Titulo:

Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
.

Sumario:

El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.

Guardado en:

2248-6046

2011-7663

16

2024-07-24

547

573

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024

id metarevistapublica_ucatolica_revistafinanzasypoliticaeconomica_16-article-5726
record_format ojs
spelling Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., & Canadian Critical Care Trials Group H1N1 Collaborative (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879. https://doi.org/10.1001/jama.2009.1496
Patell, J. (1976). Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 14(2), 246-276. https://doi.org/10.2307/2490543
Oler, D. K., Harrison, J. S., & Allen, M. R. (2008). The danger of misinterpreting short-window event study findings in strategic management research: An empirical illustration using horizontal acquisitions. Strategic Organization, 6(2), 151-184. https://doi.org/10.1177/1476127008090008
Mnif, E., Salhi, B., & Jarboui, A. (2020). Herding behaviour and Islamic market efficiency assessment: case of Dow Jones and Sukuk market. International Journal of Islamic and Middle Eastern Finance and Management, 13(1), 24-41. https://doi.org/10.1108/IMEFM-10-2018-0354
Mishra, P., & Mishra, S. (2020). Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia, 11(3), 341-365. https://doi.org/10.1177/0976399620952354
Md Rajib, K., Ferdous, M., & Mozaffar, M. (2022). Stock market reactions of Maritime shipping industry in the time of COVID-19 pandemic crisis: An empirical investigation. Maritime Policy & Management, 49(8), 1184-1199. https://doi.org/10.1080/03088839.2021.1954255
McMillen, C. (2016). Pandemics: A Very Short Introduction. Oxford University Press.
Maul, D., & Schiereck, D. (2017). The bond event study methodology since 1974. Review of Quantitative Finance and Accounting, 48, 749-787. https://doi.org/10.1007/s11156-016-0562-4
MacKinlay, A. C. (1997). Event Studies in Economics and Finance. Journal of Economic Literature, 35(1), 13-39.
Lubys, J., & Panda, P. (2020). US and EU unconventional monetary policy spillover on BRICS financial markets: an event study. Empirica, 48, 353–371. https://doi.org/10.1007/s10663-020-09480-8
Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 Outbreak and Affected Countries Stock Markets Response. International Journal of Environmental Research and Public Health, 17(8), 1-19. https://doi.org/10.3390/ijerph17082800
Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48(2), 281-355.
Lazaro, M. I. (2023). Dow Jones Industrial Average. Dow Jones Industrial Average. Diccionario Económico.
Konchitchki, Y., & O'Leary, D. E. (2011). Event study methodologies in information systems research. International Journal of Accounting Information Systems, 12(2), 99-115. https://doi.org/10.1016/j.accinf.2011.01.002
Phylaktis, K., & Ravazzolo, F. (2005). Stock prices and exchange rate dynamics. Journal of International Money and Finance, 24(7), 1031-1053. https://doi.org/10.1016/j.jimonfin.2005.08.001
Kolari, J., & Pynnonen, S. (2011). Nonparametric rank tests for event studies. Journal of Empirical Finance, 18(5), 953-971. https://doi.org/10.1016/j.jempfin.2011.08.003
Kimmich, D., Hildt, E., & Mac Donagh, P. (2019). Value recovery with harvester applying bucking optimization technology. Scientia Forestalis, 47(122), 1-8. https://dx.doi.org/10.18671/scifor.v47n122.03
Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., & Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11, 543-554. https://doi.org/10.1007/s10198-009-0210-1
Kang, H. J., Lee, S. G., & Park, S. Y. (2022). Information efficiency in the cryptocurrency market: The efficient-market hypothesis. Journal of Computer Information Systems, 62(3), 622-631. https://doi.org/10.1080/08874417.2021.1872046
Jaramillo, J., & García, M. (2012). Reacción del Mercado de Valores Mexicano ante los Escándalos Financieros, Evidencia Empírica. Revista Mexicana de Economía y Finanzas, 7(2), 129-153. https://doi.org/10.21919/remef.v7i2.32
Iqbal, S., Bilal, A. R., Nurunnabi, M., et al. (2021). It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environmental Science and Pollution Research, 28, 19008–19020. https://doi.org/10.1007/s11356-020-11462-z
Ichev, R., & Marine, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153-166. https://doi.org/10.1016/j.irfa.2017.12.004
Huynh, T. L. D., Foglia, M., Nasir, M. A., & Angelini, E. (2021). Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 188, 1088-1108. https://doi.org/10.1016/j.jebo.2021.06.016
Hsu, S., & Melchor, A. C. (2016). China’s structural transformation: reaching potential GDP in the financial services sector. China Finance and Economic Review, 4(3). https://doi.org/10.1186/s40589-016-0027-x
Hsieh, Y., Wu, T., Liu, D., Shao, P., Chang, L., Lu, C., Lee, C., Huang, F., & Huang, L. (2006). Influenza Pandemics: Past, Present and Future. Journal of the Formosan Medical Association, 105(1), 1-6. https://doi.org/10.1016/S0929-6646(09)60102-9
Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press.
