Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
.
El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.
2248-6046
2011-7663
16
2024-07-24
547
573
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024
id |
metarevistapublica_ucatolica_revistafinanzasypoliticaeconomica_16-article-5726 |
---|---|
record_format |
ojs |
spelling |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., & Canadian Critical Care Trials Group H1N1 Collaborative (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879. https://doi.org/10.1001/jama.2009.1496 Patell, J. (1976). Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 14(2), 246-276. https://doi.org/10.2307/2490543 Oler, D. K., Harrison, J. S., & Allen, M. R. (2008). The danger of misinterpreting short-window event study findings in strategic management research: An empirical illustration using horizontal acquisitions. Strategic Organization, 6(2), 151-184. https://doi.org/10.1177/1476127008090008 Mnif, E., Salhi, B., & Jarboui, A. (2020). Herding behaviour and Islamic market efficiency assessment: case of Dow Jones and Sukuk market. International Journal of Islamic and Middle Eastern Finance and Management, 13(1), 24-41. https://doi.org/10.1108/IMEFM-10-2018-0354 Mishra, P., & Mishra, S. (2020). Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia, 11(3), 341-365. https://doi.org/10.1177/0976399620952354 Md Rajib, K., Ferdous, M., & Mozaffar, M. (2022). Stock market reactions of Maritime shipping industry in the time of COVID-19 pandemic crisis: An empirical investigation. Maritime Policy & Management, 49(8), 1184-1199. https://doi.org/10.1080/03088839.2021.1954255 McMillen, C. (2016). Pandemics: A Very Short Introduction. Oxford University Press. Maul, D., & Schiereck, D. (2017). The bond event study methodology since 1974. Review of Quantitative Finance and Accounting, 48, 749-787. https://doi.org/10.1007/s11156-016-0562-4 MacKinlay, A. C. (1997). Event Studies in Economics and Finance. Journal of Economic Literature, 35(1), 13-39. Lubys, J., & Panda, P. (2020). US and EU unconventional monetary policy spillover on BRICS financial markets: an event study. Empirica, 48, 353–371. https://doi.org/10.1007/s10663-020-09480-8 Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 Outbreak and Affected Countries Stock Markets Response. International Journal of Environmental Research and Public Health, 17(8), 1-19. https://doi.org/10.3390/ijerph17082800 Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48(2), 281-355. Lazaro, M. I. (2023). Dow Jones Industrial Average. Dow Jones Industrial Average. Diccionario Económico. Konchitchki, Y., & O'Leary, D. E. (2011). Event study methodologies in information systems research. International Journal of Accounting Information Systems, 12(2), 99-115. https://doi.org/10.1016/j.accinf.2011.01.002 Phylaktis, K., & Ravazzolo, F. (2005). Stock prices and exchange rate dynamics. Journal of International Money and Finance, 24(7), 1031-1053. https://doi.org/10.1016/j.jimonfin.2005.08.001 Kolari, J., & Pynnonen, S. (2011). Nonparametric rank tests for event studies. Journal of Empirical Finance, 18(5), 953-971. https://doi.org/10.1016/j.jempfin.2011.08.003 Kimmich, D., Hildt, E., & Mac Donagh, P. (2019). Value recovery with harvester applying bucking optimization technology. Scientia Forestalis, 47(122), 1-8. https://dx.doi.org/10.18671/scifor.v47n122.03 Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., & Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11, 543-554. https://doi.org/10.1007/s10198-009-0210-1 Kang, H. J., Lee, S. G., & Park, S. Y. (2022). Information efficiency in the cryptocurrency market: The efficient-market hypothesis. Journal of Computer Information Systems, 62(3), 622-631. https://doi.org/10.1080/08874417.2021.1872046 Jaramillo, J., & García, M. (2012). Reacción del Mercado de Valores Mexicano ante los Escándalos Financieros, Evidencia Empírica. Revista Mexicana de Economía y Finanzas, 7(2), 129-153. https://doi.org/10.21919/remef.v7i2.32 Iqbal, S., Bilal, A. R., Nurunnabi, M., et al. (2021). It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environmental Science and Pollution Research, 28, 19008–19020. https://doi.org/10.1007/s11356-020-11462-z Ichev, R., & Marine, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153-166. https://doi.org/10.1016/j.irfa.2017.12.004 Huynh, T. L. D., Foglia, M., Nasir, M. A., & Angelini, E. (2021). Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 188, 1088-1108. https://doi.org/10.1016/j.jebo.2021.06.016 Hsu, S., & Melchor, A. C. (2016). China’s structural transformation: reaching potential GDP in the financial services sector. China Finance and Economic Review, 4(3). https://doi.org/10.1186/s40589-016-0027-x Hsieh, Y., Wu, T., Liu, D., Shao, P., Chang, L., Lu, C., Lee, C., Huang, F., & Huang, L. (2006). Influenza Pandemics: Past, Present and Future. Journal of the Formosan Medical Association, 105(1), 1-6. https://doi.org/10.1016/S0929-6646(09)60102-9 Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press. Hoesli, M., Milcheva, S., & Moss, A. (2020). Is Financial Regulation Good or Bad for Real Estate Companies? – An Event Study. Journal of Real Estate Finance and Economics, 61, 369–407. https://doi.org/10.1007/s11146-017-9634-z Peón, D., Antelo, M., & Calvo, A. (2019). A guide on empirical tests of the EMH. Review of Accounting and Finance, 18(2), 268-295. https://doi.org/10.1108/RAF-02-2016-0031 Pinho, C., & Madaleno, M. (2016). Oil prices and stock returns: nonlinear links across sectors. Portuguese Economic Journal, 15(2), 79–97. https://doi.org/10.1007/s10258-016-0117-6 Hays, J. N. (2005). Epidemics and Pandemics: Their Impacts on Human History (Vol. I). ABC-CLIO. DOI: https://iucat.iu.edu/iuk/6403443 Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968 Text http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/publishedVersion http://purl.org/redcol/resource_type/ART http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article Zou, L., & Robert, W. (2017). How important are earnings announcements in China? Pacific Accounting Review, 29(3), 380-396. https://doi.org/10.1108/PAR-02-2017-0011 Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528 Yuen, K., & Lee, T. (2003). Could mood state affect risk-taking decisions? Journal of Affective Disorders, 75(1), 11-18. https://doi.org/10.1016/S0165-0327(02)00022-8 Waheed, R., Wei, C., Sarwar, S., & Yulan, L. (2018). Impact of oil prices on firm stock return: industry-wise analysis. Empirical Economics, 55(3), 765–780. https://doi.org/10.1007/s00181-017-1296-4 Pooja, M., & Jaya, G. (2021). Impact of COVID-19 on Indian Migrant Workers: Decoding Twitter Data by Text Mining. The Indian Journal of Labour Economics, 64, 731-747. https://doi.org/10.1007/s41027-021-00324-y Verikios, G., McCaw, J., McVernon, J., & Harris, A. (2012). H1N1 Influenza and the Australian Macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. https://doi.org/10.1080/13547860.2012.639999 Velásquez, G. (2009). El impacto de anuncio de eventos en el mercado accionario Colombiano. Maestría en Ciencias en Finanzas, Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/253 Tomé, L. C. (2017). La paradoja de la recurrencia. Culturacientifica.com. https://culturacientifica.com/2017/11/07/la-paradoja-la-recurrencia/#:~:text=Seg%C3%BAn%20este%20mito%2C%20la%20historia,una%20forma%20concreta%20por%20casualidad Thomson, L. (2021). Abnormal returns of corporations adopting Bitcoin as a treasury asset: An event study. MSc Behavioural Economics: Master Thesis. Erasmus School of Economics, Erasmus University Rotterdam. https://osf.io/25qg8/download Stout, L. A. (2003). The Mechanisms of Market Inefficiency: An Introduction to the New Finance. Cornell Law Faculty Publications. Paper 450. http://scholarship.law.cornell.edu/facpub/450 Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45, 186-207. https://doi.org/10.1007/s11747-017-0516-y Small, K., Ionici, O., & Zhu, H. (2007). Size Does Matter: An Examination of the Economic Impact of Sarbanes-Oxley. Review of Business, 27(3), 47-55. https://www.proquest.com/docview/220956058 Siu, A., & Wong, R. (2004). Economic Impact of SARS: The Case of Hong Kong. Asian Economic Papers, 3(1), 62–83. https://doi.org/10.1162/1535351041747996 Shaikh, I. (2022). Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 55, 433–484. https://doi.org/10.1007/s10644-021-09320-0 Schipper, K., & Smith, A. (1983). Effects of recontracting on shareholder wealth: The case of voluntary spin-offs. Journal of Financial Economics, 12(4), 437-467. https://doi.org/10.1016/0304-405X(83)90043-0 Salisu, A. A., & Obiora, K. (2021). COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations. Financial Innovation, 7(34). https://doi.org/10.1186/s40854-021-00253-1 Rizwan, M., Ahmad, G., & Ashraf, D. (2020). Systemic risk: The impact of COVID-19. Finance Research Letters, 36, 101682. https://doi.org/10.1016/j.frl.2020.101682 Ritter, J. R. (1991). The Long Run Performance of Initial Public Offerings. The Journal of Finance, 46(1), 3-27. https://doi.org/10.1111/j.1540-6261.1991.tb03743.x He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s impact on stock prices across different sectors—An event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198-2212. https://doi.org/10.1080/1540496X.2020.1785865 Hardin, W. G., Liano, K., & Huang, G. C. (2005). REIT Stock Splits and Market Efficiency. Journal of Real Estate Finance and Economics, 30(2), 297–315. https://doi.org/10.1007/s11146-005-6409-8 Publication application/pdf Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. The Review of Economic Studies, 72(1), 1-19. Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024 Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209. Español https://revfinypolecon.ucatolica.edu.co/article/view/5726 Revista Finanzas y Política Económica Universidad Católica de Colombia Artículo de revista Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. American Journal of Political Science, 59(2), 495-510. 2 16 Estudio de Eventos Mercado eficiente Covid 19 Dow Jones Valdés Medina, Filiberto Enrique Saavedra García, Maria Luisa El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS. Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), 493-505. https://creativecommons.org/licenses/by-nc-sa/4.0 Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93(1), 113-132. Fama, E. F., & Malkiel, B. G. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. www.jstor.org/stable/2325486 Chung, R., Fung, S., Shilling, J. D., & Simmons, T. (2011). What Determines Stock Price Synchronicity in REITs? Journal of Real Estate Finance and Economics, 43(1), 73–98. https://doi.org/10.1007/s11146-010-9254-3 Cave, J., Chaudhuri, K., & Kumbhakar, S. C. (2020). Do banking sector and stock market development matter for economic growth? Empirical Economics, 59, 1513–1535. https://doi.org/10.1007/s00181-019-01692-7 Davis, M., Braunholtz-Speight, T., & Wardrop, R. (2020). Crowdfunding as Democratic Finance? Understanding How and Why UK Investors Trust these Markets. Revista Internacional de Sociología, 78(4), e173. https://doi.org/10.3989/ris.2020.78.4.m20.005 Abraham, F., Leliaert, H., & Heremans, D. (1991). Foreign Dependence of Individual Stock Prices: The Role of Aggregate Product Market Developments. Open Economies Review, 2(1), 1-26. https://doi.org/10.1007/BF01886132 Eckbo, B. E., Masulis, R. W., & Norli, Ø. (2007). Security offerings. Handbook of Empirical Corporate Finance, 233-373. https://doi.org/10.1016/B978-0-444-53265-7.50020-2 Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006 Benninga, S. (2014). Financial Modeling. MIT Press. Basse Mama, H., Mueller, S., & Pape, U. (2017). What’s in the news? The ambiguity of the information content of index reconstitutions in Germany. Review of Quantitative Finance and Accounting, 49(4), 1087–1119. https://doi.org/10.1007/s11156-017-0617-1 Eder, L., Filimonova, V., Provornaya, V., & Nemov, V. (2017). The current state of the petroleum industry and the problems of the development of the Russian economy. IOP Conference Series: Earth and Environmental Science, 84(1), 012012. https://doi.org/10.1088/1755-1315/84/1/012012 Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). John Wiley & Sons. Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1-21. https://doi.org/10.2307/2525569 Guiso, L., & Jappelli, T. (2005). Awareness and stock market participation. CFS Working Paper, No. 2005/29, Goethe University Frankfurt, Center for Financial Studies (CFS). https://EconPapers.repec.org/RePEc:zbw:cfswop:200529 Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The Economics of Science and Technology. The Journal of Technology Transfer, 27(2), 155–203. https://doi.org/10.1023/A:1014382532639 Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press. Andoh-Baidoo, F. K., Osei-Bryson, K. M., & Amoako-Gyampah, K. (2012). A hybrid decision tree based methodology for event studies and its application to e-commerce initiative announcements. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 44(1), 78-101. https://doi.org/10.1145/2436239.2436244 Ali, I., & Alharbi, O. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861 Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2011). The economics of climate change impacts and policy benefits at city scale: a conceptual framework. Climatic Change, 104(1), 51–87. https://doi.org/10.1007/s10584-010-9976-5 Alajbeg, D., Bubaš, Z., & Šonje, V. (2012). The efficient market hypothesis: problems with interpretations of empirical tests. Financial Theory and Practice, 36(1), 53-72. https://doi.org/10.3326/fintp.36.1.3 Ahmed, R. R., Streimikiene, D., Rolle, J. A., & Pham, A. D. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01 Clayman, M. R., Fridson, M. S., & Troughton, G. H. (2012). Corporate Finance: A Practical Approach (Vol. 42). John Wiley & Sons. Covid 19 The objective was to analyze the financial effects produced by the COVD-19 Pandemic in the companies that make up the Dow Jones Industrial Average (DJIA) index. The Event Study technique was applied to 30 entities that make up the DJIA, considering the financial impact of the dates of the World Health Organization (WHO) communications on stock returns. The results of the analysis prove the existence of favorable evidence in relation to the market efficiency of the DJIA, in addition, it was possible to demonstrate that the stock market benefits of the organizations that make up the technology sector have a positive performance in light of the reports on health crises disseminated by the OMS. Dow Jones Financial Effects of the Covid 19 Pandemic on Stock Prices of Dow Jones Index efficient market Event study Journal article https://revfinypolecon.ucatolica.edu.co/article/download/5726/5461 2024-07-24T00:00:00Z 2024-07-24 2248-6046 2011-7663 10.14718/revfinanzpolitecon.v16.n2.2024.9 https://doi.org/10.14718/revfinanzpolitecon.v16.n2.2024.9 547 573 2024-07-24T00:00:00Z |
institution |
UNIVERSIDAD CATÓLICA DE COLOMBIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png |
country_str |
Colombia |
collection |
Revista Finanzas y Política Económica |
title |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
spellingShingle |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones Valdés Medina, Filiberto Enrique Saavedra García, Maria Luisa Estudio de Eventos Mercado eficiente Covid 19 Dow Jones Covid 19 Dow Jones efficient market Event study |
title_short |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_full |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_fullStr |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_full_unstemmed |
Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones |
title_sort |
efectos financieros del covid 19 en los beneficios bursátiles de las emisoras integrantes del índice dow jones |
title_eng |
Financial Effects of the Covid 19 Pandemic on Stock Prices of Dow Jones Index |
description |
El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.
