Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile
.
Los corredores verdes urbanos son una solución basada en la naturaleza (SBN) que provee zonas de esparcimiento y una red de conectividad urbana para movilidad activa, además de prestar servicios ecosistémicos a los habitantes de las ciudades, que mejoran su calidad de vida, y son una herramienta de gestión fuerte para el desarrollo de ciudades sostenibles. El presente trabajo propone una novedosa metodología, susceptible de ser ampliada, para el diseño de corredores verdes urbanos, mediante un caso práctico en una ciudad de tamaño intermedio, Temuco (Chile), basada en la selección de áreas verdes urbanas pequeño-medianas que unidas a redes de ciclovías y calles peatonales conecten las áreas verdes núcleo de la ciudad, entendiendo estas como... Ver más
1657-0308
2357-626X
26
2024-07-17
189
204
Roberto Moreno, Ángel Lora-González, Carmen Galán, Ricardo Zamora-Díaz - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_ucatolica_revistadearquitectura_bogota__22_article_5503 |
---|---|
record_format |
ojs |
spelling |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile Methodological Proposal for the Identification of Potential Urban Green Corridors. Case study: Temuco, Chile Los corredores verdes urbanos son una solución basada en la naturaleza (SBN) que provee zonas de esparcimiento y una red de conectividad urbana para movilidad activa, además de prestar servicios ecosistémicos a los habitantes de las ciudades, que mejoran su calidad de vida, y son una herramienta de gestión fuerte para el desarrollo de ciudades sostenibles. El presente trabajo propone una novedosa metodología, susceptible de ser ampliada, para el diseño de corredores verdes urbanos, mediante un caso práctico en una ciudad de tamaño intermedio, Temuco (Chile), basada en la selección de áreas verdes urbanas pequeño-medianas que unidas a redes de ciclovías y calles peatonales conecten las áreas verdes núcleo de la ciudad, entendiendo estas como zonas verdes de alta densidad y diversidad vegetacional. Los resultados muestran la aplicabilidad de los criterios metodológicos utilizados en el diseño de corredores verdes, y evidencian las condiciones positivas de Temuco respecto a calidad y superficie de áreas verdes, ciclovías y calles peatonales que fomenten la movilidad urbana limpia. Además, el método es replicable en otras ciudades, lo que permite incorporar nuevos parámetros que supongan mayores beneficios provenientes del corredor verde. Urban green corridors are a Nature-Based Solution (NBS) that provides recreational areas and a network of urban connectivity for active mobility, in addition to providing ecosystem services to city dwellers, improving their quality of life, and serving as a strong management tool for sustainable city development. This paper proposes an innovative methodology, capable of being expanded,for designing urban green corridors through a practical case in a mid-sized city, Temuco (Chile), based on the selection of small to medium urban green areas that, connected to bike paths and pedestrian streets, link core green areas of the city, understanding these as high-density green zones with diverse vegetation. The results show the applicability of the methodological criteria used in designing green corridors, and highlight the positive conditions of Temuco regarding the quality and surface area of green spaces, bike paths and pedestrian streets that promote clean urban mobility. Moreover, the method is replicable in other cities, allowing for the incorporation of new parameters that may yield greater benefits from the green corridor. Moreno, Roberto Lora-González, Ángel Galán, Carmen Zamora-Díaz, Ricardo arbolado urbano ciclovías movilidad activa sostenibilidad urbanismo active mobility cycle paths susteinability urban planning urban trees 26 2 Núm. 2 , Año 2024 :julio-diciembre Artículo de revista Journal article 2024-07-17T16:41:40Z 2024-07-17T16:41:40Z 2024-07-17 text/html application/pdf Bogotá: Universidad Católica de Colombia, 1999- Revista de arquitectura 1657-0308 2357-626X https://revistadearquitectura.ucatolica.edu.co/article/view/5503 10.14718/RevArq.2024.26.5503 https://doi.org/10.14718/RevArq.2024.26.5503 spa https://creativecommons.org/licenses/by-nc/4.0 Roberto Moreno, Ángel Lora-González, Carmen Galán, Ricardo Zamora-Díaz - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. 