloomberg’s covid resilience ranking - Bloomberg. Bloomberg. https://www.bloomberg.com/news/articles/2020-11-24/inside-bloomberg-s-covid-resilience-ranking
Brotherhood, L., Kircher, P., Santos, C., & Tertilt, M. (2020). An economic model of the Covid-19 epidemic: The importance of testing and age-specific policies. IZA Institute of Labor Economics - Discussion Paper Series, 13265, 1–71. www.RePEc.org
Busso, M., Camacho, J., Messina, J., & Montenegro, G. (2021). Social protection and informality in Latin America during the COVID-19 pandemic. PLoS ONE, 16(11November). https://doi.org/10.1371/journal.pone.0259050
Catherine, S., Miller, M., & Sarin, N. (2020). Relaxing household liquidity cons- traints through social security. Journal of Public Economics, 189, 104243. https://doi.org/10.1016/j.jpubeco.2020.104243
Chapa, J. (2020). Impacto Económico del COVI-19 en las regiones de México. Revista Ciencia UANL, 23(102). https://doi.org/10.29105/cienciauanl23.102-1
CONAGUA. (2020). Servicio Meteorológico Nacional. https://smn.conagua.gob.mx/es/
Dingel, J. I., & Neiman, B. (2020). How many jobs can be done at home? Journal of Public Economics, 189. https://doi.org/10.1016/j.jpubeco.2020.104235
Engle, S., Stromme, J., & Zhou, A. (2020). Staying at home: mobility effects of COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3565703
Esquivel, G. (2020). Los impactos económicos de la pandemia en México. EconomíaUNAM, 17(51), 28–44. https://doi.org/10.22201/FE.24488143E.2020.51.543
Esquivel, G., & Campos-Vázquez, R. M. (2020). Consumption and geographic mobility in pandemic times: Evidence from Mexico. Cepr Press Covid Economics, 38, 218-252.
Estados Unidos Mexicanos (2020a). DOF - Diario Oficial de la Federación. https://www. dof.gob.mx/nota_detalle.php?codigo=5589479&fecha=16/03/2020&print=true
Estados Unidos Mexicanos. (2020b). DOF - Diario Oficial de la Federación. https://www.dof.gob.mx/nota_detalle.php?codigo=5590914&fecha=31/03/2020&print=true
Ferraresi, M., Kotsogiannis, C., Rizzo, L., & Secomandi, R. (2020). “Lockdown” and institutions COVID-19. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports .
Gasca, N. C., Reyes-Garza, J., Lozano-Esparza, S., del Pino, P. O., Olivas-Martínez, A., Ulloa-Pérez, E., Garbuno-Inigo, A., & Arroyo, J. (2022). Effect of Mexico’s vaccination program on Covid-19 cases, hospitalizations, and deaths among older adults in Mexico City. Salud Pública de México, 64(4, jul-ago), 424-428. https://doi.org/10.21149/13402
Gausman, J., & Langer, A. (2020). Sex and gender disparities in the COVID-19 pandemic. Journal of Women’s Health, 29(4), 465-466. https://doi.org/10.1089/jwh.2020.8472
Gobierno de México, (GobMx), & Secretaría de Salud, (SALUD). (2020). Coronavirus gob.mx. Gobierno de México (GobMx).
Google LLC. (2020). Google COVID-19 community mobility reports. Https://www.Google.Com/Covid19/Mobility/ Accessed: <18 May 2020>.
ILO, I. L. O. (2020). COVID-19 and the world of work. ILO Monitor Fourth Edition.
INEGI. (2020a). Banco de datos. Banco de Información Economica. https://www.inegi.org.mx/sistemas/bie/
INEGI. (2020b). Indicacadores de ocupación y empleo. Cifras oportunas durante enero del 2020. Febrero.