|
description_eng |
The objective was to analyze the financial effects produced by the COVD-19 Pandemic in the companies that make up the Dow Jones Industrial Average (DJIA) index. The Event Study technique was applied to 30 entities that make up the DJIA, considering the financial impact of the dates of the World Health Organization (WHO) communications on stock returns. The results of the analysis prove the existence of favorable evidence in relation to the market efficiency of the DJIA, in addition, it was possible to demonstrate that the stock market benefits of the organizations that make up the technology sector have a positive performance in light of the reports on health crises disseminated by the OMS.
|
author |
Valdés Medina, Filiberto Enrique Saavedra García, Maria Luisa |
author_facet |
Valdés Medina, Filiberto Enrique Saavedra García, Maria Luisa |
topicspa_str_mv |
Estudio de Eventos Mercado eficiente Covid 19 Dow Jones |
topic |
Estudio de Eventos Mercado eficiente Covid 19 Dow Jones Covid 19 Dow Jones efficient market Event study |
topic_facet |
Estudio de Eventos Mercado eficiente Covid 19 Dow Jones Covid 19 Dow Jones efficient market Event study |
citationvolume |
16 |
citationissue |
2 |
publisher |
Universidad Católica de Colombia |
ispartofjournal |
Revista Finanzas y Política Económica |
source |
https://revfinypolecon.ucatolica.edu.co/article/view/5726 |
language |
Español |
format |
Article |
rights |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024 https://creativecommons.org/licenses/by-nc-sa/4.0 |
references |
Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., & Canadian Critical Care Trials Group H1N1 Collaborative (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879. https://doi.org/10.1001/jama.2009.1496 Patell, J. (1976). Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 14(2), 246-276. https://doi.org/10.2307/2490543 Oler, D. K., Harrison, J. S., & Allen, M. R. (2008). The danger of misinterpreting short-window event study findings in strategic management research: An empirical illustration using horizontal acquisitions. Strategic Organization, 6(2), 151-184. https://doi.org/10.1177/1476127008090008 Mnif, E., Salhi, B., & Jarboui, A. (2020). Herding behaviour and Islamic market efficiency assessment: case of Dow Jones and Sukuk market. International Journal of Islamic and Middle Eastern Finance and Management, 13(1), 24-41. https://doi.org/10.1108/IMEFM-10-2018-0354 Mishra, P., & Mishra, S. (2020). Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia, 11(3), 341-365. https://doi.org/10.1177/0976399620952354 Md Rajib, K., Ferdous, M., & Mozaffar, M. (2022). Stock market reactions of Maritime shipping industry in the time of COVID-19 pandemic crisis: An empirical investigation. Maritime Policy & Management, 49(8), 1184-1199. https://doi.org/10.1080/03088839.2021.1954255 McMillen, C. (2016). Pandemics: A Very Short Introduction. Oxford University Press. Maul, D., & Schiereck, D. (2017). The bond event study methodology since 1974. Review of Quantitative Finance and Accounting, 48, 749-787. https://doi.org/10.1007/s11156-016-0562-4 MacKinlay, A. C. (1997). Event Studies in Economics and Finance. Journal of Economic Literature, 35(1), 13-39. Lubys, J., & Panda, P. (2020). US and EU unconventional monetary policy spillover on BRICS financial markets: an event study. Empirica, 48, 353–371. https://doi.org/10.1007/s10663-020-09480-8 Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 Outbreak and Affected Countries Stock Markets Response. International Journal of Environmental Research and Public Health, 17(8), 1-19. https://doi.org/10.3390/ijerph17082800 Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48(2), 281-355. Lazaro, M. I. (2023). Dow Jones Industrial