Hoesli, M., Milcheva, S., & Moss, A. (2020). Is Financial Regulation Good or Bad for Real Estate Companies? – An Event Study. Journal of Real Estate Finance and Economics, 61, 369–407. https://doi.org/10.1007/s11146-017-9634-z
Peón, D., Antelo, M., & Calvo, A. (2019). A guide on empirical tests of the EMH. Review of Accounting and Finance, 18(2), 268-295. https://doi.org/10.1108/RAF-02-2016-0031
Pinho, C., & Madaleno, M. (2016). Oil prices and stock returns: nonlinear links across sectors. Portuguese Economic Journal, 15(2), 79–97. https://doi.org/10.1007/s10258-016-0117-6
Hays, J. N. (2005). Epidemics and Pandemics: Their Impacts on Human History (Vol. I). ABC-CLIO. DOI: https://iucat.iu.edu/iuk/6403443
Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ART
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Zou, L., & Robert, W. (2017). How important are earnings announcements in China? Pacific Accounting Review, 29(3), 380-396. https://doi.org/10.1108/PAR-02-2017-0011
Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528
Yuen, K., & Lee, T. (2003). Could mood state affect risk-taking decisions? Journal of Affective Disorders, 75(1), 11-18. https://doi.org/10.1016/S0165-0327(02)00022-8
Waheed, R., Wei, C., Sarwar, S., & Yulan, L. (2018). Impact of oil prices on firm stock return: industry-wise analysis. Empirical Economics, 55(3), 765–780. https://doi.org/10.1007/s00181-017-1296-4
Pooja, M., & Jaya, G. (2021). Impact of COVID-19 on Indian Migrant Workers: Decoding Twitter Data by Text Mining. The Indian Journal of Labour Economics, 64, 731-747. https://doi.org/10.1007/s41027-021-00324-y
Verikios, G., McCaw, J., McVernon, J., & Harris, A. (2012). H1N1 Influenza and the Australian Macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. https://doi.org/10.1080/13547860.2012.639999
Velásquez, G. (2009). El impacto de anuncio de eventos en el mercado accionario Colombiano. Maestría en Ciencias en Finanzas, Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/253
Tomé, L. C. (2017). La paradoja de la recurrencia. Culturacientifica.com. https://culturacientifica.com/2017/11/07/la-paradoja-la-recurrencia/#:~:text=Seg%C3%BAn%20este%20mito%2C%20la%20historia,una%20forma%20concreta%20por%20casualidad
Thomson, L. (2021). Abnormal returns of corporations adopting Bitcoin as a treasury asset: An event study. MSc Behavioural Economics: Master Thesis. Erasmus School of Economics, Erasmus University Rotterdam. https://osf.io/25qg8/download
Stout, L. A. (2003). The Mechanisms of Market Inefficiency: An Introduction to the New Finance. Cornell Law Faculty Publications. Paper 450. http://scholarship.law.cornell.edu/facpub/450
Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45, 186-207. https://doi.org/10.1007/s11747-017-0516-y
Small, K., Ionici, O., & Zhu, H. (2007). Size Does Matter: An Examination of the Economic Impact of Sarbanes-Oxley. Review of Business, 27(3), 47-55. https://www.proquest.com/docview/220956058
Siu, A., & Wong, R. (2004). Economic Impact of SARS: The Case of Hong Kong. Asian Economic Papers, 3(1), 62–83. https://doi.org/10.1162/1535351041747996
Shaikh, I. (2022). Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 55, 433–484. https://doi.org/10.1007/s10644-021-09320-0
Schipper, K., & Smith, A. (1983). Effects of recontracting on shareholder wealth: The case of voluntary spin-offs. Journal of Financial Economics, 12(4), 437-467. https://doi.org/10.1016/0304-405X(83)90043-0
Salisu, A. A., & Obiora, K. (2021). COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations. Financial Innovation, 7(34). https://doi.org/10.1186/s40854-021-00253-1
Rizwan, M., Ahmad, G., & Ashraf, D. (2020). Systemic risk: The impact of COVID-19. Finance Research Letters, 36, 101682. https://doi.org/10.1016/j.frl.2020.101682