189 204 Ángel, S., Parent, J., & Civco, D. L. (2012). The fragmentation of urban landscapes: Global evidence of a key attribute of the spatial structure of cities, 1990-2000. Environment and Urbanization, 24(1), 249-283. https://doi.org/10.1177/0956247811433536 Arroyo, M. T., Marquet, P. A., Marticorena, C., Simonetti, J., Cavieres, L. A., Squeo, F. A., Rozzi, R., & Massardo, F. (2006). El hotspot chileno, prioridad mundial para la conservación. Diversidad de ecosistemas, ecosistemas terrestres. En Biodiversidad de Chile, patrimonio y desafíos (pp. 90-93). Ocho Libro Editores. https://repositorio.uchile.cl/handle/2250/120068 Ayuntamiento de Vitoria-Gasteiz. (2020). Plan de movilidad sostenible y espacio público de Vitoria-Gasteiz (2021-2025). https://www.vitoria-gasteiz.org/docs/wb021/contenidosEstaticos/adjuntos/es/45/92/94592.pdf Bakogiannis, E., Vassi, A., Siti, M., & Christodoulopoulou, G. (2016). Developing a sustainable mobility plan in piraeus with special emphasis on cycling. Journal of Traffic and Transportation Engineering, 4, 61-74. https://doi.org/10.17265/2328-2142/2016.02.001 Baldó, J. (2014). Ciudades saludables / ciudades enfermas Healthy cities / sick cities. Anales Venezolanos de Nutrición, 27(1), 193-201. Blinge, M. (2014). Policy measures to realise green corridors - A stakeholder perspective. Research in Transportation Business and Management, 12, 55-62. https://doi.org/10.1016/j.rtbm.2014.06.007 Cansino, J. M., Moreno, R., Quintana, D., & Roman-Collado, R. (2019). Health and heating in the city of Temuco (Chile). Monetary savings of replacing biomass with PV system in the residential sector. Sustainability, 11(19), 5205. https://doi.org/10.3390/su11195205 Canto López, M. T. (2014). La ordenación de la Infraestructura Verde en el sudeste Ibérico (Comunidad Valenciana, España). Cuadernos de Biodiversidad, 45, 10-22. http://rua.ua.es/dspace/bitstream/10045/40005/1/CuadBio_45_03.pdf Clausen, U., Geiger, C., & Behmer, C. (2012). Green corridors by means of ICT applications. Procedia - Social and Behavioral Sciences, 48, 1877-1886. https://doi.org/10.1016/j.sbspro.2012.06.1162 Diez Roux, A. V., Slesinski, S. C., Alazraqui, M., Caiaffa, W. T., Frenz, P., Jordán Fuchs, R., Miranda, J. J., Rodríguez, D. A., Dueñas, O. L. S., Siri, J., & Vergara, A. V. (2019). A novel international partnership for actionable evidence on urban health in Latin America: LAC‐Urban Health and Salurbal. Global Challenges, 3(4), 1800013. https://doi.org/10.1002/gch2.201800013 Duque, J. C., Lozano-Gracia, N., Patiño, J. E., Restrepo, P., & Velásquez, W. A. (2019). Spatiotemporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery Juan. Landscape and Urban Planning, 191(April), 103640. https://doi.org/10.1016/j.landurbplan.2019.103640 Eltit, V. (2011). Transporte urbano no motorizado: El potencial de la bicicleta en la ciudad de Temuco. Revista INVI, 26(72), 153-184. https://doi.org/10.4067/S0718-83582011000200006 Flores, S., Van Mechelen, C., Vallejo, J. P., & Van Meerbeek, K. (2022). Trends and status of urban green and urban green research in Latin America. Landscape and Urban Planning, 227, 104536. https://doi.org/10.1016/j.landurbplan.2022.104536 Gámez, V. (2005). Sobre sistemas, tipologías y estándares de áreas verdes en el planeamiento urbano. Diseño Urbano y Paisaje, 2(6), 1-22. García-Ayllón, S. (2016). Rapid development as a factor of imbalance in urban growth of cities in Latin America: a perspective based on territorial indicators. Habitat International, 58, 127-142. https://doi.org/10.1016/j.habitatint.2016.10.005 Gill, S. E., Handley, J. F., Ennos, R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115-133. https://doi.org/10.2148/benv.33.1.115 Gurrutxaga, M. (2011). La gestión de la conectividad ecológica del territorio en España : iniciativas y retos. Boletín de la Asociación de Geógrafos Españoles, 56, 225-244. Handley, J., Pauleit, S., Slinn, P., Barber, A., Baker, M., Jones, C., & Lindley, S. (2003). Accessible