INEGI. (2020c). Investigación - Estado de ánimo de los tuiteros. INEGI. https://www.inegi. org.mx/app/animotuitero/#/app/multiline
Kong, E., & Prinz, D. (2020). Disentangling policy effects using proxy data: Which shutdown policies affected unemployment during the COVID-19 pandemic? Journal of Public Economics, 189, 104257. https://doi.org/10.1016/j.jpubeco.2020.104257
Langer, A., Meleis, A., Knaul, F. M., Atun, R., Aran, M., Arreola-Ornelas, H., Bhutta, Z. A., Binagwaho, A., Bonita, R., Caglia, J. M., Claeson, M., Davies, J., Donnay, F. A., Gausman, J. M., Glickman, C., Kearns, A. D., Kendall, T., Lozano, R., Seboni, N., ... Frenk, J. (2015). Women and health: The key for sustainable development. The Lancet, 36(9999), 1165–1210. Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)60497-4
Leyva, A. G. (2020). Propuesta metodológica del indicador “Grado de Felicidad Local”, asociación de indicadores relativos a la felicidad, bienestar y estado de ánimo. Interconectando Saberes. https://doi.org/10.25009/is.v0i10.2663
Loayza, N., & Pennings, S. M. (2020). Macroeconomic policy in the time of COVID-19: A primer for developing countries. World Bank Research and Policy Briefs, 147291. https://ourworldindata.org/coronavirus-source-data ,
Luque Zúñiga, B. G., Moreno Salazar Calderón, K. A. B., & Lanchipa Ale, T. M. (2021). Impactos del COVID-19 en la agricultura y la seguridad alimentaria. Centro Agrícola. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852021000100072
Lütkepohl, H. (2005). New introduction to multiple time series analysis. New introduc- tion to Multiple Time Series Analysis. Springer. https://doi.org/10.1007/978-3-540-27752-1
Maloney, W., & Taskin, T. (2020). Determinants of social distancing and economic activity during COVID-19: A global view. World Bank Policy Research Working Paper, 9242. http://www.worldbank.
Mendoza Cota, J. E. (2019). COVID-19 y el empleo en México: impacto inicial y pronósticos de corto plazo. Contaduría y Administración, 65(4), 1-18. https://doi.org/10.22201/fca.24488410e.2020.3028
Milani, F. (2020). COVID-19 Outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies. https://doi.org/10.1101/2020.05.07.20094748
Milani, F. (2021). COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies. Journal of Population Economics, 34(1), 223-252. https://doi.org/10.1007/s00148-020-00792-4
Moreno Salazar Calderón, K. A. B. (2021). Seguridad alimentaria en tiempos de COVID-19: Una visión desde la cadena productiva de recursos hidrobiológicos. Revista Estudios del Desarrollo Social: Cuba y América Latina, 9(1). http://scielo.sld.cu/scielo.php?pid=S2308-01322021000100021&script=sci_arttext&tlng=en
Müller, S., & Rau, H. A. (2020). Economic preferences and compliance in the social stress test of the corona crisis. SSRN Electronic Journal, 104322. https://doi.org/10.2139/ssrn.3575633
Narula, R. (2020). Policy opportunities and challenges from the COVID-19 pandemic for economies with large informal sectors. Journal of International Business Policy, 3(3), 302-310. https://doi.org/10.1057/s42214-020-00059-5
OECD. (2020). COVID-19 in Latin America and the Caribbean: Regional socioeconomic implications and policy priorities. OECD, 1–12. https://www.oecd.org/coronavirus/policy-responses/covid-19-in-latin-america-and-the-caribbean-regional-socio-economic-implications-and-policy-priorities-93a64fde/
Ohnsorge, F., & Yu, S. (2022). The Long shadow of informality: challenges and policies. The Long Shadow of Informality: Challenges and Policies. https://doi.org/10.1596/978-1-4648-1753-3
Peluffo, C., & Viollaz, M. (2020). Intra-Household Insurance in the Time of Covid-19: Lessons from Mexico.