Ritter, J. R. (1991). The Long Run Performance of Initial Public Offerings. The Journal of Finance, 46(1), 3-27. https://doi.org/10.1111/j.1540-6261.1991.tb03743.x
He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s impact on stock prices across different sectors—An event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198-2212. https://doi.org/10.1080/1540496X.2020.1785865
Hardin, W. G., Liano, K., & Huang, G. C. (2005). REIT Stock Splits and Market Efficiency. Journal of Real Estate Finance and Economics, 30(2), 297–315. https://doi.org/10.1007/s11146-005-6409-8
Publication
application/pdf
Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. The Review of Economic Studies, 72(1), 1-19.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024
Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209.
Español
https://revfinypolecon.ucatolica.edu.co/article/view/5726
Revista Finanzas y Política Económica
Universidad Católica de Colombia
Artículo de revista
Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. American Journal of Political Science, 59(2), 495-510.
2
16
Estudio de Eventos
Mercado eficiente
Covid 19
Dow Jones
Valdés Medina, Filiberto Enrique
Saavedra García, Maria Luisa
El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.
Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), 493-505.
https://creativecommons.org/licenses/by-nc-sa/4.0
Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93(1), 113-132.
Fama, E. F., & Malkiel, B. G. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. www.jstor.org/stable/2325486
Chung, R., Fung, S., Shilling, J. D., & Simmons, T. (2011). What Determines Stock Price Synchronicity in REITs? Journal of Real Estate Finance and Economics, 43(1), 73–98. https://doi.org/10.1007/s11146-010-9254-3
Cave, J., Chaudhuri, K., & Kumbhakar, S. C. (2020). Do banking sector and stock market development matter for economic growth? Empirical Economics, 59, 1513–1535. https://doi.org/10.1007/s00181-019-01692-7
Davis, M., Braunholtz-Speight, T., & Wardrop, R. (2020). Crowdfunding as Democratic Finance? Understanding How and Why UK Investors Trust these Markets. Revista Internacional de Sociología, 78(4), e173. https://doi.org/10.3989/ris.2020.78.4.m20.005
Abraham, F., Leliaert, H., & Heremans, D. (1991). Foreign Dependence of Individual Stock Prices: The Role of Aggregate Product Market Developments. Open Economies Review, 2(1), 1-26. https://doi.org/10.1007/BF01886132
Eckbo, B. E., Masulis, R. W., & Norli, Ø. (2007). Security offerings. Handbook of Empirical Corporate Finance, 233-373. https://doi.org/10.1016/B978-0-444-53265-7.50020-2
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006
Benninga, S. (2014). Financial Modeling. MIT Press.
Basse Mama, H., Mueller, S., & Pape, U. (2017). What’s in the news? The ambiguity of the information content of index reconstitutions in Germany. Review of Quantitative Finance and Accounting, 49(4), 1087–1119. https://doi.org/10.1007/s11156-017-0617-1
Eder, L., Filimonova, V., Provornaya, V., & Nemov, V. (2017). The current state of the petroleum industry and the problems of the development of the Russian economy. IOP Conference Series: Earth and Environmental Science, 84(1), 012012. https://doi.org/10.1088/1755-1315/84/1/012012
Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). John Wiley & Sons.
Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1-21. https://doi.org/10.2307/2525569
Guiso, L., & Jappelli, T. (2005). Awareness and stock market participation. CFS Working Paper, No. 2005/29, Goethe University Frankfurt, Center for Financial Studies (CFS). https://EconPapers.repec.org/RePEc:zbw:cfswop:200529
Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The Economics of Science and Technology. The Journal of Technology Transfer, 27(2), 155–203. https://doi.org/10.1023/A:1014382532639
Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press.