natural green space. Standards in towns and cities: a review and toolkit for their implementation. English Nature Research Reports, 526, 98. https://publications.naturalengland.org.uk/publication/65021 Hardoy, J. E., Mitlin, D., & Satterthwaite, D. (2013). Environmental problems in an urbanizing world: Finding solutions in cities in Africa, Asia and Latin America. En Substance abuse issues among families in diverse populations. Rutledge. https://doi.org/10.4324/9781315071732 Hansen, R., & Pauleit, S. (2014). From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for Urban Areas. Ambio, 43(4), 516–529. https://doi.org/10.1007/s13280-014-0510-2 Hong, J., & Mcarthur, D. (2020). Did safe cycling infrastructure still matter during a COVID-19 lockdown? Sustainability, 12(20), 8672. https://doi.org/10.3390/su12208672 Huang, J., Fournier, N., & Skabardonis, A. (2021). Bicycle level of service: proposed updated pavement quality index. Transportation Research Record, 2675(11), 1346-1356. https://doi.org/10.1177/03611981211026661 Ikin, K., Le Roux, D. S., Rayner, L., Villaseñor, N. R., Eyles, K., Gibbons, P., Manning, A. D., & Lindenmayer, D. B. (2015). Key lessons for achieving biodiversity-sensitive cities and towns. Ecological Management and Restoration, 16(3), 206-214. https://doi.org/10.1111/emr.12180 İnançoğlu, S., Özden, Ö., & Kara, C. (2020). Green Corridors in urban landscapes, case study Nicosia Pedieos River. European Journal of Sustainable Development, 9(1), 1-8. https://doi.org/10.14207/ejsd.2020.v9n1p1 Jiang, Y., Huang, J., Shi, T., & Li, X. (2021). Cooling island effect of blue-green corridors: Quantitative comparison of morphological impacts. International Journal of Environmental Research and Public Health, 18(22), 1917. https://doi.org/10.3390/ijerph182211917 Jirón, P., & Mansilla, P. (2014). Las consecuencias del urbanismo fragmentador en la vida cotidiana de habitantes de la ciudad de Santiago de Chile. Eure, 40(121), 79-97. https://doi.org/10.4067/S0250-71612014000300001 Kim, K. (2011). A comparative institutional analysis of management in urban riparian greenways: the American River Parkway (Sacramento, California) and the Willamette River Greenway (Portland, Oregon). The California State University, Scholarwork. https://scholarworks.calstate.edu/concern/theses/fb494b74b Lin, J. J., & Wei, Y. H. (2018). Assessing area-wide bikeability: A grey analytic network process. Transportation Research Part A: Policy and Practice, 113(1), 381-396. https://doi.org/10.1016/j.tra.2018.04.022 McNeil, N. (2011). Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transportation Research Record, 2247. https://doi.org/10.3141/2247-07 Mell, I. (2018). Financing the future of green infrastructure planning: alternatives and opportunities in the UK. Landscape Research, 43(6), 751-768. https://doi.org/10.1080/01426397.2017.1390079 Moré, R., & Giret, M. (2013). Movilidad sostenible en Bogotá D.C. Caso metro Bogotá. Revista de Tecnología, 12(2), 52-99. https://doi.org/10.18270/rt.v12i2.769 Moreno, R., Ojeda, N., Azócar, J., Venegas, C., & Inostroza, L. (2020). Application of NDVI for identify potentiality of the urban forest for the design of a green corridors system in intermediary cities of Latin America: Case study, Temuco, Chile. Urban Forestry and Urban Greening, 55. https://doi.org/10.1016/j.ufug.2020.126821 Müller-Using, S., Rojas Ponce, Y., & Martin Stuven, M. (2021). Propuesta para la definición de un diámetro meta para los árboles futuro en renovales de roble (Nothofagus obliqua). Ciencia & Investigación Forestal, 27(3), 49-61. https://doi.org/10.52904/0718-4646.2021.553 Municipalidad de Temuco. (2010). Plan Regulador Comunal. Zonificación urbana. Municipalidad de Temuco, Región de la Araucanía, Chile. Myers, N., Mittermeier, R., Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501 ONU-Habitat. (2022). World cities report 2022: Envisaging the future of cities. En World Cities Report 2022. https://onuhabitat.org.mx/WCR/ Pauleit, S., Slinn, P., Handley, J., & Lindley, S. (2003). Promoting the natural greenstructure of towns and cities: English nature’s accessible natural greenspace standards model. Built