Piguillem, F., & Shi, L. (2020). Optimal COVID-19 quarantine and testing policies. CEPR Discussion Papers. https://www.researchgate.net/publication/340226829
Rangel González, E., Llamosas-Rosas, I., Fonseca, F. J., Rangel González, E., Llamosas- Rosas, I., & Fonseca, F. J. (2021). Aislamiento social y el COVID-19 en las regiones de México. EconoQuantum, 18(2), 1-22. https://doi.org/10.18381/EQ.V18I2.7227
Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1. https://doi.org/10.2307/1912017
Tejedor Estupiñán, J. M. (2021). Vacunación y desarrollo en tiempos de la COVID-19. Revista Finanzas y Política Económica, 13(1), 9-13. https://doi.org/10.14718/REVFINANZPOLITECON.V13.N1.2021.1
Testa, P. F., Snyder, R., Rios, E., Moncada, E., Giraudy, A., & Bennouna, C. (2021). Who stays at home? The politics of social distancing in Brazil, Mexico, and the United States during the COVID-19 pandemic. Journal of Health Politics, Policy and Law, 46(6). https://doi.org/10.1215/03616878-9349100
The World Bank. (2015). World Development Indicators | DataBank. DataBank.
Yilmazkuday, H. (2020). Stay-at-home works to fight against COVID-19: international evidence from Google mobility data. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3571708
Zhu, D., Mishra, S. R., Han, X., & Santo, K. (2020). Social distancing in Latin America during the COVID-19 pandemic: an analysis using the Stringency Index and Google community mobility reports. Journal of Travel Medicine, 2020, 1-3. https:// doi.org/10.1093/jtm/taaa125
https://revfinypolecon.ucatolica.edu.co/article/download/4287/4679
https://revfinypolecon.ucatolica.edu.co/article/download/4287/4623
https://revfinypolecon.ucatolica.edu.co/article/download/4287/4680
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD CATÓLICA DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png
country_str Colombia
collection Revista Finanzas y Política Económica
title “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
spellingShingle “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
Chapa Cantú, Joana Cecilia
Saldaña Villanueva, Carlos Emmanuel
Luna Domínguez, Edgar Mauricio
Covid-19
stay-at-home
panel VAR
informal employment
México
COVID-19
Var de panel
empleo informal
México
title_short “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
title_full “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
title_fullStr “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
title_full_unstemmed “Quédate en casa (si puedes)”: empleo informal y COVID-19 en México
title_sort “quédate en casa (si puedes)”: empleo informal y covid-19 en méxico
title_eng “Stay at home (if you can)”: informal employment and COVID-19 in Mexico
description Este artículo explora la relación entre el confinamiento residencial para reducir la propagación del virus COVID-19, visto como una política pública, y cómo afecta al sector laboral informal, así como la respuesta de los individuos a la pandemia en los estados de México. La formación de paneles para varios niveles de informalidad aplicada al panel vectorial autorregresivo (PVAR) muestra que la permanenciaen el hogar como política pública es más efectiva a medida que disminuye la informalidad. Además, la respuesta de los individuos a un aumento de la propagación de la pandemia depende del nivel de informalidad: para los estados con menores tasas de informalidad, los individuos responden a una mayor concentración del confinamiento residencial. Pero para los estados con un mayor nivel de informalidad, la evidencia no es significativa. El documento considera el papel de la informalidad en el desarrollo de una política pública eficaz.
description_eng This paper explores the relationship between residential confinement to reduce the spread of the COVID-19 virus, seen as a public policy, and how it affects the informal labor sector, as well as the responseof individuals to the pandemic in the states of Mexico. Forming panels for various levels of informality applied to panel vector auto-regressive (PVAR) shows that staying at home as public policy becomes more effective as informality decreases. In addition, the response of individuals to an increase in the spread of the pande-mic depends on the level of informality: for states with lower rates of informality, individuals respond to a higher concentration of residential confinement. But for states with a higher level of informality, the evidence is not significant. The paper considers the role of informality in the development of an effective public policy.