Andoh-Baidoo, F. K., Osei-Bryson, K. M., & Amoako-Gyampah, K. (2012). A hybrid decision tree based methodology for event studies and its application to e-commerce initiative announcements. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 44(1), 78-101. https://doi.org/10.1145/2436239.2436244
Ali, I., & Alharbi, O. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861
Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2011). The economics of climate change impacts and policy benefits at city scale: a conceptual framework. Climatic Change, 104(1), 51–87. https://doi.org/10.1007/s10584-010-9976-5
Alajbeg, D., Bubaš, Z., & Šonje, V. (2012). The efficient market hypothesis: problems with interpretations of empirical tests. Financial Theory and Practice, 36(1), 53-72. https://doi.org/10.3326/fintp.36.1.3
Ahmed, R. R., Streimikiene, D., Rolle, J. A., & Pham, A. D. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01
Clayman, M. R., Fridson, M. S., & Troughton, G. H. (2012). Corporate Finance: A Practical Approach (Vol. 42). John Wiley & Sons.
Covid 19
The objective was to analyze the financial effects produced by the COVD-19 Pandemic in the companies that make up the Dow Jones Industrial Average (DJIA) index. The Event Study technique was applied to 30 entities that make up the DJIA, considering the financial impact of the dates of the World Health Organization (WHO) communications on stock returns. The results of the analysis prove the existence of favorable evidence in relation to the market efficiency of the DJIA, in addition, it was possible to demonstrate that the stock market benefits of the organizations that make up the technology sector have a positive performance in light of the reports on health crises disseminated by the OMS.
Dow Jones
Financial Effects of the Covid 19 Pandemic on Stock Prices of Dow Jones Index
efficient market
Event study
Journal article
https://revfinypolecon.ucatolica.edu.co/article/download/5726/5461
2024-07-24T00:00:00Z
2024-07-24
2248-6046
2011-7663
10.14718/revfinanzpolitecon.v16.n2.2024.9
https://doi.org/10.14718/revfinanzpolitecon.v16.n2.2024.9
547
573
2024-07-24T00:00:00Z
institution UNIVERSIDAD CATÓLICA DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png
country_str Colombia
collection Revista Finanzas y Política Económica
title Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
spellingShingle Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
Valdés Medina, Filiberto Enrique
Saavedra García, Maria Luisa
Estudio de Eventos
Mercado eficiente
Covid 19
Dow Jones
Covid 19
Dow Jones
efficient market
Event study
title_short Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
title_full Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
title_fullStr Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
title_full_unstemmed Efectos Financieros del Covid 19 en los beneficios bursátiles de las Emisoras Integrantes del Índice Dow Jones
title_sort efectos financieros del covid 19 en los beneficios bursátiles de las emisoras integrantes del índice dow jones
title_eng Financial Effects of the Covid 19 Pandemic on Stock Prices of Dow Jones Index
description El objetivo fue analizar los efectos financieros producidos por la Pandemia COVD-19 en las empresas que integran el índice Dow Jones Industrial Average (DJIA). Se realizó la aplicación de la técnica Estudio de Eventos, a 30 entidades que conforman el DJIA, considerando el impacto financiero de las fechas de los comunicados de la Organización Mundial de la Salud (OMS) en los rendimientos accionarios. Los resultados del análisis prueban la existencia de evidencia favorable con relación a la eficiencia de mercado del DJIA, además, se pudo demostrar que los beneficios bursátiles de las organizaciones que integran el sector tecnología, tienen un rendimiento positivo ante los informes sobre crisis sanitarias difundidos por la OMS.
description_eng The objective was to analyze the financial effects produced by the COVD-19 Pandemic in the companies that make up the Dow Jones Industrial Average (DJIA) index. The Event Study technique was applied to 30 entities that make up the DJIA, considering the financial impact of the dates of the World Health Organization (WHO) communications on stock returns. The results of the analysis prove the existence of favorable evidence in relation to the market efficiency of the DJIA, in addition, it was possible to demonstrate that the stock market benefits of the organizations that make up the technology sector have a positive performance in light of the reports on health crises disseminated by the OMS.
