Titulo:

Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
.

Sumario:

El modelado tridimensional computacional se puede utilizar para la reconstrucción de los objetos del mundo real con todos sus detalles y condición de conservación. La fotogrametría ofrece productos con exactitud, además de la flexibilidad de ejecución de los proyectos simples o complejos, de acuerdo con la simplicidad y rapidez en la adquisición de los datos. Los modelados tridimensionales (3D) y georreferenciados permiten la documentación del objeto que fue mapeado por medio de la ubicación. Este trabajo presenta una metodología basada en técnicas topográficas y geodésicas con georreferenciación, a partir de las cuales se ha aplicado el modelado tridimensional de la arquitectura basada en el empleo de la fotogrametría terrestre digital. Se... Ver más

Guardado en:

1657-0308

2357-626X

25

2023-07-01

60

68

Marcelo Antonio Nero, André Pinto Rocha, Clayton Guerra Mamede, Borba Schuler Borba Schuler, Plínio da Costa Temba, Juan Francisco Reinoso-Gordo - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_ucatolica_revistadearquitectura_bogota__22_article_3659
record_format ojs
spelling Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
Positional accuracy in close-range photogrammetry through Topography and Geodesy
El modelado tridimensional computacional se puede utilizar para la reconstrucción de los objetos del mundo real con todos sus detalles y condición de conservación. La fotogrametría ofrece productos con exactitud, además de la flexibilidad de ejecución de los proyectos simples o complejos, de acuerdo con la simplicidad y rapidez en la adquisición de los datos. Los modelados tridimensionales (3D) y georreferenciados permiten la documentación del objeto que fue mapeado por medio de la ubicación. Este trabajo presenta una metodología basada en técnicas topográficas y geodésicas con georreferenciación, a partir de las cuales se ha aplicado el modelado tridimensional de la arquitectura basada en el empleo de la fotogrametría terrestre digital. Se ha realizado la comparación de las mediciones hechas sobre el producto digital obtenido y las mismas mediciones hechas mediante topografía de precisión, contexto en el que se tuvo en cuenta la conversión de las coordenadas hasta los mismos sistemas de proyección y referencia. Al final, se hizo la validación y la cuantificación estadísticos en términos posicionales de exactitud del producto final.
Computational three-dimensional modelling can be used to reconstruct real-world objects with all their details and conservation conditions. Photogrammetry offers products with accuracy, in addition to the flexibility of execution of simple and complex projects, according to the simplicity and speed in data acquisition. The three-dimensional (3D) and georeferenced modelling allows the documentation of the object that was mapped by means of the location. This paper presents a methodology based on topographic and geodetic techniques with georeferencing applied to three-dimensional modelling of architectural forms with the use of digital close-range photogrammetry. The measurements made on the digital product obtained and the same measurements made using precision topography were compared considering the conversion of coordinates to the same projection and reference systems. Finally, the statistical validation and quantification in terms of the positional accuracy of the final product were performed.
Nero, Marcelo Antonio
Pinto Rocha, André
Guerra Mamede, Clayton
Borba Schuler, Carlos Alberto
da Costa Temba, Plínio
Reinoso-Gordo, Juan Francisco
digital close range photogrammetry
geodesics
georeferencing
quality control
topography
control de la calidad
fotogrametría terrestre digital
geodesía
georreferenciación
topografía
25
2
Núm. 2 , Año 2023 :julio-diciembre
Artículo de revista
Journal article
2023-07-01T11:04:50Z
2023-07-01T11:04:50Z
2023-07-01
text/html
application/pdf
text/xml
Bogotá: Universidad Católica de Colombia, 1999-
Revista de arquitectura
1657-0308
2357-626X
https://revistadearquitectura.ucatolica.edu.co/article/view/3659
10.14718/RevArq.2023.25.3659
https://doi.org/10.14718/RevArq.2023.25.3659
eng
https://creativecommons.org/licenses/by-nc/4.0
Marcelo Antonio Nero, André Pinto Rocha, Clayton Guerra Mamede, Borba Schuler Borba Schuler, Plínio da Costa Temba, Juan Francisco Reinoso-Gordo - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
60
68
Ahmed, M., Hass, C. T., & Hass, R. (2012). Using digital photogrammetry for pipe-works progress tracking, Canadian Journal of Civil Engineering, 39(9), 1062-1071. https://doi.org/10.1139/l2012-055
