Titulo:

Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
.

Sumario:

Este artículo compara las técnicas de reducción de dimensionalidad o de extracción de características: Análisis de Componentes Principales, Análisis Factorial, Análisis de Componentes Independientes y Análisis de Componentes Principales basado en Redes Neuronales, las cuales son usadas para extraer los factores de riesgo sistemático subyacentes que generan los rendimientos de las acciones de la Bolsa Mexicana de Valores, bajo un enfoque estadístico de la Teoría de Valoración por Arbitraje. Llevamos a cabo nuestra investigación de acuerdo a dos diferentes perspectivas. Primero, las evaluamos desde una perspectiva teórica y matricial, haciendo un paralelismo entre los particulares procesos de mezcla y separación de cada método. En segundo lug... Ver más

Guardado en:

2248-6046

2011-7663

13

2021-09-08

513

543

Rogelio, Salvador Torra Porras, Enric Monte Moreno - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_ucatolica_revistafinanzasypoliticaeconomica_16_article_3740
record_format ojs
spelling Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative study in the Mexican Stock Exchange
Este artículo compara las técnicas de reducción de dimensionalidad o de extracción de características: Análisis de Componentes Principales, Análisis Factorial, Análisis de Componentes Independientes y Análisis de Componentes Principales basado en Redes Neuronales, las cuales son usadas para extraer los factores de riesgo sistemático subyacentes que generan los rendimientos de las acciones de la Bolsa Mexicana de Valores, bajo un enfoque estadístico de la Teoría de Valoración por Arbitraje. Llevamos a cabo nuestra investigación de acuerdo a dos diferentes perspectivas. Primero, las evaluamos desde una perspectiva teórica y matricial, haciendo un paralelismo entre los particulares procesos de mezcla y separación de cada método. En segundo lugar, efectuamos un estudio empírico con el fin de medir el nivel de precisión en la reconstrucción de las variables originales.
This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.
Ladrón de Guevara Cortés, Rogelio
Torra Porras, Salvador
Monte Moreno, Enric
Neural networks principal component analysis
Independent component analysis
Factor analysis
Principal component analysis
Mexican stock exchange
Análisis de componentes principales basado en redes neuronales
Análisis de componentes independientes
Análisis factorial
Análisis de componentes principales
Bolsa mexicana de valores
13
2
Núm. 2 , Año 2021 :Vol. 13 Núm. 2 (2021)
Artículo de revista
Journal article
2021-09-08T00:00:00Z
2021-09-08T00:00:00Z
2021-09-08
text/html
application/pdf
text/xml
Universidad Católica de Colombia
Revista Finanzas y Política Económica
2248-6046
2011-7663
https://revfinypolecon.ucatolica.edu.co/article/view/3740
10.14718/revfinanzpolitecon.v13.n2.2021.9
https://doi.org/10.14718/revfinanzpolitecon.v13.n2.2021.9
eng
https://creativecommons.org/licenses/by-nc-sa/4.0
Rogelio, Salvador Torra Porras, Enric Monte Moreno - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
513
543
Anowar, F., Sadaoui, S., & Selim, B. (2021). A conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review, 40 (5), p.p. 1000378-. https://doi.org/10.1016/j.cosrev.2021.100378
Ayesha, S., Hanif, M. K., Talib, R. (2020). Overview and comparative study of dimensionality reduction techniques for high dimensional data. Information Fusion, 59 (July 2020), p.p. 44-58. https://doi.org/10.1016/j.inffus.2020.01.005
Back, A. & Weigend, A. (1997). A first application of independent component analysis to extracting structure from stock returns. International Journal of Neural Systems, 8 (4), p.p. 473-484. https://doi.org/10.1142/S0129065797000458
Bellini, F. & Salinelli, E. (2003). Independent Component Analysis and Immunization: An exploratory study. International Journal of Theoretical and Applied Finance, 6 (7), p.p. 721-738. https://doi.org/10.1142/S0219024903002201
Cavalcante, R.C., Brasileiro, R.C., Souza, L.F., Nobrega, J.P., Oliveira, A.L.I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55 (15 August 2016), p.p. 194-211. https://doi.org/10.1016/j.eswa.2016.02.006