author Valdés Medina, Filiberto Enrique
Saavedra García, Maria Luisa
author_facet Valdés Medina, Filiberto Enrique
Saavedra García, Maria Luisa
topicspa_str_mv Estudio de Eventos
Mercado eficiente
Covid 19
Dow Jones
topic Estudio de Eventos
Mercado eficiente
Covid 19
Dow Jones
Covid 19
Dow Jones
efficient market
Event study
topic_facet Estudio de Eventos
Mercado eficiente
Covid 19
Dow Jones
Covid 19
Dow Jones
efficient market
Event study
citationvolume 16
citationissue 2
publisher Universidad Católica de Colombia
ispartofjournal Revista Finanzas y Política Económica
source https://revfinypolecon.ucatolica.edu.co/article/view/5726
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Maria Luisa Saavedra García, Filiberto Enrique Valdés Medina - 2024
https://creativecommons.org/licenses/by-nc-sa/4.0
references Kumar, A., Zarychanski, R., Pinto, R., Cook, D. J., Marshall, J., Lacroix, J., & Canadian Critical Care Trials Group H1N1 Collaborative (2009). Critically ill patients with 2009 influenza A (H1N1) infection in Canada. Jama, 302(17), 1872-1879. https://doi.org/10.1001/jama.2009.1496
Patell, J. (1976). Corporate forecasts of earnings per share and stock price behavior: Empirical test. Journal of Accounting Research, 14(2), 246-276. https://doi.org/10.2307/2490543
Oler, D. K., Harrison, J. S., & Allen, M. R. (2008). The danger of misinterpreting short-window event study findings in strategic management research: An empirical illustration using horizontal acquisitions. Strategic Organization, 6(2), 151-184. https://doi.org/10.1177/1476127008090008
Mnif, E., Salhi, B., & Jarboui, A. (2020). Herding behaviour and Islamic market efficiency assessment: case of Dow Jones and Sukuk market. International Journal of Islamic and Middle Eastern Finance and Management, 13(1), 24-41. https://doi.org/10.1108/IMEFM-10-2018-0354
Mishra, P., & Mishra, S. (2020). Corona Pandemic and Stock Market Behaviour: Empirical Insights from Selected Asian Countries. Millennial Asia, 11(3), 341-365. https://doi.org/10.1177/0976399620952354
Md Rajib, K., Ferdous, M., & Mozaffar, M. (2022). Stock market reactions of Maritime shipping industry in the time of COVID-19 pandemic crisis: An empirical investigation. Maritime Policy & Management, 49(8), 1184-1199. https://doi.org/10.1080/03088839.2021.1954255
McMillen, C. (2016). Pandemics: A Very Short Introduction. Oxford University Press.
Maul, D., & Schiereck, D. (2017). The bond event study methodology since 1974. Review of Quantitative Finance and Accounting, 48, 749-787. https://doi.org/10.1007/s11156-016-0562-4
MacKinlay, A. C. (1997). Event Studies in Economics and Finance. Journal of Economic Literature, 35(1), 13-39.
Lubys, J., & Panda, P. (2020). US and EU unconventional monetary policy spillover on BRICS financial markets: an event study. Empirica, 48, 353–371. https://doi.org/10.1007/s10663-020-09480-8
Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 Outbreak and Affected Countries Stock Markets Response. International Journal of Environmental Research and Public Health, 17(8), 1-19. https://doi.org/10.3390/ijerph17082800
Lee, D. S., & Lemieux, T. (2010). Regression Discontinuity Designs in Economics. Journal of Economic Literature, 48(2), 281-355.
Lazaro, M. I. (2023). Dow Jones Industrial Average. Dow Jones Industrial Average. Diccionario Económico.