Associação Brasileira de Normas Técnicas (ABNT). (2021). NBR 13133: Execução de levantamento topográfico - Procedimento. Rio de Janeiro. https://www.normas.com.br/visualizar/abnt-nbr-nm/6400/abnt-nbr13133-execucao-de-levantamento-topografico-procedimento
Associação Brasileira de Normas Técnicas (ABNT). (2022). NBR 14166: Rede de referência cadastral municipal: Requisitos e procedimento. Rio de Janeiro, https://www.normas.com.br/autorizar/visualizacao-nbr/10905/identificar/visitante
Ayala-García, E. T. (2021). La arquitectura, el espacio público y el derecho a la ciudad. Entre lo físico y lo vivencial. Revista de Arquitectura (Bogotá), 23(2), 36-46. https://doi.org/10.14718/RevArq.2021.3286
Basnet, K., Must, M., Constantinescu, G., Ho, H., & Xu, H. (2016). Close-range photogrammetry for dynamically tracking drifted snow deposition. Cold Regions Science and Technology, 121, 141-153. https://doi.org/10.1016/j.coldregions.2015.08.013
Bill, R., Blankenbach, J., Breunig, M., Haunert, J. H., Heipke, C., Herle, S., ... & Werner, M. (2022). Geospatial Information Research: State of the Art, Case Studies and Future Perspectives. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90, 349-389. https://link.springer.com/article/10.1007/s41064-022-00217-9
Brun, E. V. P. (2005). Verificação e classificação de níveis de acordo com normas internacionais. Dissertation presented in Course of Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba. https://acervodigital.ufpr.br/handle/1884/11171
Cârlan, I., & Dovleac, B. (2017). 3D modelling of arutela roman castrum using close-range photogrammetry. International Journal of Conservation Science, 8(1), 35-42. https://www.researchgate.net/publication/316642509_3D_modelling_of_Arutela_Roman_Castrum_using_close-range_photogrammetry
Cedeño-Valdiviezo, A., & Torres-Lima, P. A. (2019). Conservación del arte contemporáneo: el caso de Mathias Goeritz en la catedral metropolitana de México. Revista de Arquitectura (Bogotá), 21(1), 44-53. https://doi.org/10.14718/RevArq.2019.21.1.2304
Cintra, J. P., & Rocco, J. (2014). Controle de qualidade angular em levantamentos topográficos. Boletim de Ciências Geodésicas, 20(3), 562-577. https://dx.doi.org/10.1590/S1982-21702014000300032
Cintra, J. P., Nero, M. A., & Rodrigues, D. (2011). GNSS/NTRIP Service and Technique: Accuracy Tests. Boletim de Ciências Geodésicas, 17(2), 257-271. https://doi.org/10.1590/S1982-21702011000200006
Coelho, L., & Brito, J. N. (2007). Fotogrametria digital. EdUERJ.
Colombo, O. (2008). Real-Time, Wide-Area, Precise Kinematic Positioning Using Data from Internet NTRIP Streams, Colombo, O.L., In: Proceedings ION GNSS 2008, Savannah, Georgia. 2008. https://www.researchgate.net/publication/280938048_Real-Time_Wide-Area_Precise_Kinematic_Positioning_Using_Data_from_Internet_NTRIP_Streams
Colorado, L. A. M., & Santos, J. C. M. (2015). Kinematic parameter estimation using close-range photogrammetry for sport applications, In: Proc. SPIE 9681, 11th International Symposium on Medical Information Processing and Analysis, 96810M (22 December 2015); Cuenca, Ecuador, https://doi.org/10.1117/12.2208354
Cortés-Garzón, L. (2023). Cultura, prácticas artísticas y espacio urbano en la Localidad de San Cristóbal: el caso del suroriente, Bogotá. Revista de Arquitectura (Bogotá), 23(1). http://dx.doi.org/10.14718/RevArq.2023.25.3864
Deutsches Institut fur Normung. DIN 18723 - 1: Feldverfahren zur Genauigkeitsuntersuchung Geodatischer Instrumente – Allgemeines. Deutschland, 1990a. https://standards.globalspec.com/std/426033/DIN%2018723-1
Deutsches Institut fur Normung. DIN 18723 - 2: Feldverfahren zur Genauigkeitsuntersuchung Geodatischer Instrumente – Nivelliere. Deutschland, 1990b. https://infostore.saiglobal.com/en-us/Standards/DIN-18723-2-1990-387657_SAIG_DIN_DIN_880541/
Egea-Roca, D., Arizabaleta-Diez, M., Pany, T., Antreich, F., López-Salcedo, J. A., Paonni, M., & Seco-Granados, G. (2022). GNSS User Technology: State-of-the-Art and Future Trends. IEEE Access, 10, 39939-39968. https://ieeexplore.ieee.org/iel7/6287639/9668973/09751089.pdf
Faggion, P. L. (2001). Obtenção dos elementos de calibração e certificação de medidores eletrônicos de distância em campo e laboratório. Phd thesis presented in Course of Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba. https://pdfs.semanticscholar.org/3239/f005258e5e79af396c1c76ea23fc93d70327.pdf
Ferenčík, M., Dudáková, Z., Kardoš, M., Sivák, M., Merganičová, K., & Merganič, J. (2022). Measuring Soil Surface Changes after Traffic of Various Wheeled Skidders with Close-Range Photogrammetry. Forests, 13(7), 976. https://www.mdpi.com/1999-4907/13/7/976/pdf?version=1655896051