Environment, 29(2), 157-171. https://doi.org/10.2148/benv.29.2.157.54469 Peng, J., Zhao, H., & Liu, Y. (2017). Urban ecological corridors construction: A review. Shengtai Xuebao. Acta Ecológica Sínica, 37(1), 23-30. https://doi.org/10.1016/j.chnaes.2016.12.002 Penteado, H. M., & Alvarez, C. E. (2007). Corredores verdes urbanos: estudo da viabilidade de conexão Das Áreas Verdes De Vitória. Paisagem Ambiente: Ensaios, 57-68. https://www.revistas.usp.br/paam/issue/view/6555 Psaraftis, H. N., & Panagakos, G. (2012). Green Corridors in European Surface freight logistics and the Supergreen Project. Procedia - Social and Behavioral Sciences, 48, 1723-1732. https://doi.org/10.1016/j.sbspro.2012.06.1147 Romero, H. (2009). Ecología política del cambio climático en ciudades chilenas: Características y vulnerabilidades sociales. Seminario Internacional Impactos Sociales del Cambio Climático a Nivel Internacional. Universidad de Concepción, Facultad de Ciencias Sociales. https://repositorio.uchile.cl/bitstream/handle/2250/118159/EcologiaPolitica.pdf?sequence=1 Rueda, S. (2011). El urbanismo ecológico. Territorio, Urbanismo, Sostenibilidad, Paisaje, Diseño Urbano, p. 1–34. http://urban-e.aq.upm.es/articulos/ver/el-urbanismo-ecol-gico/completo Schlegel, B., Gayoso, J., & Guerra, J. (2000). Manual de procedimientos. Muestreos de biomasa forestal. Universidad Austral de Chile. https://bibliotecadigital.ciren.cl/bitstream/handle/20.500.13082/26685/manmuesbio.PDF?sequence=1&isAllowed=y Segovia Araníbar, E. L., Esenarro, D., Ascama, L., Rodríguez, C., & Julca, M. S. (2020). Design of green infrastructure for sustainable urban transportation in Lomas del Paraíso in Villa María del Triunfo. Journal of Green Engineering, 10(11), 11180-11192. Tolegen, Z., Konbr, U., Karzhaubayeva, S., Sadvokasova, G., Nauryzbayeva, A., & Amandykova, D. (2023). Assessment of safe access to pedestrian infrastructure facilities in the city of Almaty, Kazakhstan. Civil Engineering and Architecture, 11(1), 351-371. https://doi.org/10.13189/cea.2023.110128 Vaccaro, L. (2011). Análisis de la accesibilidad desde la perspectiva de la movilidad. Universidad de Chile. https://repositorio.uchile.cl/bitstream/handle/2250/100412/0649_aq-vaccaro_l.pdf Vásquez, A. (2016). Infraestructura verde, servicios ecosistémicos y sus aportes para enfrentar el cambio climático en ciudades : el caso del corredor ribereño del río Mapocho en Santiago de Chile 1. Revista de Geografía Norte Grande, 86, 63-86. http://dx.doi.org/10.4067/S0718-34022016000100005 Vásquez, A., Devoto, C., Giannotti, E., & Velásquez, P. (2016). Green infrastructure systems facing fragmented cities in Latin America - Case of Santiago, Chile. Procedia Engineering, 161, 1410-1416. https://doi.org/10.1016/j.proeng.2016.08.602 Vélez Restrepo, L. A. (2007). Paisajismo y ecología del paisaje en la gestión de la arborización de calles. Una referencia a la ciudad de Medellín, Colombia. Gestión y Ambiente, 10(4), 131-140. https://www.redalyc.org/articulo.oa?id=169419796011 Wang, Y. (2013). Sustainable development and green space system construction. 21st International Conference on Geoinformatics, 40971101, 1-5 https://ieeexplore.ieee.org/abstract/document/6626192 Whitford, V., Ennos, A. R., & Handley, J. F. (2001). City form and natural process. Indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape and Urban Planning, 57(2), 91-103. https://doi.org/10.1016/S0169-2046(01)00192-X Žlender, V., & Ward Thompson, C. (2017). Accessibility and use of peri-urban green space for inner-city dwellers: A comparative study. Landscape and Urban Planning, 165, 193-205. https://doi.org/10.1016/j.landurbplan.2016.06.011 https://revistadearquitectura.ucatolica.edu.co/article/download/5503/5451 https://revistadearquitectura.ucatolica.edu.co/article/download/5503/5252 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD CATÓLICA DE COLOMBIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png |
country_str |
Colombia |
collection |
Revista de Arquitectura (Bogotá) |
title |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile |
spellingShingle |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile Moreno, Roberto Lora-González, Ángel Galán, Carmen Zamora-Díaz, Ricardo arbolado urbano ciclovías movilidad activa sostenibilidad urbanismo active mobility cycle paths susteinability urban planning urban trees |
title_short |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile |
title_full |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile |
title_fullStr |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile |
title_full_unstemmed |
Propuesta metodológica para la identificación de potenciales corredores verdes urbanos. Estudio de caso: Temuco, Chile |
title_sort |
propuesta metodológica para la identificación de potenciales corredores verdes urbanos. estudio de caso: temuco, chile |
title_eng |
Methodological Proposal for the Identification of Potential Urban Green Corridors. Case study: Temuco, Chile |
description |
Los corredores verdes urbanos son una solución basada en la naturaleza (SBN) que provee zonas de esparcimiento y una red de conectividad urbana para movilidad activa, además de prestar servicios ecosistémicos a los habitantes de las ciudades, que mejoran su calidad de vida, y son una herramienta de gestión fuerte para el desarrollo de ciudades sostenibles. El presente trabajo propone una novedosa metodología, susceptible de ser ampliada, para el diseño de corredores verdes urbanos, mediante un caso práctico en una ciudad de tamaño intermedio, Temuco (Chile), basada en la selección de áreas verdes urbanas pequeño-medianas que unidas a redes de ciclovías y calles peatonales conecten las áreas verdes núcleo de la ciudad, entendiendo estas como zonas verdes de alta densidad y diversidad vegetacional. Los resultados muestran la aplicabilidad de los criterios metodológicos utilizados en el diseño de corredores verdes, y evidencian las condiciones positivas de Temuco respecto a calidad y superficie de áreas verdes, ciclovías y calles peatonales que fomenten la movilidad urbana limpia. Además, el método es replicable en otras ciudades, lo que permite incorporar nuevos parámetros que supongan mayores beneficios provenientes del corredor verde.
|
description_eng |
Urban green corridors are a Nature-Based Solution (NBS) that provides recreational areas and a network of urban connectivity for active mobility, in addition to providing ecosystem services to city dwellers, improving their quality of life, and serving as a strong management tool for sustainable city development. This paper proposes an innovative methodology, capable of being expanded,for designing urban green corridors through a practical case in a mid-sized city, Temuco (Chile), based on the selection of small to medium urban green areas that, connected to bike paths and pedestrian streets, link core green areas of the city, understanding these as high-density green zones with diverse vegetation. The results show the applicability of the methodological criteria used in designing green corridors, and highlight the positive conditions of Temuco regarding the quality and surface area of green spaces, bike paths and pedestrian streets that promote clean urban mobility. Moreover, the method is replicable in other cities, allowing for the incorporation of new parameters that may yield greater benefits from the green corridor.
|
author |
Moreno, Roberto Lora-González, Ángel Galán, Carmen Zamora-Díaz, Ricardo |
author_facet |
Moreno, Roberto Lora-González, Ángel Galán, Carmen Zamora-Díaz, Ricardo |
topicspa_str_mv |
arbolado urbano ciclovías movilidad activa sostenibilidad urbanismo |
topic |
arbolado urbano ciclovías movilidad activa sostenibilidad urbanismo active mobility cycle paths susteinability urban planning urban trees |
topic_facet |
arbolado urbano ciclovías movilidad activa sostenibilidad urbanismo active mobility cycle paths susteinability urban planning urban trees |
citationvolume |
26 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2024 :julio-diciembre |
publisher |
Bogotá: Universidad Católica de Colombia, 1999- |
ispartofjournal |
Revista de arquitectura |
source |