Konchitchki, Y., & O'Leary, D. E. (2011). Event study methodologies in information systems research. International Journal of Accounting Information Systems, 12(2), 99-115. https://doi.org/10.1016/j.accinf.2011.01.002
Phylaktis, K., & Ravazzolo, F. (2005). Stock prices and exchange rate dynamics. Journal of International Money and Finance, 24(7), 1031-1053. https://doi.org/10.1016/j.jimonfin.2005.08.001
Kolari, J., & Pynnonen, S. (2011). Nonparametric rank tests for event studies. Journal of Empirical Finance, 18(5), 953-971. https://doi.org/10.1016/j.jempfin.2011.08.003
Kimmich, D., Hildt, E., & Mac Donagh, P. (2019). Value recovery with harvester applying bucking optimization technology. Scientia Forestalis, 47(122), 1-8. https://dx.doi.org/10.18671/scifor.v47n122.03
Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., & Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11, 543-554. https://doi.org/10.1007/s10198-009-0210-1
Kang, H. J., Lee, S. G., & Park, S. Y. (2022). Information efficiency in the cryptocurrency market: The efficient-market hypothesis. Journal of Computer Information Systems, 62(3), 622-631. https://doi.org/10.1080/08874417.2021.1872046
Jaramillo, J., & García, M. (2012). Reacción del Mercado de Valores Mexicano ante los Escándalos Financieros, Evidencia Empírica. Revista Mexicana de Economía y Finanzas, 7(2), 129-153. https://doi.org/10.21919/remef.v7i2.32
Iqbal, S., Bilal, A. R., Nurunnabi, M., et al. (2021). It is time to control the worst: testing COVID-19 outbreak, energy consumption and CO2 emission. Environmental Science and Pollution Research, 28, 19008–19020. https://doi.org/10.1007/s11356-020-11462-z
Ichev, R., & Marine, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis, 56, 153-166. https://doi.org/10.1016/j.irfa.2017.12.004
Huynh, T. L. D., Foglia, M., Nasir, M. A., & Angelini, E. (2021). Feverish sentiment and global equity markets during the COVID-19 pandemic. Journal of Economic Behavior & Organization, 188, 1088-1108. https://doi.org/10.1016/j.jebo.2021.06.016
Hsu, S., & Melchor, A. C. (2016). China’s structural transformation: reaching potential GDP in the financial services sector. China Finance and Economic Review, 4(3). https://doi.org/10.1186/s40589-016-0027-x
Hsieh, Y., Wu, T., Liu, D., Shao, P., Chang, L., Lu, C., Lee, C., Huang, F., & Huang, L. (2006). Influenza Pandemics: Past, Present and Future. Journal of the Formosan Medical Association, 105(1), 1-6. https://doi.org/10.1016/S0929-6646(09)60102-9
Hsiao, C. (2003). Analysis of Panel Data (2nd ed.). Cambridge University Press.
Hoesli, M., Milcheva, S., & Moss, A. (2020). Is Financial Regulation Good or Bad for Real Estate Companies? – An Event Study. Journal of Real Estate Finance and Economics, 61, 369–407. https://doi.org/10.1007/s11146-017-9634-z
Peón, D., Antelo, M., & Calvo, A. (2019). A guide on empirical tests of the EMH. Review of Accounting and Finance, 18(2), 268-295. https://doi.org/10.1108/RAF-02-2016-0031
Pinho, C., & Madaleno, M. (2016). Oil prices and stock returns: nonlinear links across sectors. Portuguese Economic Journal, 15(2), 79–97. https://doi.org/10.1007/s10258-016-0117-6
Hays, J. N. (2005). Epidemics and Pandemics: Their Impacts on Human History (Vol. I). ABC-CLIO. DOI: https://iucat.iu.edu/iuk/6403443
Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968
Zou, L., & Robert, W. (2017). How important are earnings announcements in China? Pacific Accounting Review, 29(3), 380-396. https://doi.org/10.1108/PAR-02-2017-0011
Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528
Yuen, K., & Lee, T. (2003). Could mood state affect risk-taking decisions? Journal of Affective Disorders, 75(1), 11-18. https://doi.org/10.1016/S0165-0327(02)00022-8
Waheed, R., Wei, C., Sarwar, S., & Yulan, L. (2018). Impact of oil prices on firm stock return: industry-wise analysis. Empirical Economics, 55(3), 765–780. https://doi.org/10.1007/s00181-017-1296-4