Fraser, R., Mowlam, A., Collier, P. (2005). Augmentation of Low–Cost GPS Receivers via Web Services and Wireless Mobile Devices. Journal of Global Positioning Systems, 3(1-2), 2005, 85-94. https://www.scirp.org/pdf/nav20040100013_63122120.pdf
Fraštia, M. (2009). Creation of the accurate spatial models of historical objects by the close-range photogrammetry method, Acta Montanistica Slovaca, 14(1), 34-40. https://www.researchgate.net/publication/40422877_Creation_of_the_accurate_spatial_models_of_historical_objects_by_the_close-range_photogrammetry_method
Fu, X., Peng, C., Li, Z., Liu, S., Tan, M., Song, J. (2017). The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts. Plos One, 12(6), e0178858. https://doi.org/10.1371/ journal. pone.0178858
Geomatics Industry Association of America (GIAA). (2002). DIN 18723 Specification for Theodolite Accuracy. Professional Surveyor Magazine, nov. 2002. https://s3.microsurvey.com/support/Knowledgebase/stderr/Din18723.pdf
Gnann, N., Baschek, B., & Ternes, T. (2022). Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence: a review. Water Research, 118902. https://www.sciencedirect.com/science/article/pii/S0043135422008491?casa_token=ovWzA7czhNIAAAAA:4Rj6XWxx2FYYBsqyL3F3BI4EDV-ieAImy5tO6IhaGvHrGVIrTyt27E-RclLpkEccQgdhaJiRvdZ1
Gonçalves, J. A., Madeira, S., & Sousa, J. J. (2012). Topografia: Conceitos e Aplicações. Porto, Portugal: Editora Lidel, 357p.
Gutiérrez-Morales, G. (2019). Arquitecturas tradicionales y populares: un reto para la historiografía de la arquitectura en Colombia. Revista de Arquitectura (Bogotá), 22(2). https://doi.org/10.14718/RevArq.2020.2040
Illmann, R., Rosenberger, M., & Notni, G. (2022). Overview of the state of the art in the digitization of drivable forestry roads. Image Sensing Technologies: Materials, Devices, Systems, and Applications IX, 12091, 66-75. https://doi.org/10.1117/12.2622738
Jiang, R., Jáuregui, D. V., & White, K. R. (2008). Close-range photogrammetry applications in bridge measurement: Literature review. Journal Measurement, 41(8), 823-834. https://doi.org/10.1016/j.measurement.2007.12.005
Kasser, M., Egels, Y. (2002) Digital Photogrammetry. New York-USA: Taylor & Francis.
Koken, A., Koroglu, M. A., Karabork, H., & Ceylan, A. (2014). Photogrammetric Approach in Determining Beam-Column Connection Deformations. Boletim de Ciências Geodésicas, 20(3), 720-733. https://doi.org/10.1590/S1982-21702014000300041
Kraus, K. (1993). Photogrammetry. V. 1, Bonn-Germany: Ümmler.
Kushwaha, S.K.P, Dayal, K. R., Singh, A., & Jain, K. (2019). Building facade and rooftop segmentation by normal estimation from UAV derived RGB point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019 6th International Workshop Low-cost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France, 173-177.
Kwak, E., Detchev, I., Habib, A., El-Badry, M., Hughes, C. (2013) Precise Photogrammetric Reconstruction Using Model-Based Image Fitting for 3D Beam Deformation Monitoring. Journal of Surveying Engineering, 139(3), 143-155. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000105
Lauria, G., Sineo, L., & Ficarra, S. (2022). A detailed method for creating digital 3D models of human crania: an example of close-range photogrammetry based on the use of Structure-from-Motion (SfM) in virtual anthropology. Archaeological and Anthropological Sciences, 14(3), 1-13. https://link.springer.com/article/10.1007/s12520-022-01502-9
Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS Satellite Surveying. 4th Ed. New York-USA: Wiley.
Li, Z., & Shan, J. (2022). RANSAC-based multi primitive building reconstruction from 3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 247-260. https://doi:10.1016/j.isprsjprs.2021.12.012
Llanos-Chaparro, I., Henao-Carvajal, E., & Bárcenas-Duque, D. (2022). Adaptaciones geográficas de la casa moderna en Colombia Cuatro casos de estudio en el litoral, el valle, la montaña y el altiplano. Revista de Arquitectura (Bogotá), 24(2). https://doi.org/10.14718/RevArq.2022.24.4248
Long, C., Wan, B., Yang, Z., Liu, H., Tao, L., Ruan, G., Liu, Y., Wei, Y. (2017). Study on close-range photogrammetry without traditional self-calibration measurement model, Proc. SPIE 10458, AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing, 104580C (24 October 2017); Beijing, China. https://doi.org/10.1117/12.2281984
Maric, I., Panda, L., & Milosevic, R. (2022). Multi-Resolution Modelling of the Tufa Formation Dynamic using Close-Range Photogrammetry, Handheld 3D Scanner and Terrestrial Laser Scanner. In GISTAM (pp. 75-82).