Average. Dow Jones Industrial Average. Diccionario Económico. Konchitchki, Y., & O'Leary, D. E. (2011). Event study methodologies in information systems research. International Journal of Accounting Information Systems, 12(2), 99-115. https://doi.org/10.1016/j.accinf.2011.01.002 Phylaktis, K., & Ravazzolo, F. (2005). Stock prices and exchange rate dynamics. Journal of International Money and Finance, 24(7), 1031-1053. https://doi.org/10.1016/j.jimonfin.2005.08.001 Kolari, J., & Pynnonen, S. (2011). Nonparametric rank tests for event studies. Journal of Empirical Finance, 18(5), 953-971. https://doi.org/10.1016/j.jempfin.2011.08.003 Kimmich, D., Hildt, E., & Mac Donagh, P. (2019). Value recovery with harvester applying bucking optimization technology. Scientia Forestalis, 47(122), 1-8. https://dx.doi.org/10.18671/scifor.v47n122.03 Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., & Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11, 543-554. https://doi.org/10.1007/s10198-009-0210-1 Kang, H. J., Lee, S. G., & Park, S. Y. (2022). Information efficiency in the cryptocurrency market: The efficient-market hypothesis. Journal of Computer Information Systems, 62(3), 622-631. https://doi.org/10.1080/08874417.2021.1872046 Jaramillo, J., & García, M. (2012). Reacción del Mercado de Valores Mexicano ante los Escándalos Financieros, Evidencia Empírica. Revista Mexicana de Economía y Finanzas, 7(2), 129-153. https://doi.org/10.21919/remef.v7i2.32 Iqbal, S., Bilal, A. R., Nurunnabi, M., et al. (2021). It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environmental Science and Pollution Research, 28, 19008–19020. https://doi.org/10.1007/s11356-020-11462-z Ichev, R., & Marine, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153-166. https://doi.org/10.1016/j.irfa.2017.12.004 Huynh, T. L. D., Foglia, M., Nasir, M. A., & Angelini, E. (2021). Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 188, 1088-1108. https://doi.org/10.1016/j.jebo.2021.06.016 Hsu, S., & Melchor, A. C. (2016). China’s structural transformation: reaching potential GDP in the financial services sector. China Finance and Economic Review, 4(3). https://doi.org/10.1186/s40589-016-0027-x Hsieh, Y., Wu, T., Liu, D., Shao, P., Chang, L., Lu, C., Lee, C., Huang, F., & Huang, L. (2006). Influenza Pandemics: Past, Present and Future. Journal of the Formosan Medical Association, 105(1), 1-6. https://doi.org/10.1016/S0929-6646(09)60102-9 Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press. Hoesli, M., Milcheva, S., & Moss, A. (2020). Is Financial Regulation Good or Bad for Real Estate Companies? – An Event Study. Journal of Real Estate Finance and Economics, 61, 369–407. https://doi.org/10.1007/s11146-017-9634-z Peón, D., Antelo, M., & Calvo, A. (2019). A guide on empirical tests of the EMH. Review of Accounting and Finance, 18(2), 268-295. https://doi.org/10.1108/RAF-02-2016-0031 Pinho, C., & Madaleno, M. (2016). Oil prices and stock returns: nonlinear links across sectors. Portuguese Economic Journal, 15(2), 79–97. https://doi.org/10.1007/s10258-016-0117-6 Hays, J. N. (2005). Epidemics and Pandemics: Their Impacts on Human History (Vol. I). ABC-CLIO. DOI: https://iucat.iu.edu/iuk/6403443 Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968 Zou, L., & Robert, W. (2017). How important are earnings announcements in China? Pacific Accounting Review, 29(3), 380-396. https://doi.org/10.1108/PAR-02-2017-0011 Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528 Yuen, K., & Lee, T. (2003). Could mood state affect risk-taking decisions? Journal of Affective Disorders, 75(1), 11-18. https://doi.org/10.1016/S0165-0327(02)00022-8 Waheed, R., Wei, C., Sarwar, S., & Yulan, L. (2018). Impact of oil prices on firm stock return: industry-wise