Pooja, M., & Jaya, G. (2021). Impact of COVID-19 on Indian Migrant Workers: Decoding Twitter Data by Text Mining. The Indian Journal of Labour Economics, 64, 731-747. https://doi.org/10.1007/s41027-021-00324-y
Verikios, G., McCaw, J., McVernon, J., & Harris, A. (2012). H1N1 Influenza and the Australian Macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. https://doi.org/10.1080/13547860.2012.639999
Velásquez, G. (2009). El impacto de anuncio de eventos en el mercado accionario Colombiano. Maestría en Ciencias en Finanzas, Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/253
Tomé, L. C. (2017). La paradoja de la recurrencia. Culturacientifica.com. https://culturacientifica.com/2017/11/07/la-paradoja-la-recurrencia/#:~:text=Seg%C3%BAn%20este%20mito%2C%20la%20historia,una%20forma%20concreta%20por%20casualidad
Thomson, L. (2021). Abnormal returns of corporations adopting Bitcoin as a treasury asset: An event study. MSc Behavioural Economics: Master Thesis. Erasmus School of Economics, Erasmus University Rotterdam. https://osf.io/25qg8/download
Stout, L. A. (2003). The Mechanisms of Market Inefficiency: An Introduction to the New Finance. Cornell Law Faculty Publications. Paper 450. http://scholarship.law.cornell.edu/facpub/450
Sorescu, A., Warren, N. L., & Ertekin, L. (2017). Event study methodology in the marketing literature: an overview. Journal of the Academy of Marketing Science, 45, 186-207. https://doi.org/10.1007/s11747-017-0516-y
Small, K., Ionici, O., & Zhu, H. (2007). Size Does Matter: An Examination of the Economic Impact of Sarbanes-Oxley. Review of Business, 27(3), 47-55. https://www.proquest.com/docview/220956058
Siu, A., & Wong, R. (2004). Economic Impact of SARS: The Case of Hong Kong. Asian Economic Papers, 3(1), 62–83. https://doi.org/10.1162/1535351041747996
Shaikh, I. (2022). Impact of COVID-19 pandemic on the energy markets. Economic Change and Restructuring, 55, 433–484. https://doi.org/10.1007/s10644-021-09320-0
Schipper, K., & Smith, A. (1983). Effects of recontracting on shareholder wealth: The case of voluntary spin-offs. Journal of Financial Economics, 12(4), 437-467. https://doi.org/10.1016/0304-405X(83)90043-0
Salisu, A. A., & Obiora, K. (2021). COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations. Financial Innovation, 7(34). https://doi.org/10.1186/s40854-021-00253-1
Rizwan, M., Ahmad, G., & Ashraf, D. (2020). Systemic risk: The impact of COVID-19. Finance Research Letters, 36, 101682. https://doi.org/10.1016/j.frl.2020.101682
Ritter, J. R. (1991). The Long Run Performance of Initial Public Offerings. The Journal of Finance, 46(1), 3-27. https://doi.org/10.1111/j.1540-6261.1991.tb03743.x
He, P., Sun, Y., Zhang, Y., & Li, T. (2020). COVID–19’s impact on stock prices across different sectors—An event study based on the Chinese stock market. Emerging Markets Finance and Trade, 56(10), 2198-2212. https://doi.org/10.1080/1540496X.2020.1785865
Hardin, W. G., Liano, K., & Huang, G. C. (2005). REIT Stock Splits and Market Efficiency. Journal of Real Estate Finance and Economics, 30(2), 297–315. https://doi.org/10.1007/s11146-005-6409-8
Abadie, A. (2005). Semiparametric Difference-in-Differences Estimators. The Review of Economic Studies, 72(1), 1-19.
Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and Estimation of Treatment Effects with a Regression Discontinuity Design. Econometrica, 69(1), 201-209.
Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative Politics and the Synthetic Control Method. American Journal of Political Science, 59(2), 495-510.
Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program. Journal of the American Statistical Association, 105(490), 493-505.
Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93(1), 113-132.