Martín, S., Uzkeda, H., Poblet, J., Bulnes, M., & Rubio, R. (2013). Construction of accurate geological cross-sections along trenches, cliffs and mountain slopes using photogrammetry. Computer & Geosciences, 51, 90-100. https://doi.org/10.1016/j.cageo.2012.09.014
Mikail, M., Bethel, J. M., McGlone, J. C. (2001). Introduction to Modern Photogrammetry. John Wiley & Sons.
Monico, J. F. G. (2009). Posicionamento pelo GNSS: Descrição, fundamentos e aplicações. UNESP.
Murtiyoso, A., Pellis, E., Grussenmeyer, P., Landes, T., & Masiero, A. (2022). Towards Semantic Photogrammetry: Generating Semantically Rich Point Clouds from Architectural Close-Range Photogrammetry. Sensors, 22(3), 966. https://www.mdpi.com/1424-8220/22/3/966/pdf
Mustaffar, M., Saari, R., Abu Bakar, S., Moghadasi, M., & Marsono, K. (2012). The Measurement of Full-Scale Structural Beam-Column Connection Deformation Using Digital Close-range Photogrammetry Technique, Malaysian Journal of Civil Engineering, 24(2), 148-160. https://mjce.utm.my/index.php/MJCE/article/view/281/270
Nategh, M., Ekinci, A., & Iravanian, A. (2022). A Novel Application of Close-range Photogrammetry for Earth Retaining Wall and Slope Stability Assessment. https://www.researchsquare.com/article/rs-1534286/latest.pdf
Nex, F, Armenakis, C., Cramer, M., Cucci, D.A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 215-242. https://doi.org/10.1016/j.isprsjprs.2021.12.006
Paciléo Netto, N. (1993). Métodos de ajustamento em geodésia e topografia. Thesis presented in Escola Politécnica. Universidade de São Paulo.
Paciléo Netto, N. (1997). Campo de provas para instrumentos de medição e posicionamento. Universidade de São Paulo. Paixão, A., Muralha, J., Resende, R., & Fortunato, E. (2022). Close-Range Photogrammetry for 3D Rock Joint Roughness Evaluation. Rock Mechanics and Rock Engineering, 55(6), 3213-3233.
Petruccioli, A., Gherardini, F., & Leali, F. (2022). Assessment of close-range photogrammetry for the low-cost development of 3D models of car bodywork components. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-11. Photomodeler (2013). www.photomodeler.com. Access in: Dec. 02, 2013.
Reinoso-Gordo, J. F., Romero-Zaliz, R., León-Robles, C., Mataix-SanJuan, J., & Nero, M. A. (2020). Fourier-Based Automatic Transformation between Mapping Shapes—Cadastral and Land Registry Applications. ISPRS International Journal of Geo-Information, 9(8), 482. https://doi.org/10.3390/ijgi9080482
Santofimio-Ortiz, R., Pérez-Agudelo, S. M. (2020). Monumentos y Arte urbano: Percepciones actitudes y valores en el caso de la ciudad de Manizales. Revista de Arquitectura (Bogotá), 22(2). https://doi.org/10.14718/RevArq.2020.2221
Santosi, Z., Sokac, M., Korolija-Crkvenjakov, D., Kosec, B., Sokovic, M., & Budak, I. (2015). Reconstruction of 3D models of cast sculptures using close-range photogrammetry. Metalurgija, 54(4), 695-698, 2015. https://www.researchgate.net/publication/282200200_Reconstruction_of_3D_models_of_cast_sculptures_using_close-range_photogrammetry
Shortis, M. R., & Shager, J. W. (2014). A practical target recognition system for close-range photogrammetry. The Photogrammetric Record, 29(147), 337-355. https://doi.org/10.1111/phor.12070
Silva, I., & Segantini, P. C. L. (2015). Topografia para Engenharia: teoria e prática de geomática (1st ed.). Rio de Janeiro-Brazil.
Silva, M. M. S. (2008). Metodologia para a criação de um laboratório para classificação das componentes angulares horizontal e vertical, de teodolitos e estações totais. 2008. 139p. Phd thesis presented in Universidade Federal do Paraná. Curitiba, Paraná.