Coli, M., Di Nisio, R., & Ippoliti, L. (2005). Exploratory analysis of financial time series using independent component analysis. In: Proceedings of the 27th international conference on information technology interfaces, p.p. 169-174. Zagreb: IEEE. https://doi.org/10.1109/ITI.2005.1491117
Corominas, Ll., Garrido-Baserba, M., Villez, K., Olson, G., Cortés, U., & Poch, M. (2018). Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques. Environmental Modelling & Software, 106 (Agosto 2018), p.p. 89-103. https://doi.org/10.1016/j.envsoft.2017.11.023
Diebold, F.X. & Lopez, J.A. (1996). Forecast evaluation and combination. In: G.S. Madala & C.R. Rao (eds.), Handbook of statistics, Vol.14. Statistical Methods in Finance, p.p. 241-268. Amsterdam: Elsevier. https://doi.org/10.3386/t0192
Himberg, J. & Hyvärinen, A. (2005). Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. Retrieved from at: http://www.cis.hut.fi/projects/ica/icasso/about+download.shtml [2 February 2009].
Ibraimova, M. (2019). Predicting Financial Distress Through Machine Learning (Publication No. 139967) [Unpublished Master’s Thesis]. Universitat Politécnica de Catalunya. Retrieved from: http://hdl.handle.net/2117/131355
Ince, H. & Trafalis, T. B. (2007). Kernel principal component analysis and support vector machines for stock price prediction. IIE Transactions 39(6): p.p. 629-637. https://doi.org/10.1109/IJCNN.2004.1380933
Ladrón de Guevara-Cortés, R., Torra-Porras, S. & Monte-Moreno, E. (2019). Neural Networks Principal Component Analysis for estimating the generative multifactor model of returns under a statistical approach to the Arbitrage Pricing Theory. Evidence from the Mexican Stock Exchange. Computación y Sistemas, 23 (2), p.p. 281-298. http://dx.doi.org/10.13053/CyS-23-2-3193
Ladrón de Guevara-Cortés, R., Torra-Porras, S. & Monte-Moreno, E. (2018). Extraction of the underlying structure of systematic risk from Non-Gaussian multivariate financial time series using Independent Component Analysis. Evidence from the Mexican Stock Exchange. Computación y Sistemas, 22 (4), p.p. 1049-1064 http://dx.doi.org/10.13053/CyS-22-4-3083
Ladrón de Guevara Cortés, R., & Torra Porras, S. (2014). Estimation of the underlying structure of systematic risk using Principal Component Analysis and Factor Analysis. Contaduría y Administración, 59 (3), p.p. 197-234. http://dx.doi.org/10.1016/S0186-1042(14)71270-7
Lesch, R., Caille, Y., & Lowe, D. (1999). Component analysis in financial time series. In: Proceedings of the 1999 Conference on Computational intelligence for financial engineering, p.p. 183-190. New York: IEEE/IAFE. http://dx.doi.org/10.1109/CIFER.1999.771118
Lui, H. & Wan, J. (2011). Integrating Independent Component Analysis and Principal Component Analysis with Neural Network to Predict Chinese Stock Market. Mathematical Problems in Engineering, 2011, p.p. 1-15. https://doi.org/10.1155/2011/382659
Lizieri, C., Satchell, S. Satchell & Zhang, Q. (2007). The underlying return-generating factors for REIT returns: An application of independent component analysis. Real Estate Economics, 35 (4): p.p. 569-598. https://doi.org/10.1111/j.1540-6229.2007.00201.x
Miranda-Henrique, B., Amorin-Sobreiro, V., Kimura, H. (2019). Experts Systems with Applications, 124 (15 jun 2019), p.p. 226-251. https://doi.org/10.1016/j.eswa.2019.01.012
Pérez, J.V. & Torra, S. (2001). Diversas formas de dependencia no lineal y contrastes de selección de modelos en la predicción de los rendimientos del Ibex35. Estudios sobre la Economía Española 94 (marzo, 2001), p.p. 1-42. Retrieved from: http://documentos.fedea.net/pubs/eee/eee94.pdf
Rojas, S., & Moody, J. (2001). Cross-sectional analysis of the returns of iShares MSCI index funds using Independent Component Analysis. CSE610 Internal Report, Oregon Graduate Institute of Science and Technology. Retrieved from: http://www.geocities. ws/rr_sergio/Projects/cse610_report.pdf
Ross, S.A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory 13 (3): p.p. 341-360. https://doi.org/10.1016/0022-0531(76)90046-6