Fama, E. F., & Malkiel, B. G. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. www.jstor.org/stable/2325486
Chung, R., Fung, S., Shilling, J. D., & Simmons, T. (2011). What Determines Stock Price Synchronicity in REITs? Journal of Real Estate Finance and Economics, 43(1), 73–98. https://doi.org/10.1007/s11146-010-9254-3
Cave, J., Chaudhuri, K., & Kumbhakar, S. C. (2020). Do banking sector and stock market development matter for economic growth? Empirical Economics, 59, 1513–1535. https://doi.org/10.1007/s00181-019-01692-7
Davis, M., Braunholtz-Speight, T., & Wardrop, R. (2020). Crowdfunding as Democratic Finance? Understanding How and Why UK Investors Trust these Markets. Revista Internacional de Sociología, 78(4), e173. https://doi.org/10.3989/ris.2020.78.4.m20.005
Abraham, F., Leliaert, H., & Heremans, D. (1991). Foreign Dependence of Individual Stock Prices: The Role of Aggregate Product Market Developments. Open Economies Review, 2(1), 1-26. https://doi.org/10.1007/BF01886132
Eckbo, B. E., Masulis, R. W., & Norli, Ø. (2007). Security offerings. Handbook of Empirical Corporate Finance, 233-373. https://doi.org/10.1016/B978-0-444-53265-7.50020-2
Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., & Oliveira, A. L. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211. https://doi.org/10.1016/j.eswa.2016.02.006
Benninga, S. (2014). Financial Modeling. MIT Press.
Basse Mama, H., Mueller, S., & Pape, U. (2017). What’s in the news? The ambiguity of the information content of index reconstitutions in Germany. Review of Quantitative Finance and Accounting, 49(4), 1087–1119. https://doi.org/10.1007/s11156-017-0617-1
Eder, L., Filimonova, V., Provornaya, V., & Nemov, V. (2017). The current state of the petroleum industry and the problems of the development of the Russian economy. IOP Conference Series: Earth and Environmental Science, 84(1), 012012. https://doi.org/10.1088/1755-1315/84/1/012012
Baltagi, B. H. (2008). Econometric Analysis of Panel Data (4th ed.). John Wiley & Sons.
Fama, E. F., Fisher, L., Jensen, M. C., & Roll, R. (1969). The Adjustment of Stock Prices to New Information. International Economic Review, 10(1), 1-21. https://doi.org/10.2307/2525569
Guiso, L., & Jappelli, T. (2005). Awareness and stock market participation. CFS Working Paper, No. 2005/29, Goethe University Frankfurt, Center for Financial Studies (CFS). https://EconPapers.repec.org/RePEc:zbw:cfswop:200529
Audretsch, D. B., Bozeman, B., Combs, K. L., et al. (2002). The Economics of Science and Technology. The Journal of Technology Transfer, 27(2), 155–203. https://doi.org/10.1023/A:1014382532639
Angrist, J. D., & Pischke, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press.
Andoh-Baidoo, F. K., Osei-Bryson, K. M., & Amoako-Gyampah, K. (2012). A hybrid decision tree based methodology for event studies and its application to e-commerce initiative announcements. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 44(1), 78-101. https://doi.org/10.1145/2436239.2436244
Ali, I., & Alharbi, O. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 728, 138861. https://doi.org/10.1016/j.scitotenv.2020.138861
Hallegatte, S., Henriet, F., & Corfee-Morlot, J. (2011). The economics of climate change impacts and policy benefits at city scale: a conceptual framework. Climatic Change, 104(1), 51–87. https://doi.org/10.1007/s10584-010-9976-5
Alajbeg, D., Bubaš, Z., & Šonje, V. (2012). The efficient market hypothesis: problems with interpretations of empirical tests. Financial Theory and Practice, 36(1), 53-72. https://doi.org/10.3326/fintp.36.1.3
Ahmed, R. R., Streimikiene, D., Rolle, J. A., & Pham, A. D. (2020). The COVID-19 pandemic and the antecedants for the impulse buying behavior of US citizens. Journal of Competitiveness, 12(3), 5–27. https://doi.org/10.7441/joc.2020.03.01
Clayman, M. R., Fridson, M. S., & Troughton, G. H. (2012). Corporate Finance: A Practical Approach (Vol. 42). John Wiley & Sons.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_2df8fbb1
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-07-24
date_accessioned 2024-07-24T00:00:00Z
date_available 2024-07-24T00:00:00Z
url https://revfinypolecon.ucatolica.edu.co/article/view/5726
url_doi https://doi.org/10.14718/revfinanzpolitecon.v16.n2.2024.9
issn 2248-6046
eissn 2011-7663
doi 10.14718/revfinanzpolitecon.v16.n2.2024.9
citationstartpage 547
citationendpage 573
url2_str_mv https://revfinypolecon.ucatolica.edu.co/article/download/5726/5461
_version_ 1815676495868198912