https://revistadearquitectura.ucatolica.edu.co/article/view/5503 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc/4.0 Roberto Moreno, Ángel Lora-González, Carmen Galán, Ricardo Zamora-Díaz - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Ángel, S., Parent, J., & Civco, D. L. (2012). The fragmentation of urban landscapes: Global evidence of a key attribute of the spatial structure of cities, 1990-2000. Environment and Urbanization, 24(1), 249-283. https://doi.org/10.1177/0956247811433536 Arroyo, M. T., Marquet, P. A., Marticorena, C., Simonetti, J., Cavieres, L. A., Squeo, F. A., Rozzi, R., & Massardo, F. (2006). El hotspot chileno, prioridad mundial para la conservación. Diversidad de ecosistemas, ecosistemas terrestres. En Biodiversidad de Chile, patrimonio y desafíos (pp. 90-93). Ocho Libro Editores. https://repositorio.uchile.cl/handle/2250/120068 Ayuntamiento de Vitoria-Gasteiz. (2020). Plan de movilidad sostenible y espacio público de Vitoria-Gasteiz (2021-2025). https://www.vitoria-gasteiz.org/docs/wb021/contenidosEstaticos/adjuntos/es/45/92/94592.pdf Bakogiannis, E., Vassi, A., Siti, M., & Christodoulopoulou, G. (2016). Developing a sustainable mobility plan in piraeus with special emphasis on cycling. Journal of Traffic and Transportation Engineering, 4, 61-74. https://doi.org/10.17265/2328-2142/2016.02.001 Baldó, J. (2014). Ciudades saludables / ciudades enfermas Healthy cities / sick cities. Anales Venezolanos de Nutrición, 27(1), 193-201. Blinge, M. (2014). Policy measures to realise green corridors - A stakeholder perspective. Research in Transportation Business and Management, 12, 55-62. https://doi.org/10.1016/j.rtbm.2014.06.007 Cansino, J. M., Moreno, R., Quintana, D., & Roman-Collado, R. (2019). Health and heating in the city of Temuco (Chile). Monetary savings of replacing biomass with PV system in the residential sector. Sustainability, 11(19), 5205. https://doi.org/10.3390/su11195205 Canto López, M. T. (2014). La ordenación de la Infraestructura Verde en el sudeste Ibérico (Comunidad Valenciana, España). Cuadernos de Biodiversidad, 45, 10-22. http://rua.ua.es/dspace/bitstream/10045/40005/1/CuadBio_45_03.pdf Clausen, U., Geiger, C., & Behmer, C. (2012). Green corridors by means of ICT applications. Procedia - Social and Behavioral Sciences, 48, 1877-1886. https://doi.org/10.1016/j.sbspro.2012.06.1162 Diez Roux, A. V., Slesinski, S. C., Alazraqui, M., Caiaffa, W. T., Frenz, P., Jordán Fuchs, R., Miranda, J. J., Rodríguez, D. A., Dueñas, O. L. S., Siri, J., & Vergara, A. V. (2019). A novel international partnership for actionable evidence on urban health in Latin America: LAC‐Urban Health and Salurbal. Global Challenges, 3(4), 1800013. https://doi.org/10.1002/gch2.201800013 Duque, J. C., Lozano-Gracia, N., Patiño, J. E., Restrepo, P., & Velásquez, W. A. (2019). Spatiotemporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery Juan. Landscape and Urban Planning, 191(April), 103640. https://doi.org/10.1016/j.landurbplan.2019.103640 Eltit, V. (2011). Transporte urbano no motorizado: El potencial de la bicicleta en la ciudad de Temuco. Revista INVI, 26(72), 153-184. https://doi.org/10.4067/S0718-83582011000200006 Flores, S., Van Mechelen, C., Vallejo, J. P., & Van Meerbeek, K. (2022). Trends and status of urban green and urban green research in Latin America. Landscape and Urban Planning, 227, 104536. https://doi.org/10.1016/j.landurbplan.2022.104536 Gámez, V. (2005). Sobre sistemas, tipologías y estándares de áreas verdes en el planeamiento urbano. Diseño Urbano y Paisaje, 2(6), 1-22. García-Ayllón, S. (2016). Rapid development as a factor of imbalance in urban growth of cities in Latin America: a perspective based on territorial indicators. Habitat International, 58, 127-142. https://doi.org/10.1016/j.habitatint.2016.10.005 Gill, S. E., Handley, J. F., Ennos, R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environment, 33(1), 115-133. https://doi.org/10.2148/benv.33.1.115 Gurrutxaga, M. (2011). La gestión de la conectividad ecológica del territorio en España : iniciativas y retos. Boletín de la Asociación de Geógrafos Españoles, 56, 225-244. Handley, J., Pauleit, S., Slinn, P., Barber, A., Baker, M., Jones, C., & Lindley, S. (2003). Accessible natural green space. Standards in towns and cities: a review and toolkit for their implementation. English Nature Research Reports, 