author Chapa Cantú, Joana Cecilia
Saldaña Villanueva, Carlos Emmanuel
Luna Domínguez, Edgar Mauricio
author_facet Chapa Cantú, Joana Cecilia
Saldaña Villanueva, Carlos Emmanuel
Luna Domínguez, Edgar Mauricio
topic Covid-19
stay-at-home
panel VAR
informal employment
México
COVID-19
Var de panel
empleo informal
México
topic_facet Covid-19
stay-at-home
panel VAR
informal employment
México
COVID-19
Var de panel
empleo informal
México
topicspa_str_mv COVID-19
Var de panel
empleo informal
México
citationvolume 15
citationissue 1
publisher Universidad Católica de Colombia
ispartofjournal Revista Finanzas y Política Económica
source https://revfinypolecon.ucatolica.edu.co/article/view/4287
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Carlos Emmanuel Saldaña Villanueva, Joana Cecilia Chapa Cantú, Edgar Mauricio Luna Domínguez - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Abrigo, M. R. M., & Love, I. (2016). Estimation of panel vector autoregression in Stata. Stata Journal, 16(3), 778-804. https://doi.org/10.1177/1536867x1601600314
Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1), 243-247. https://doi.org/10.1007/BF02532251
Altamirano, Á., Azuarra, O., González, S., & Banco Interamericano de Desarrollo (BID). (2020). ¿Cómo impactará la COVID-19 al empleo?: Posibles escenarios para América Latina y el Caribe. Banco Interamericano de Desarrollo, 7. https://publications. iadb.org/publications/spanish/document /Cómo_impactará_la_COVID-19_al_em-pleo_Posibles_escenarios_para_América_Latina_y_el_Caribe.pdf
Andersen, M. (2020). Early evidence on social distancing in response to COVID-19 in the United States. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3569368
Banxico (2020). Reporte sobre las economías regionales julio-septiembre 2020. https://www.banxico.org.mx/publicaciones-y-prensa/reportes-sobre-las-economias-regionales/%7B8427BCB2-D8F2-C28A-8DD4-EB8DD9770681%7D.pdf
Bargain, O., & Aminjonov, U. (2020). Trust and compliance to public health policies in times of COVID-19. Journal of Public Economics, 104316. https://doi.org/10.1016/j.jpubeco.2020.104316
Bloomberg (2020a). Coronavirus pandemic: Ranking the best, worst places to be. Bloomberg. https://www.bloomberg.com/graphics/covid-resilience-ranking/?utm_medium=social&cmpid=socialflow-twitter-business&utm_source=twitter&utm_campaign =socialflow-organic&utm_content=business
Bloomberg (2020b). Inside Bloomberg’s covid resilience ranking - Bloomberg. Bloomberg. https://www.bloomberg.com/news/articles/2020-11-24/inside-bloomberg-s-covid-resilience-ranking
Brotherhood, L., Kircher, P., Santos, C., & Tertilt, M. (2020). An economic model of the Covid-19 epidemic: The importance of testing and age-specific policies. IZA Institute of Labor Economics - Discussion Paper Series, 13265, 1–71. www.RePEc.org
Busso, M., Camacho, J., Messina, J., & Montenegro, G. (2021). Social protection and informality in Latin America during the COVID-19 pandemic. PLoS ONE, 16(11November). https://doi.org/10.1371/journal.pone.0259050
Catherine, S., Miller, M., & Sarin, N. (2020). Relaxing household liquidity cons- traints through social security. Journal of Public Economics, 189, 104243. https://doi.org/10.1016/j.jpubeco.2020.104243
Chapa, J. (2020). Impacto Económico del COVI-19 en las regiones de México. Revista Ciencia UANL, 23(102). https://doi.org/10.29105/cienciauanl23.102-1
CONAGUA. (2020). Servicio Meteorológico Nacional. https://smn.conagua.gob.mx/es/
Dingel, J. I., & Neiman, B. (2020). How many jobs can be done at home? Journal of Public Economics, 189. https://doi.org/10.1016/j.jpubeco.2020.104235
Engle, S., Stromme, J., & Zhou, A. (2020). Staying at home: mobility effects of COVID-19. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3565703
Esquivel, G. (2020). Los impactos económicos de la pandemia en México. EconomíaUNAM, 17(51), 28–44. https://doi.org/10.22201/FE.24488143E.2020.51.543
Esquivel, G., & Campos-Vázquez, R. M. (2020). Consumption and geographic mobility in pandemic times: Evidence from Mexico. Cepr Press Covid Economics, 38, 218-252.