analysis. Empirical Economics, 55(3), 765–780. https://doi.org/10.1007/s00181-017-1296-4 Pooja, M., & Jaya, G. (2021). Impact of COVID-19 on Indian Migrant Workers: Decoding Twitter Data by Text Mining. The Indian Journal of Labour Economics, 64, 731-747. https://doi.org/10.1007/s41027-021-00324-y Verikios, G., McCaw, J., McVernon, J., & Harris, A. (2012). H1N1 Influenza and the Australian Macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. https://doi.org/10.1080/13547860.2012.639999 Velásquez, G. (2009). El impacto de anuncio de eventos en el mercado accionario Colombiano. Maestría en Ciencias en Finanzas, Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/253 Tomé, L. C. (2017). La paradoja de la recurrencia. Culturacientifica.com. https://culturacientifica.com/2017/11/07/la-paradoja-la-recurrencia/#:~:text=Seg%C3%BAn%20este%20mito%2C%20la%20historia,una%20forma%20concreta%20por%20casualidad Thomson, L. (2021). Abnormal returns of corporations adopting Bitcoin as a treasury asset: An event study. MSc Behavioural Economics: Master Thesis. Erasmus School of Economics, Erasmus University Rotterdam. https://osf.io/25qg8/download Stout, L. A. (2003). The Mechanisms of Market Inefficiency: An Introduction to the New Finance. Cornell Law Faculty Publications. Paper 450. http://scholarship.law.cornell.edu/facpub/450 Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45, 186-207. https://doi.org/10.1007/s11747-017-0516-y Small, K., Ionici, O., & Zhu, H. (2007). Size Does Matter: An Examination of the Economic Impact of Sarbanes-Oxley. Review of Business, 27(3), 47-55. https://www.proquest.com/docview/220956058 Siu, A., & Wong, R. (2004). Economic Impact of SARS: The Case of Hong Kong. Asian Economic Papers, 3(1), 62–83. https://doi.org/10.1162/1535351041747996 Shaikh, I. (2022). Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 55, 433–484. https://doi.org/10.1007/s10644-021-09320-0 Schipper, K., & Smith, A. (1983). Effects of recontracting on shareholder wealth: The case of voluntary spin-offs. Journal of Financial Economics, 12(4), 437-467. https://doi.org/10.1016/0304-405X(83)90043-0 Salisu, A. A., & Obiora, K. (2021). COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations. Financial Innovation, 7(34). https://doi.org/10.1186/s40854-021-00253-1 Rizwan, M., Ahmad, G., & Ashraf, D. (2020). Systemic risk: The impact of COVID-19. Finance Research Letters, 36, 101682. https://doi.org/10.1016/j.frl.2020.101682 Ritter, J. R. (1991). The Long Run Performance of Initial Public Offerings. The Journal of Finance, 46(1), 3-27. https://doi.org/10.1111/j.1540-6261.1991.tb03743.x He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s impact on stock prices across different sectors—An event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198-2212. https://doi.org/10.1080/1540496X.2020.1785865 Hardin, W. G., Liano, K., & Huang, G. C. (2005). REIT Stock Splits and Market Efficiency. Journal of Real Estate Finance and Economics, 30(2), 297–315. https://doi.org/10.1007/s11146-005-6409-8 Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. The Review of Economic Studies, 72(1), 1-19. Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209. Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. American Journal of Political Science, 59(2), 495-510. Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), 493-505. Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93(1), 113-132. Fama, E. F., & Malkiel, B. G. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. www.jstor.org/stable/2325486 Chung, R., Fung, S., Shilling, J. D., & Simmons, T. (2011). What Determines Stock Price Synchronicity in REITs? Journal of Real Estate Finance and Economics, 43(1), 73–98. https://doi.org/10.1007/s11146-010-9254-3 Cave, J., Chaudhuri, K., & Kumbhakar, S. C. (2020). Do banking sector and stock market development matter for economic growth? Empirical Economics, 59, 1513–1535. https://doi.org/10.1007/s00181-019-01692-7 Davis, M., Braunholtz-Speight, T., & Wardrop, R. (2020). Crowdfunding as Democratic Finance? Understanding How and Why UK Investors Trust these Markets. Revista Internacional de Sociología, 78(4), e173. https://doi.org/10.3989/ris.2020.78.4.m20.005 Abraham, F., Leliaert, H., & Heremans, D. (1991). Foreign Dependence of Individual Stock Prices: The Role of Aggregate Product Market Developments. Open Economies Review, 2(1), 1-26. https://doi.org/10.1007/BF01886132 Eckbo, B. E., Masulis, R. W., & Norli, Ø. (2007). Security offerings. Handbook of Empirical Corporate Finance, 233-373. https://doi.org/10.1016/B978-0-444-53265-7.50020-2 Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006 Benninga, S. (2014). Financial Modeling. MIT Press. Basse Mama, H., Mueller, S., & Pape, U. (2017). What’s in the news? The ambiguity of the information content of index reconstitutions in Germany. Review of Quantitative Finance and Accounting, 49(4), 1087–1119. https://doi.org/10.1007/s11156-017-0617-1 Eder, L., Filimonova, V., Provornaya, V., & Nemov, V. (2017). The current state of the petroleum industry and the problems of the development of the Russian economy. IOP Conference Series: Earth and Environmental Science, 84(1), 012012. https://doi.org/10.1088/1755-1315/84/1/012012 Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). John Wiley & Sons. Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1-21. https://doi.org/10.2307/2525569 Guiso, L., & Jappelli, T. (2005). Awareness and stock market participation. CFS Working Paper, No. 2005/29, Goethe University Frankfurt, Center for Financial Studies (CFS). https://EconPapers.repec.org/RePEc:zbw:cfswop:200529 Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The Economics of Science and Technology. The Journal of Technology Transfer, 27(2), 155–203. https://doi.org/10.1023/A:1014382532639 Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press. Andoh-Baidoo, F. K., Osei-Bryson, K. M., & Amoako-Gyampah, K. (2012). A hybrid decision tree based methodology for event studies and its application to e-commerce initiative announcements. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 44(1), 78-101. https://doi.org/10.1145/2436239.2436244 Ali, I., & Alharbi, O. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861 Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2011). The economics of climate change impacts and policy benefits at city scale: a conceptual framework. Climatic Change, 104(1), 51–87. https://doi.org/10.1007/s10584-010-9976-5 Alajbeg, D., Bubaš, Z., & Šonje, V. (2012). The efficient market hypothesis: problems with interpretations of empirical tests. Financial Theory and Practice, 36(1), 53-72. https://doi.org/10.3326/fintp.36.1.3 Ahmed, R. R., Streimikiene, D., Rolle, J. A., & Pham, A. D. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01 Clayman, M. R., Fridson, M. S., & Troughton, G. H. (2012). Corporate Finance: A Practical Approach (Vol. 42). John Wiley & Sons. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_2df8fbb1 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-07-24 |
date_accessioned |
2024-07-24T00:00:00Z |
date_available |
2024-07-24T00:00:00Z |
url |
https://revfinypolecon.ucatolica.edu.co/article/view/5726 |
url_doi |
https://doi.org/10.14718/revfinanzpolitecon.v16.n2.2024.9 |
issn |
2248-6046 |
eissn |
2011-7663 |
doi |
10.14718/revfinanzpolitecon.v16.n2.2024.9 |
citationstartpage |
547 |
citationendpage |
573 |
url2_str_mv |
https://revfinypolecon.ucatolica.edu.co/article/download/5726/5461 |
_version_ |
1815676495868198912 |