Silva, M. M. S., Faggion, P. L., Veiga, L. A. K. (2010). Metodologia de classificação das componentes angulares horizontal de teodolitos e estações totais em laboratório. Boletim de Ciências Geodésicas, 16(3), 403-419. https://revistas.ufpr.br/bcg/article/view/18724/12151
Um, I.; Park, S., Kim, H. T., & Kim, H. (2020). Configuring RTK-GPS Architecture for System Redundancy in Multi-Drone Operations. IEEE Access, 8, 76228-76242, 2020. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9075221
https://revistadearquitectura.ucatolica.edu.co/article/download/3659/4571
https://revistadearquitectura.ucatolica.edu.co/article/download/3659/4871
https://revistadearquitectura.ucatolica.edu.co/article/download/3659/5325
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD CATÓLICA DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png
country_str Colombia
collection Revista de Arquitectura (Bogotá)
title Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
spellingShingle Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
Nero, Marcelo Antonio
Pinto Rocha, André
Guerra Mamede, Clayton
Borba Schuler, Carlos Alberto
da Costa Temba, Plínio
Reinoso-Gordo, Juan Francisco
digital close range photogrammetry
geodesics
georeferencing
quality control
topography
control de la calidad
fotogrametría terrestre digital
geodesía
georreferenciación
topografía
title_short Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
title_full Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
title_fullStr Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
title_full_unstemmed Exactitud posicional en la fotogrametría terrestre digital por intermedio de la Topografía y Geodesia
title_sort exactitud posicional en la fotogrametría terrestre digital por intermedio de la topografía y geodesia
title_eng Positional accuracy in close-range photogrammetry through Topography and Geodesy
description El modelado tridimensional computacional se puede utilizar para la reconstrucción de los objetos del mundo real con todos sus detalles y condición de conservación. La fotogrametría ofrece productos con exactitud, además de la flexibilidad de ejecución de los proyectos simples o complejos, de acuerdo con la simplicidad y rapidez en la adquisición de los datos. Los modelados tridimensionales (3D) y georreferenciados permiten la documentación del objeto que fue mapeado por medio de la ubicación. Este trabajo presenta una metodología basada en técnicas topográficas y geodésicas con georreferenciación, a partir de las cuales se ha aplicado el modelado tridimensional de la arquitectura basada en el empleo de la fotogrametría terrestre digital. Se ha realizado la comparación de las mediciones hechas sobre el producto digital obtenido y las mismas mediciones hechas mediante topografía de precisión, contexto en el que se tuvo en cuenta la conversión de las coordenadas hasta los mismos sistemas de proyección y referencia. Al final, se hizo la validación y la cuantificación estadísticos en términos posicionales de exactitud del producto final.
description_eng Computational three-dimensional modelling can be used to reconstruct real-world objects with all their details and conservation conditions. Photogrammetry offers products with accuracy, in addition to the flexibility of execution of simple and complex projects, according to the simplicity and speed in data acquisition. The three-dimensional (3D) and georeferenced modelling allows the documentation of the object that was mapped by means of the location. This paper presents a methodology based on topographic and geodetic techniques with georeferencing applied to three-dimensional modelling of architectural forms with the use of digital close-range photogrammetry. The measurements made on the digital product obtained and the same measurements made using precision topography were compared considering the conversion of coordinates to the same projection and reference systems. Finally, the statistical validation and quantification in terms of the positional accuracy of the final product were performed.
author Nero, Marcelo Antonio
Pinto Rocha, André
Guerra Mamede, Clayton
Borba Schuler, Carlos Alberto
da Costa Temba, Plínio
Reinoso-Gordo, Juan Francisco
author_facet Nero, Marcelo Antonio
Pinto Rocha, André
Guerra Mamede, Clayton
Borba Schuler, Carlos Alberto
da Costa Temba, Plínio
Reinoso-Gordo, Juan Francisco
topic digital close range photogrammetry
geodesics
georeferencing
quality control
topography
control de la calidad
fotogrametría terrestre digital
geodesía
georreferenciación
topografía
topic_facet digital close range photogrammetry
geodesics
georeferencing
quality control
topography
control de la calidad
fotogrametría terrestre digital
geodesía
georreferenciación
topografía
topicspa_str_mv control de la calidad
fotogrametría terrestre digital
geodesía
georreferenciación
topografía
citationvolume 25
citationissue 2
citationedition Núm. 2 , Año 2023 :julio-diciembre
publisher Bogotá: Universidad Católica de Colombia, 1999-
ispartofjournal Revista de arquitectura
source https://revistadearquitectura.ucatolica.edu.co/article/view/3659
language eng
format Article
rights https://creativecommons.org/licenses/by-nc/4.0
Marcelo Antonio Nero, André Pinto Rocha, Clayton Guerra Mamede, Borba Schuler Borba Schuler, Plínio da Costa Temba, Juan Francisco Reinoso-Gordo - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Ahmed, M., Hass, C. T., & Hass, R. (2012). Using digital photogrammetry for pipe-works progress tracking, Canadian Journal of Civil Engineering, 39(9), 1062-1071. https://doi.org/10.1139/l2012-055
Associação Brasileira de Normas Técnicas (ABNT). (2021). NBR 13133: Execução de levantamento topográfico - Procedimento. Rio de Janeiro. https://www.normas.com.br/visualizar/abnt-nbr-nm/6400/abnt-nbr13133-execucao-de-levantamento-topografico-procedimento