Estados Unidos Mexicanos (2020a). DOF - Diario Oficial de la Federación. https://www. dof.gob.mx/nota_detalle.php?codigo=5589479&fecha=16/03/2020&print=true
Estados Unidos Mexicanos. (2020b). DOF - Diario Oficial de la Federación. https://www.dof.gob.mx/nota_detalle.php?codigo=5590914&fecha=31/03/2020&print=true
Ferraresi, M., Kotsogiannis, C., Rizzo, L., & Secomandi, R. (2020). “Lockdown” and institutions COVID-19. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports .
Gasca, N. C., Reyes-Garza, J., Lozano-Esparza, S., del Pino, P. O., Olivas-Martínez, A., Ulloa-Pérez, E., Garbuno-Inigo, A., & Arroyo, J. (2022). Effect of Mexico’s vaccination program on Covid-19 cases, hospitalizations, and deaths among older adults in Mexico City. Salud Pública de México, 64(4, jul-ago), 424-428. https://doi.org/10.21149/13402
Gausman, J., & Langer, A. (2020). Sex and gender disparities in the COVID-19 pandemic. Journal of Women’s Health, 29(4), 465-466. https://doi.org/10.1089/jwh.2020.8472
Gobierno de México, (GobMx), & Secretaría de Salud, (SALUD). (2020). Coronavirus gob.mx. Gobierno de México (GobMx).
Google LLC. (2020). Google COVID-19 community mobility reports. Https://www.Google.Com/Covid19/Mobility/ Accessed: <18 May 2020>.
ILO, I. L. O. (2020). COVID-19 and the world of work. ILO Monitor Fourth Edition.
INEGI. (2020a). Banco de datos. Banco de Información Economica. https://www.inegi.org.mx/sistemas/bie/
INEGI. (2020b). Indicacadores de ocupación y empleo. Cifras oportunas durante enero del 2020. Febrero.
INEGI. (2020c). Investigación - Estado de ánimo de los tuiteros. INEGI. https://www.inegi. org.mx/app/animotuitero/#/app/multiline
Kong, E., & Prinz, D. (2020). Disentangling policy effects using proxy data: Which shutdown policies affected unemployment during the COVID-19 pandemic? Journal of Public Economics, 189, 104257. https://doi.org/10.1016/j.jpubeco.2020.104257
Langer, A., Meleis, A., Knaul, F. M., Atun, R., Aran, M., Arreola-Ornelas, H., Bhutta, Z. A., Binagwaho, A., Bonita, R., Caglia, J. M., Claeson, M., Davies, J., Donnay, F. A., Gausman, J. M., Glickman, C., Kearns, A. D., Kendall, T., Lozano, R., Seboni, N., ... Frenk, J. (2015). Women and health: The key for sustainable development. The Lancet, 36(9999), 1165–1210. Lancet Publishing Group. https://doi.org/10.1016/S0140-6736(15)60497-4
Leyva, A. G. (2020). Propuesta metodológica del indicador “Grado de Felicidad Local”, asociación de indicadores relativos a la felicidad, bienestar y estado de ánimo. Interconectando Saberes. https://doi.org/10.25009/is.v0i10.2663
Loayza, N., & Pennings, S. M. (2020). Macroeconomic policy in the time of COVID-19: A primer for developing countries. World Bank Research and Policy Briefs, 147291. https://ourworldindata.org/coronavirus-source-data ,
Luque Zúñiga, B. G., Moreno Salazar Calderón, K. A. B., & Lanchipa Ale, T. M. (2021). Impactos del COVID-19 en la agricultura y la seguridad alimentaria. Centro Agrícola. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253-57852021000100072
Lütkepohl, H. (2005). New introduction to multiple time series analysis. New introduc- tion to Multiple Time Series Analysis. Springer. https://doi.org/10.1007/978-3-540-27752-1
Maloney, W., & Taskin, T. (2020). Determinants of social distancing and economic activity during COVID-19: A global view. World Bank Policy Research Working Paper, 9242. http://www.worldbank.