Sayah, M. (2016). Analyzing and Comparing Basel III Sensitivity Based Approach for the Interest Rate Risk in the Trading Book. Applied Finance and Accounting, 2 (1), p.p. 101-118. https://doi.org/10.11114/afa.v2i1.1300
Scholz, M. (2006a). Approaches to analyzing and interpret biological profile data. [Unpublished Ph.D. Dissertation]. Postdam University. Retrieved from: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/696/file/scholz_diss.pdf
Scholz, M. (2006b). Nonlinear PCA toolbox for Matlab®. Retrieved from: http://www.nlpca.org/matlab. [8 September 2008].
Scikit-Learn (2021, July 12). Manifold Learning. https://scikit-learn.org/stable/modules/manifold.html#
Wei, Z., Jin, L. & Jin, Y. (2005). Independent Component Analysis. Working Paper. Department of Statistics. Stanford University.
Weigang, L., Rodrigues, A. Lihua, S. & Yukuhiro, R. (2007). Nonlinear Principal Component Analysis for withdrawal from the employment time guarantee fund. In: S. Chen, P. Wang & T. Kuo (eds.), Computational Intelligence in Economics and Finance. Vol. II, p.p. 75-92. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-540-72821-4_4
Yip, F. & Xu, L. (2000). An application of independent component analysis in the arbitrage pricing theory. In: S. Amari et al. (eds.) Proceedings of the International Joint Conference on Neural Networks, p.p. 279-284. Los Alamitos: IEEE. https://doi.org/10.1109/IJCNN.2000.861471
https://revfinypolecon.ucatolica.edu.co/article/download/3740/4018
https://revfinypolecon.ucatolica.edu.co/article/download/3740/3933
https://revfinypolecon.ucatolica.edu.co/article/download/3740/4253
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD CATÓLICA DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png
country_str Colombia
collection Revista Finanzas y Política Económica
title Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
spellingShingle Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
Ladrón de Guevara Cortés, Rogelio
Torra Porras, Salvador
Monte Moreno, Enric
Neural networks principal component analysis
Independent component analysis
Factor analysis
Principal component analysis
Mexican stock exchange
Análisis de componentes principales basado en redes neuronales
Análisis de componentes independientes
Análisis factorial
Análisis de componentes principales
Bolsa mexicana de valores
title_short Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
title_full Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
title_fullStr Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
title_full_unstemmed Técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la Bolsa Mexicana de Valores
title_sort técnicas estadísticas y computacionales para extraer factores de riesgo sistemático subyacentes: un estudio comparativo en la bolsa mexicana de valores
title_eng Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative study in the Mexican Stock Exchange
description Este artículo compara las técnicas de reducción de dimensionalidad o de extracción de características: Análisis de Componentes Principales, Análisis Factorial, Análisis de Componentes Independientes y Análisis de Componentes Principales basado en Redes Neuronales, las cuales son usadas para extraer los factores de riesgo sistemático subyacentes que generan los rendimientos de las acciones de la Bolsa Mexicana de Valores, bajo un enfoque estadístico de la Teoría de Valoración por Arbitraje. Llevamos a cabo nuestra investigación de acuerdo a dos diferentes perspectivas. Primero, las evaluamos desde una perspectiva teórica y matricial, haciendo un paralelismo entre los particulares procesos de mezcla y separación de cada método. En segundo lugar, efectuamos un estudio empírico con el fin de medir el nivel de precisión en la reconstrucción de las variables originales.
description_eng This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.
author Ladrón de Guevara Cortés, Rogelio
Torra Porras, Salvador
Monte Moreno, Enric
author_facet Ladrón de Guevara Cortés, Rogelio
Torra Porras, Salvador
Monte Moreno, Enric
topic Neural networks principal component analysis
Independent component analysis
Factor analysis
Principal component analysis
Mexican stock exchange