Associação Brasileira de Normas Técnicas (ABNT). (2022). NBR 14166: Rede de referência cadastral municipal: Requisitos e procedimento. Rio de Janeiro, https://www.normas.com.br/autorizar/visualizacao-nbr/10905/identificar/visitante
Ayala-García, E. T. (2021). La arquitectura, el espacio público y el derecho a la ciudad. Entre lo físico y lo vivencial. Revista de Arquitectura (Bogotá), 23(2), 36-46. https://doi.org/10.14718/RevArq.2021.3286
Basnet, K., Must, M., Constantinescu, G., Ho, H., & Xu, H. (2016). Close-range photogrammetry for dynamically tracking drifted snow deposition. Cold Regions Science and Technology, 121, 141-153. https://doi.org/10.1016/j.coldregions.2015.08.013
Bill, R., Blankenbach, J., Breunig, M., Haunert, J. H., Heipke, C., Herle, S., ... & Werner, M. (2022). Geospatial Information Research: State of the Art, Case Studies and Future Perspectives. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90, 349-389. https://link.springer.com/article/10.1007/s41064-022-00217-9
Brun, E. V. P. (2005). Verificação e classificação de níveis de acordo com normas internacionais. Dissertation presented in Course of Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba. https://acervodigital.ufpr.br/handle/1884/11171
Cârlan, I., & Dovleac, B. (2017). 3D modelling of arutela roman castrum using close-range photogrammetry. International Journal of Conservation Science, 8(1), 35-42. https://www.researchgate.net/publication/316642509_3D_modelling_of_Arutela_Roman_Castrum_using_close-range_photogrammetry
Cedeño-Valdiviezo, A., & Torres-Lima, P. A. (2019). Conservación del arte contemporáneo: el caso de Mathias Goeritz en la catedral metropolitana de México. Revista de Arquitectura (Bogotá), 21(1), 44-53. https://doi.org/10.14718/RevArq.2019.21.1.2304
Cintra, J. P., & Rocco, J. (2014). Controle de qualidade angular em levantamentos topográficos. Boletim de Ciências Geodésicas, 20(3), 562-577. https://dx.doi.org/10.1590/S1982-21702014000300032
Cintra, J. P., Nero, M. A., & Rodrigues, D. (2011). GNSS/NTRIP Service and Technique: Accuracy Tests. Boletim de Ciências Geodésicas, 17(2), 257-271. https://doi.org/10.1590/S1982-21702011000200006
Coelho, L., & Brito, J. N. (2007). Fotogrametria digital. EdUERJ.
Colombo, O. (2008). Real-Time, Wide-Area, Precise Kinematic Positioning Using Data from Internet NTRIP Streams, Colombo, O.L., In: Proceedings ION GNSS 2008, Savannah, Georgia. 2008. https://www.researchgate.net/publication/280938048_Real-Time_Wide-Area_Precise_Kinematic_Positioning_Using_Data_from_Internet_NTRIP_Streams
Colorado, L. A. M., & Santos, J. C. M. (2015). Kinematic parameter estimation using close-range photogrammetry for sport applications, In: Proc. SPIE 9681, 11th International Symposium on Medical Information Processing and Analysis, 96810M (22 December 2015); Cuenca, Ecuador, https://doi.org/10.1117/12.2208354
Cortés-Garzón, L. (2023). Cultura, prácticas artísticas y espacio urbano en la Localidad de San Cristóbal: el caso del suroriente, Bogotá. Revista de Arquitectura (Bogotá), 23(1). http://dx.doi.org/10.14718/RevArq.2023.25.3864
Deutsches Institut fur Normung. DIN 18723 - 1: Feldverfahren zur Genauigkeitsuntersuchung Geodatischer Instrumente – Allgemeines. Deutschland, 1990a. https://standards.globalspec.com/std/426033/DIN%2018723-1
Deutsches Institut fur Normung. DIN 18723 - 2: Feldverfahren zur Genauigkeitsuntersuchung Geodatischer Instrumente – Nivelliere. Deutschland, 1990b. https://infostore.saiglobal.com/en-us/Standards/DIN-18723-2-1990-387657_SAIG_DIN_DIN_880541/
Egea-Roca, D., Arizabaleta-Diez, M., Pany, T., Antreich, F., López-Salcedo, J. A., Paonni, M., & Seco-Granados, G. (2022). GNSS User Technology: State-of-the-Art and Future Trends. IEEE Access, 10, 39939-39968. https://ieeexplore.ieee.org/iel7/6287639/9668973/09751089.pdf
Faggion, P. L. (2001). Obtenção dos elementos de calibração e certificação de medidores eletrônicos de distância em campo e laboratório. Phd thesis presented in Course of Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba. https://pdfs.semanticscholar.org/3239/f005258e5e79af396c1c76ea23fc93d70327.pdf
Ferenčík, M., Dudáková, Z., Kardoš, M., Sivák, M., Merganičová, K., & Merganič, J. (2022). Measuring Soil Surface Changes after Traffic of Various Wheeled Skidders with Close-Range Photogrammetry. Forests, 13(7), 976. https://www.mdpi.com/1999-4907/13/7/976/pdf?version=1655896051
Fraser, R., Mowlam, A., Collier, P. (2005). Augmentation of Low–Cost GPS Receivers via Web Services and Wireless Mobile Devices. Journal of Global Positioning Systems, 3(1-2), 2005, 85-94. https://www.scirp.org/pdf/nav20040100013_63122120.pdf
Fraštia, M. (2009). Creation of the accurate spatial models of historical objects by the close-range photogrammetry method, Acta Montanistica Slovaca, 14(1), 34-40. https://www.researchgate.net/publication/40422877_Creation_of_the_accurate_spatial_models_of_historical_objects_by_the_close-range_photogrammetry_method
Fu, X., Peng, C., Li, Z., Liu, S., Tan, M., Song, J. (2017). The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts. Plos One, 12(6), e0178858. https://doi.org/10.1371/ journal. pone.0178858
Geomatics Industry Association of America (GIAA). (2002). DIN 18723 Specification for Theodolite Accuracy. Professional Surveyor Magazine, nov. 2002. https://s3.microsurvey.com/support/Knowledgebase/stderr/Din18723.pdf
Gnann, N., Baschek, B., & Ternes, T. (2022). Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence: a review. Water Research, 118902. https://www.sciencedirect.com/science/article/pii/S0043135422008491?casa_token=ovWzA7czhNIAAAAA:4Rj6XWxx2FYYBsqyL3F3BI4EDV-ieAImy5tO6IhaGvHrGVIrTyt27E-RclLpkEccQgdhaJiRvdZ1
Gonçalves, J. A., Madeira, S., & Sousa, J. J. (2012). Topografia: Conceitos e Aplicações. Porto, Portugal: Editora Lidel, 357p.