Mendoza Cota, J. E. (2019). COVID-19 y el empleo en México: impacto inicial y pronósticos de corto plazo. Contaduría y Administración, 65(4), 1-18. https://doi.org/10.22201/fca.24488410e.2020.3028
Milani, F. (2020). COVID-19 Outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies. https://doi.org/10.1101/2020.05.07.20094748
Milani, F. (2021). COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies. Journal of Population Economics, 34(1), 223-252. https://doi.org/10.1007/s00148-020-00792-4
Moreno Salazar Calderón, K. A. B. (2021). Seguridad alimentaria en tiempos de COVID-19: Una visión desde la cadena productiva de recursos hidrobiológicos. Revista Estudios del Desarrollo Social: Cuba y América Latina, 9(1). http://scielo.sld.cu/scielo.php?pid=S2308-01322021000100021&script=sci_arttext&tlng=en
Müller, S., & Rau, H. A. (2020). Economic preferences and compliance in the social stress test of the corona crisis. SSRN Electronic Journal, 104322. https://doi.org/10.2139/ssrn.3575633
Narula, R. (2020). Policy opportunities and challenges from the COVID-19 pandemic for economies with large informal sectors. Journal of International Business Policy, 3(3), 302-310. https://doi.org/10.1057/s42214-020-00059-5
OECD. (2020). COVID-19 in Latin America and the Caribbean: Regional socioeconomic implications and policy priorities. OECD, 1–12. https://www.oecd.org/coronavirus/policy-responses/covid-19-in-latin-america-and-the-caribbean-regional-socio-economic-implications-and-policy-priorities-93a64fde/
Ohnsorge, F., & Yu, S. (2022). The Long shadow of informality: challenges and policies. The Long Shadow of Informality: Challenges and Policies. https://doi.org/10.1596/978-1-4648-1753-3
Peluffo, C., & Viollaz, M. (2020). Intra-Household Insurance in the Time of Covid-19: Lessons from Mexico.
Piguillem, F., & Shi, L. (2020). Optimal COVID-19 quarantine and testing policies. CEPR Discussion Papers. https://www.researchgate.net/publication/340226829
Rangel González, E., Llamosas-Rosas, I., Fonseca, F. J., Rangel González, E., Llamosas- Rosas, I., & Fonseca, F. J. (2021). Aislamiento social y el COVID-19 en las regiones de México. EconoQuantum, 18(2), 1-22. https://doi.org/10.18381/EQ.V18I2.7227
Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 1. https://doi.org/10.2307/1912017
Tejedor Estupiñán, J. M. (2021). Vacunación y desarrollo en tiempos de la COVID-19. Revista Finanzas y Política Económica, 13(1), 9-13. https://doi.org/10.14718/REVFINANZPOLITECON.V13.N1.2021.1
Testa, P. F., Snyder, R., Rios, E., Moncada, E., Giraudy, A., & Bennouna, C. (2021). Who stays at home? The politics of social distancing in Brazil, Mexico, and the United States during the COVID-19 pandemic. Journal of Health Politics, Policy and Law, 46(6). https://doi.org/10.1215/03616878-9349100
The World Bank. (2015). World Development Indicators | DataBank. DataBank.
Yilmazkuday, H. (2020). Stay-at-home works to fight against COVID-19: international evidence from Google mobility data. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3571708
Zhu, D., Mishra, S. R., Han, X., & Santo, K. (2020). Social distancing in Latin America during the COVID-19 pandemic: an analysis using the Stringency Index and Google community mobility reports. Journal of Travel Medicine, 2020, 1-3. https:// doi.org/10.1093/jtm/taaa125
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-03-23
date_accessioned 2023-03-23T00:00:00Z
date_available 2023-03-23T00:00:00Z
url https://revfinypolecon.ucatolica.edu.co/article/view/4287
url_doi https://doi.org/10.14718/revfinanzpolitecon.v15.n1.2023.6
issn 2248-6046
eissn 2011-7663
doi 10.14718/revfinanzpolitecon.v15.n1.2023.6
citationstartpage 135
citationendpage 155
url3_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/4287/4679
url2_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/4287/4623
url4_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/4287/4680
_version_ 1811200171860557824