Análisis de componentes principales basado en redes neuronales
Análisis de componentes independientes
Análisis factorial
Análisis de componentes principales
Bolsa mexicana de valores
topic_facet Neural networks principal component analysis
Independent component analysis
Factor analysis
Principal component analysis
Mexican stock exchange
Análisis de componentes principales basado en redes neuronales
Análisis de componentes independientes
Análisis factorial
Análisis de componentes principales
Bolsa mexicana de valores
topicspa_str_mv Análisis de componentes principales basado en redes neuronales
Análisis de componentes independientes
Análisis factorial
Análisis de componentes principales
Bolsa mexicana de valores
citationvolume 13
citationissue 2
citationedition Núm. 2 , Año 2021 :Vol. 13 Núm. 2 (2021)
publisher Universidad Católica de Colombia
ispartofjournal Revista Finanzas y Política Económica
source https://revfinypolecon.ucatolica.edu.co/article/view/3740
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Rogelio, Salvador Torra Porras, Enric Monte Moreno - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Anowar, F., Sadaoui, S., & Selim, B. (2021). A conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review, 40 (5), p.p. 1000378-. https://doi.org/10.1016/j.cosrev.2021.100378
Ayesha, S., Hanif, M. K., Talib, R. (2020). Overview and comparative study of dimensionality reduction techniques for high dimensional data. Information Fusion, 59 (July 2020), p.p. 44-58. https://doi.org/10.1016/j.inffus.2020.01.005
Back, A. & Weigend, A. (1997). A first application of independent component analysis to extracting structure from stock returns. International Journal of Neural Systems, 8 (4), p.p. 473-484. https://doi.org/10.1142/S0129065797000458
Bellini, F. & Salinelli, E. (2003). Independent Component Analysis and Immunization: An exploratory study. International Journal of Theoretical and Applied Finance, 6 (7), p.p. 721-738. https://doi.org/10.1142/S0219024903002201
Cavalcante, R.C., Brasileiro, R.C., Souza, L.F., Nobrega, J.P., Oliveira, A.L.I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55 (15 August 2016), p.p. 194-211. https://doi.org/10.1016/j.eswa.2016.02.006
Coli, M., Di Nisio, R., & Ippoliti, L. (2005). Exploratory analysis of financial time series using independent component analysis. In: Proceedings of the 27th international conference on information technology interfaces, p.p. 169-174. Zagreb: IEEE. https://doi.org/10.1109/ITI.2005.1491117
Corominas, Ll., Garrido-Baserba, M., Villez, K., Olson, G., Cortés, U., & Poch, M. (2018). Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques. Environmental Modelling & Software, 106 (Agosto 2018), p.p. 89-103. https://doi.org/10.1016/j.envsoft.2017.11.023
Diebold, F.X. & Lopez, J.A. (1996). Forecast evaluation and combination. In: G.S. Madala & C.R. Rao (eds.), Handbook of statistics, Vol.14. Statistical Methods in Finance, p.p. 241-268. Amsterdam: Elsevier. https://doi.org/10.3386/t0192
Himberg, J. & Hyvärinen, A. (2005). Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. Retrieved from at: http://www.cis.hut.fi/projects/ica/icasso/about+download.shtml [2 February 2009].
Ibraimova, M. (2019). Predicting Financial Distress Through Machine Learning (Publication No. 139967) [Unpublished Master’s Thesis]. Universitat Politécnica de Catalunya. Retrieved from: http://hdl.handle.net/2117/131355
Ince, H. & Trafalis, T. B. (2007). Kernel principal component analysis and support vector machines for stock price prediction. IIE Transactions 39(6): p.p. 629-637. https://doi.org/10.1109/IJCNN.2004.1380933
Ladrón de Guevara-Cortés, R., Torra-Porras, S. & Monte-Moreno, E. (2019). Neural Networks Principal Component Analysis for estimating the generative multifactor model of returns under a statistical approach to the Arbitrage Pricing Theory. Evidence from the Mexican Stock Exchange. Computación y Sistemas, 23 (2), p.p. 281-298. http://dx.doi.org/10.13053/CyS-23-2-3193