Gutiérrez-Morales, G. (2019). Arquitecturas tradicionales y populares: un reto para la historiografía de la arquitectura en Colombia. Revista de Arquitectura (Bogotá), 22(2). https://doi.org/10.14718/RevArq.2020.2040
Illmann, R., Rosenberger, M., & Notni, G. (2022). Overview of the state of the art in the digitization of drivable forestry roads. Image Sensing Technologies: Materials, Devices, Systems, and Applications IX, 12091, 66-75. https://doi.org/10.1117/12.2622738
Jiang, R., Jáuregui, D. V., & White, K. R. (2008). Close-range photogrammetry applications in bridge measurement: Literature review. Journal Measurement, 41(8), 823-834. https://doi.org/10.1016/j.measurement.2007.12.005
Kasser, M., Egels, Y. (2002) Digital Photogrammetry. New York-USA: Taylor & Francis.
Koken, A., Koroglu, M. A., Karabork, H., & Ceylan, A. (2014). Photogrammetric Approach in Determining Beam-Column Connection Deformations. Boletim de Ciências Geodésicas, 20(3), 720-733. https://doi.org/10.1590/S1982-21702014000300041
Kraus, K. (1993). Photogrammetry. V. 1, Bonn-Germany: Ümmler.
Kushwaha, S.K.P, Dayal, K. R., Singh, A., & Jain, K. (2019). Building facade and rooftop segmentation by normal estimation from UAV derived RGB point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019 6th International Workshop Low-cost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France, 173-177.
Kwak, E., Detchev, I., Habib, A., El-Badry, M., Hughes, C. (2013) Precise Photogrammetric Reconstruction Using Model-Based Image Fitting for 3D Beam Deformation Monitoring. Journal of Surveying Engineering, 139(3), 143-155. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000105
Lauria, G., Sineo, L., & Ficarra, S. (2022). A detailed method for creating digital 3D models of human crania: an example of close-range photogrammetry based on the use of Structure-from-Motion (SfM) in virtual anthropology. Archaeological and Anthropological Sciences, 14(3), 1-13. https://link.springer.com/article/10.1007/s12520-022-01502-9
Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS Satellite Surveying. 4th Ed. New York-USA: Wiley.
Li, Z., & Shan, J. (2022). RANSAC-based multi primitive building reconstruction from 3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 247-260. https://doi:10.1016/j.isprsjprs.2021.12.012
Llanos-Chaparro, I., Henao-Carvajal, E., & Bárcenas-Duque, D. (2022). Adaptaciones geográficas de la casa moderna en Colombia Cuatro casos de estudio en el litoral, el valle, la montaña y el altiplano. Revista de Arquitectura (Bogotá), 24(2). https://doi.org/10.14718/RevArq.2022.24.4248
Long, C., Wan, B., Yang, Z., Liu, H., Tao, L., Ruan, G., Liu, Y., Wei, Y. (2017). Study on close-range photogrammetry without traditional self-calibration measurement model, Proc. SPIE 10458, AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing, 104580C (24 October 2017); Beijing, China. https://doi.org/10.1117/12.2281984
Maric, I., Panda, L., & Milosevic, R. (2022). Multi-Resolution Modelling of the Tufa Formation Dynamic using Close-Range Photogrammetry, Handheld 3D Scanner and Terrestrial Laser Scanner. In GISTAM (pp. 75-82).
Martín, S., Uzkeda, H., Poblet, J., Bulnes, M., & Rubio, R. (2013). Construction of accurate geological cross-sections along trenches, cliffs and mountain slopes using photogrammetry. Computer & Geosciences, 51, 90-100. https://doi.org/10.1016/j.cageo.2012.09.014
Mikail, M., Bethel, J. M., McGlone, J. C. (2001). Introduction to Modern Photogrammetry. John Wiley & Sons.