526, 98. https://publications.naturalengland.org.uk/publication/65021 Hardoy, J. E., Mitlin, D., & Satterthwaite, D. (2013). Environmental problems in an urbanizing world: Finding solutions in cities in Africa, Asia and Latin America. En Substance abuse issues among families in diverse populations. Rutledge. https://doi.org/10.4324/9781315071732 Hansen, R., & Pauleit, S. (2014). From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for Urban Areas. Ambio, 43(4), 516–529. https://doi.org/10.1007/s13280-014-0510-2 Hong, J., & Mcarthur, D. (2020). Did safe cycling infrastructure still matter during a COVID-19 lockdown? Sustainability, 12(20), 8672. https://doi.org/10.3390/su12208672 Huang, J., Fournier, N., & Skabardonis, A. (2021). Bicycle level of service: proposed updated pavement quality index. Transportation Research Record, 2675(11), 1346-1356. https://doi.org/10.1177/03611981211026661 Ikin, K., Le Roux, D. S., Rayner, L., Villaseñor, N. R., Eyles, K., Gibbons, P., Manning, A. D., & Lindenmayer, D. B. (2015). Key lessons for achieving biodiversity-sensitive cities and towns. Ecological Management and Restoration, 16(3), 206-214. https://doi.org/10.1111/emr.12180 İnançoğlu, S., Özden, Ö., & Kara, C. (2020). Green Corridors in urban landscapes, case study Nicosia Pedieos River. European Journal of Sustainable Development, 9(1), 1-8. https://doi.org/10.14207/ejsd.2020.v9n1p1 Jiang, Y., Huang, J., Shi, T., & Li, X. (2021). Cooling island effect of blue-green corridors: Quantitative comparison of morphological impacts. International Journal of Environmental Research and Public Health, 18(22), 1917. https://doi.org/10.3390/ijerph182211917 Jirón, P., & Mansilla, P. (2014). Las consecuencias del urbanismo fragmentador en la vida cotidiana de habitantes de la ciudad de Santiago de Chile. Eure, 40(121), 79-97. https://doi.org/10.4067/S0250-71612014000300001 Kim, K. (2011). A comparative institutional analysis of management in urban riparian greenways: the American River Parkway (Sacramento, California) and the Willamette River Greenway (Portland, Oregon). The California State University, Scholarwork. https://scholarworks.calstate.edu/concern/theses/fb494b74b Lin, J. J., & Wei, Y. H. (2018). Assessing area-wide bikeability: A grey analytic network process. Transportation Research Part A: Policy and Practice, 113(1), 381-396. https://doi.org/10.1016/j.tra.2018.04.022 McNeil, N. (2011). Bikeability and the 20-min neighborhood: How infrastructure and destinations influence bicycle accessibility. Transportation Research Record, 2247. https://doi.org/10.3141/2247-07 Mell, I. (2018). Financing the future of green infrastructure planning: alternatives and opportunities in the UK. Landscape Research, 43(6), 751-768. https://doi.org/10.1080/01426397.2017.1390079 Moré, R., & Giret, M. (2013). Movilidad sostenible en Bogotá D.C. Caso metro Bogotá. Revista de Tecnología, 12(2), 52-99. https://doi.org/10.18270/rt.v12i2.769 Moreno, R., Ojeda, N., Azócar, J., Venegas, C., & Inostroza, L. (2020). Application of NDVI for identify potentiality of the urban forest for the design of a green corridors system in intermediary cities of Latin America: Case study, Temuco, Chile. Urban Forestry and Urban Greening, 55. https://doi.org/10.1016/j.ufug.2020.126821 Müller-Using, S., Rojas Ponce, Y., & Martin Stuven, M. (2021). Propuesta para la definición de un diámetro meta para los árboles futuro en renovales de roble (Nothofagus obliqua). Ciencia & Investigación Forestal, 27(3), 49-61. https://doi.org/10.52904/0718-4646.2021.553 Municipalidad de Temuco. (2010). Plan Regulador Comunal. Zonificación urbana. Municipalidad de Temuco, Región de la Araucanía, Chile. Myers, N., Mittermeier, R., Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501 ONU-Habitat. (2022). World cities report 2022: Envisaging the future of cities. En World Cities Report 2022. https://onuhabitat.org.mx/WCR/ Pauleit, S., Slinn, P., Handley, J., & Lindley, S. (2003). Promoting the natural greenstructure of towns and cities: English nature’s accessible natural greenspace standards model. Built Environment, 29(2), 157-171. https://doi.org/10.2148/benv.29.2.157.54469 