Ladrón de Guevara-Cortés, R., Torra-Porras, S. & Monte-Moreno, E. (2018). Extraction of the underlying structure of systematic risk from Non-Gaussian multivariate financial time series using Independent Component Analysis. Evidence from the Mexican Stock Exchange. Computación y Sistemas, 22 (4), p.p. 1049-1064 http://dx.doi.org/10.13053/CyS-22-4-3083
Ladrón de Guevara Cortés, R., & Torra Porras, S. (2014). Estimation of the underlying structure of systematic risk using Principal Component Analysis and Factor Analysis. Contaduría y Administración, 59 (3), p.p. 197-234. http://dx.doi.org/10.1016/S0186-1042(14)71270-7
Lesch, R., Caille, Y., & Lowe, D. (1999). Component analysis in financial time series. In: Proceedings of the 1999 Conference on Computational intelligence for financial engineering, p.p. 183-190. New York: IEEE/IAFE. http://dx.doi.org/10.1109/CIFER.1999.771118
Lui, H. & Wan, J. (2011). Integrating Independent Component Analysis and Principal Component Analysis with Neural Network to Predict Chinese Stock Market. Mathematical Problems in Engineering, 2011, p.p. 1-15. https://doi.org/10.1155/2011/382659
Lizieri, C., Satchell, S. Satchell & Zhang, Q. (2007). The underlying return-generating factors for REIT returns: An application of independent component analysis. Real Estate Economics, 35 (4): p.p. 569-598. https://doi.org/10.1111/j.1540-6229.2007.00201.x
Miranda-Henrique, B., Amorin-Sobreiro, V., Kimura, H. (2019). Experts Systems with Applications, 124 (15 jun 2019), p.p. 226-251. https://doi.org/10.1016/j.eswa.2019.01.012
Pérez, J.V. & Torra, S. (2001). Diversas formas de dependencia no lineal y contrastes de selección de modelos en la predicción de los rendimientos del Ibex35. Estudios sobre la Economía Española 94 (marzo, 2001), p.p. 1-42. Retrieved from: http://documentos.fedea.net/pubs/eee/eee94.pdf
Rojas, S., & Moody, J. (2001). Cross-sectional analysis of the returns of iShares MSCI index funds using Independent Component Analysis. CSE610 Internal Report, Oregon Graduate Institute of Science and Technology. Retrieved from: http://www.geocities. ws/rr_sergio/Projects/cse610_report.pdf
Ross, S.A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory 13 (3): p.p. 341-360. https://doi.org/10.1016/0022-0531(76)90046-6
Sayah, M. (2016). Analyzing and Comparing Basel III Sensitivity Based Approach for the Interest Rate Risk in the Trading Book. Applied Finance and Accounting, 2 (1), p.p. 101-118. https://doi.org/10.11114/afa.v2i1.1300
Scholz, M. (2006a). Approaches to analyzing and interpret biological profile data. [Unpublished Ph.D. Dissertation]. Postdam University. Retrieved from: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/696/file/scholz_diss.pdf
Scholz, M. (2006b). Nonlinear PCA toolbox for Matlab®. Retrieved from: http://www.nlpca.org/matlab. [8 September 2008].
Scikit-Learn (2021, July 12). Manifold Learning. https://scikit-learn.org/stable/modules/manifold.html#
Wei, Z., Jin, L. & Jin, Y. (2005). Independent Component Analysis. Working Paper. Department of Statistics. Stanford University.
Weigang, L., Rodrigues, A. Lihua, S. & Yukuhiro, R. (2007). Nonlinear Principal Component Analysis for withdrawal from the employment time guarantee fund. In: S. Chen, P. Wang & T. Kuo (eds.), Computational Intelligence in Economics and Finance. Vol. II, p.p. 75-92. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-540-72821-4_4
Yip, F. & Xu, L. (2000). An application of independent component analysis in the arbitrage pricing theory. In: S. Amari et al. (eds.) Proceedings of the International Joint Conference on Neural Networks, p.p. 279-284. Los Alamitos: IEEE. https://doi.org/10.1109/IJCNN.2000.861471
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-09-08
date_accessioned 2021-09-08T00:00:00Z
date_available 2021-09-08T00:00:00Z
url https://revfinypolecon.ucatolica.edu.co/article/view/3740
url_doi https://doi.org/10.14718/revfinanzpolitecon.v13.n2.2021.9
issn 2248-6046
eissn 2011-7663
doi 10.14718/revfinanzpolitecon.v13.n2.2021.9
citationstartpage 513
citationendpage 543
url3_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/3740/4018
url2_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/3740/3933
url4_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/3740/4253
_version_ 1811200170560323584