Monico, J. F. G. (2009). Posicionamento pelo GNSS: Descrição, fundamentos e aplicações. UNESP.
Murtiyoso, A., Pellis, E., Grussenmeyer, P., Landes, T., & Masiero, A. (2022). Towards Semantic Photogrammetry: Generating Semantically Rich Point Clouds from Architectural Close-Range Photogrammetry. Sensors, 22(3), 966. https://www.mdpi.com/1424-8220/22/3/966/pdf
Mustaffar, M., Saari, R., Abu Bakar, S., Moghadasi, M., & Marsono, K. (2012). The Measurement of Full-Scale Structural Beam-Column Connection Deformation Using Digital Close-range Photogrammetry Technique, Malaysian Journal of Civil Engineering, 24(2), 148-160. https://mjce.utm.my/index.php/MJCE/article/view/281/270
Nategh, M., Ekinci, A., & Iravanian, A. (2022). A Novel Application of Close-range Photogrammetry for Earth Retaining Wall and Slope Stability Assessment. https://www.researchsquare.com/article/rs-1534286/latest.pdf
Nex, F, Armenakis, C., Cramer, M., Cucci, D.A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 215-242. https://doi.org/10.1016/j.isprsjprs.2021.12.006
Paciléo Netto, N. (1993). Métodos de ajustamento em geodésia e topografia. Thesis presented in Escola Politécnica. Universidade de São Paulo.
Paciléo Netto, N. (1997). Campo de provas para instrumentos de medição e posicionamento. Universidade de São Paulo. Paixão, A., Muralha, J., Resende, R., & Fortunato, E. (2022). Close-Range Photogrammetry for 3D Rock Joint Roughness Evaluation. Rock Mechanics and Rock Engineering, 55(6), 3213-3233.
Petruccioli, A., Gherardini, F., & Leali, F. (2022). Assessment of close-range photogrammetry for the low-cost development of 3D models of car bodywork components. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-11. Photomodeler (2013). www.photomodeler.com. Access in: Dec. 02, 2013.
Reinoso-Gordo, J. F., Romero-Zaliz, R., León-Robles, C., Mataix-SanJuan, J., & Nero, M. A. (2020). Fourier-Based Automatic Transformation between Mapping Shapes—Cadastral and Land Registry Applications. ISPRS International Journal of Geo-Information, 9(8), 482. https://doi.org/10.3390/ijgi9080482
Santofimio-Ortiz, R., Pérez-Agudelo, S. M. (2020). Monumentos y Arte urbano: Percepciones actitudes y valores en el caso de la ciudad de Manizales. Revista de Arquitectura (Bogotá), 22(2). https://doi.org/10.14718/RevArq.2020.2221
Santosi, Z., Sokac, M., Korolija-Crkvenjakov, D., Kosec, B., Sokovic, M., & Budak, I. (2015). Reconstruction of 3D models of cast sculptures using close-range photogrammetry. Metalurgija, 54(4), 695-698, 2015. https://www.researchgate.net/publication/282200200_Reconstruction_of_3D_models_of_cast_sculptures_using_close-range_photogrammetry
Shortis, M. R., & Shager, J. W. (2014). A practical target recognition system for close-range photogrammetry. The Photogrammetric Record, 29(147), 337-355. https://doi.org/10.1111/phor.12070
Silva, I., & Segantini, P. C. L. (2015). Topografia para Engenharia: teoria e prática de geomática (1st ed.). Rio de Janeiro-Brazil.
Silva, M. M. S. (2008). Metodologia para a criação de um laboratório para classificação das componentes angulares horizontal e vertical, de teodolitos e estações totais. 2008. 139p. Phd thesis presented in Universidade Federal do Paraná. Curitiba, Paraná.
Silva, M. M. S., Faggion, P. L., Veiga, L. A. K. (2010). Metodologia de classificação das componentes angulares horizontal de teodolitos e estações totais em laboratório. Boletim de Ciências Geodésicas, 16(3), 403-419. https://revistas.ufpr.br/bcg/article/view/18724/12151
Um, I.; Park, S., Kim, H. T., & Kim, H. (2020). Configuring RTK-GPS Architecture for System Redundancy in Multi-Drone Operations. IEEE Access, 8, 76228-76242, 2020. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9075221

type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-07-01
date_accessioned 2023-07-01T11:04:50Z
date_available 2023-07-01T11:04:50Z
url https://revistadearquitectura.ucatolica.edu.co/article/view/3659
url_doi https://doi.org/10.14718/RevArq.2023.25.3659
issn 1657-0308
eissn 2357-626X
doi 10.14718/RevArq.2023.25.3659
citationstartpage 60
citationendpage 68
url3_str_mv https://revistadearquitectura.ucatolica.edu.co/article/download/3659/4571
url2_str_mv https://revistadearquitectura.ucatolica.edu.co/article/download/3659/4871
url4_str_mv https://revistadearquitectura.ucatolica.edu.co/article/download/3659/5325
_version_ 1811200516638638080