Peng, J., Zhao, H., & Liu, Y. (2017). Urban ecological corridors construction: A review. Shengtai Xuebao. Acta Ecológica Sínica, 37(1), 23-30. https://doi.org/10.1016/j.chnaes.2016.12.002 Penteado, H. M., & Alvarez, C. E. (2007). Corredores verdes urbanos: estudo da viabilidade de conexão Das Áreas Verdes De Vitória. Paisagem Ambiente: Ensaios, 57-68. https://www.revistas.usp.br/paam/issue/view/6555 Psaraftis, H. N., & Panagakos, G. (2012). Green Corridors in European Surface freight logistics and the Supergreen Project. Procedia - Social and Behavioral Sciences, 48, 1723-1732. https://doi.org/10.1016/j.sbspro.2012.06.1147 Romero, H. (2009). Ecología política del cambio climático en ciudades chilenas: Características y vulnerabilidades sociales. Seminario Internacional Impactos Sociales del Cambio Climático a Nivel Internacional. Universidad de Concepción, Facultad de Ciencias Sociales. https://repositorio.uchile.cl/bitstream/handle/2250/118159/EcologiaPolitica.pdf?sequence=1 Rueda, S. (2011). El urbanismo ecológico. Territorio, Urbanismo, Sostenibilidad, Paisaje, Diseño Urbano, p. 1–34. http://urban-e.aq.upm.es/articulos/ver/el-urbanismo-ecol-gico/completo Schlegel, B., Gayoso, J., & Guerra, J. (2000). Manual de procedimientos. Muestreos de biomasa forestal. Universidad Austral de Chile. https://bibliotecadigital.ciren.cl/bitstream/handle/20.500.13082/26685/manmuesbio.PDF?sequence=1&isAllowed=y Segovia Araníbar, E. L., Esenarro, D., Ascama, L., Rodríguez, C., & Julca, M. S. (2020). Design of green infrastructure for sustainable urban transportation in Lomas del Paraíso in Villa María del Triunfo. Journal of Green Engineering, 10(11), 11180-11192. Tolegen, Z., Konbr, U., Karzhaubayeva, S., Sadvokasova, G., Nauryzbayeva, A., & Amandykova, D. (2023). Assessment of safe access to pedestrian infrastructure facilities in the city of Almaty, Kazakhstan. Civil Engineering and Architecture, 11(1), 351-371. https://doi.org/10.13189/cea.2023.110128 Vaccaro, L. (2011). Análisis de la accesibilidad desde la perspectiva de la movilidad. Universidad de Chile. https://repositorio.uchile.cl/bitstream/handle/2250/100412/0649_aq-vaccaro_l.pdf Vásquez, A. (2016). Infraestructura verde, servicios ecosistémicos y sus aportes para enfrentar el cambio climático en ciudades : el caso del corredor ribereño del río Mapocho en Santiago de Chile 1. Revista de Geografía Norte Grande, 86, 63-86. http://dx.doi.org/10.4067/S0718-34022016000100005 Vásquez, A., Devoto, C., Giannotti, E., & Velásquez, P. (2016). Green infrastructure systems facing fragmented cities in Latin America - Case of Santiago, Chile. Procedia Engineering, 161, 1410-1416. https://doi.org/10.1016/j.proeng.2016.08.602 Vélez Restrepo, L. A. (2007). Paisajismo y ecología del paisaje en la gestión de la arborización de calles. Una referencia a la ciudad de Medellín, Colombia. Gestión y Ambiente, 10(4), 131-140. https://www.redalyc.org/articulo.oa?id=169419796011 Wang, Y. (2013). Sustainable development and green space system construction. 21st International Conference on Geoinformatics, 40971101, 1-5 https://ieeexplore.ieee.org/abstract/document/6626192 Whitford, V., Ennos, A. R., & Handley, J. F. (2001). City form and natural process. Indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landscape and Urban Planning, 57(2), 91-103. https://doi.org/10.1016/S0169-2046(01)00192-X Žlender, V., & Ward Thompson, C. (2017). Accessibility and use of peri-urban green space for inner-city dwellers: A comparative study. Landscape and Urban Planning, 165, 193-205. https://doi.org/10.1016/j.landurbplan.2016.06.011 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-07-17 |
date_accessioned |
2024-07-17T16:41:40Z |
date_available |
2024-07-17T16:41:40Z |
url |
https://revistadearquitectura.ucatolica.edu.co/article/view/5503 |
url_doi |
https://doi.org/10.14718/RevArq.2024.26.5503 |
issn |
1657-0308 |
eissn |
2357-626X |
doi |
10.14718/RevArq.2024.26.5503 |
citationstartpage |
189 |
citationendpage |
204 |
url3_str_mv |
https://revistadearquitectura.ucatolica.edu.co/article/download/5503/5451 |
url2_str_mv |
https://revistadearquitectura.ucatolica.edu.co/article/download/5503/5252 |
_version_ |
1811200522988814336 |