Titulo:

Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
.

Sumario:

La obesidad y sus patologías relacionadas son riesgos de salud muy conocidos. Aunque la obesidad y el sobrepeso tienen causas multifactoriales, la sobreingesta de alimento es frecuente en estas condiciones. De acuerdo con modelos animales, los endocanabinoides y sus receptores en el cerebro juegan un papel clave en la génesis y desarrollo de la obesidad. Se ha propuesto que los receptores a canabinoides CB1 (RCB1) expresados en el núcleo accumbensshell (NAcS) están involucrados en el incremento de las propiedades hedónicas del alimento. Para probar esta hipótesis, este estudio tuvo como objetivo evaluar los efectos de la activación de los RCB1 en el NAcS sobre la ingesta de alimento estándar durante la fase de luz del ciclo luz-oscuridad. S... Ver más

Guardado en:

0123-9155

1909-9711

17

2014-07-01

61

68

Acta Colombiana de Psicología - 2014

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_ucatolica_actacolombianadepsicologia_84_article_165
record_format ojs
spelling Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
Effects of CB1 cannabinoid receptor activation in the nucleos accumbens shell on feeding behavior.
La obesidad y sus patologías relacionadas son riesgos de salud muy conocidos. Aunque la obesidad y el sobrepeso tienen causas multifactoriales, la sobreingesta de alimento es frecuente en estas condiciones. De acuerdo con modelos animales, los endocanabinoides y sus receptores en el cerebro juegan un papel clave en la génesis y desarrollo de la obesidad. Se ha propuesto que los receptores a canabinoides CB1 (RCB1) expresados en el núcleo accumbensshell (NAcS) están involucrados en el incremento de las propiedades hedónicas del alimento. Para probar esta hipótesis, este estudio tuvo como objetivo evaluar los efectos de la activación de los RCB1 en el NAcS sobre la ingesta de alimento estándar durante la fase de luz del ciclo luz-oscuridad. Se evaluaron los efectos de la activación de los RCB1 con WIN 55-212-2 y CP 55,940 (0.125, 0.25, y 0.5 nmol) en el NAcS sobre la conducta alimentaria y la secuencia de saciedad conductual en ratas. Se encontró que ambos agonistas aumentaron la ingesta de alimento y demoraron la expresión de la saciedad durante la fase de luz. Lo anterior sugiere que los agonistas canabinoides estimulan el consumo de alimento cuando la motivación por el mismo es baja y la palatabilidad es normal.
Obesity and its related pathologies are well- known health hazards. Although obesity and overweight have multifactorial causes, overeating is common in both of these conditions. According to animal models, endocannabinoids and their receptors in the brain play a key role in the genesis and development of obesity. It has been proposed that the cannabinoid receptors CB1 (RCB1) expressed in the nucleus accumbens shell (NAC) are involved in the increase of the hedonic properties of food. To test this hypothesis, thisstudy aimed to assess the effects of activating the NACs RCB1 on standard food intake during the light phase of the light-dark cycle. The effects of activating the RCB1 with CP 55,940 and WIN 55-212-2 (0.125, 0.25 and 0.5 nmol) in the NACS on feeding behavior and the behavioral satiety sequence of rats were assessed. It wasfound that both agonists increased food intake and delayed expression of satiety during the light phase. These results suggest that cannabinoid agonists encourage food intake when motivation is low and palatability is normal.
Cortés Salazar, Felipe
Suárez Ortíz, Josué Omar
Cendejas Trejo, Nancy Mónica
Mancilla Díaz, Juan Manuel
López Alonso, Verónica Elsa
Escartín Pérez, Rodrigo Erick
Cannabinoids
Food
Nucleus accumbens shell
Behavioral satiety sequence
Canabinoides
Alimentación
Núcleo accumbens shell
Secuencia de saciedad conductual
17
2
Artículo de revista
Journal article
2014-07-01T00:00:00Z
2014-07-01T00:00:00Z
2014-07-01
application/pdf
Universidad Católica de Colombia
Acta Colombiana de Psicología
0123-9155
1909-9711
https://actacolombianapsicologia.ucatolica.edu.co/article/view/165
10.14718/ACP.2014.17.2.7
https://doi.org/10.14718/ACP.2014.17.2.7
eng
https://creativecommons.org/licenses/by-nc-sa/4.0/
Acta Colombiana de Psicología - 2014
61
68
Bassareo, V. & Di Chiara, G. (1999). Modulation of feedinginduced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 11(12), 4389-4397.
Berner, L. A., Avena, N. M. & Hoebel, B. G. (2008). Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity (Silver Spring) 16,1998-2002. Cota, D., Marsicano, G., Tschöp, M., Grübler, Y., Flachskamm, C., Schubert, M., Auer, D., Yassouridis, A., Thöne-Reineke, C., Ortmann, S., Tomassoni, F., Cervino, C., Nisoli, E., Linthorst, A. C., Pasquali, R., Lutz, B., Stalla, G. K. & Pagotto, U. (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. Journal of Clinical Investigation, 112, 423-431.
Di Patrizio, N. V. & Simansky, K. J. (2008). Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats.Journal of Neuroscience, 28(39),9702-9709.
Dimitriou, S. G., Rice, H. B. & Corwin, R. L. (2000). Effects of limited access to a fat option on food intake and body composition in female rats. International Journal of Eating Disorders, 28,436-445.
Drews, E., Schneider, M. & Koch, M. (2005). Effects of the cannabinoid receptor agonist win 55,212-2 on operant behavior and locomotor activity in rats. Pharmacology Biochemistry and Behavior, 80(1),145-150.
Escartín-Pérez, R. E., Cendejas-Trejo, N. M., Cruz-Martínez, A. M., González-Hernández B., Mancilla-Díaz, J. M. & Florán-Garduño, B. (2009). Role of cannabinoid CB1 receptors on macronutrient selection and satiety in rats. Physiology and Behavior, 96, 646-650.
Gardner, E. L. (2005). Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacology, Biochemistry and Behavior, 81(2), 263-284.
Gong, J. P., Onaivi, E. S., Ishiguro, H., Liu, Q. R., Tagliaferro, P. A., Brusco, A. & Uhla, G. R. (2006). Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Research, 1071,10-23.
González, B., Paz, F., Florán, L., Aceves, J., Erlij, D. & Floran, B. (2009). Cannabinoid agonists stimulate [3H]-GABA release in the globus pallidus of the rat when Gi proteinreceptor coupling is restricted. Journal of Pharmacology and Experimental Therapeutics, 328, 822-828.
Guegan, T., Cutando, L., Ayuso, E., Santini, E., Fisone, G., Bosch, F., Martinez, A., Valjent, E., Maldonado, R. & Martina, M. (2013). Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. European Neuropsychopharmacology, 23(2), 146-159. Jamshidy, N. & Taylor, D.A. (2001). Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats.British Journal of Pharmacology, 134, 1151-1154.
Kirkham, T. C., Williams, C. M., Fezza, F., & Di Marzo, V. (2002). Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. British Journal of Pharmacology, 136(4), 550-557.
Maccarrone, M., Gasperi, V., Catani, M. V., Diep, T. A., Dainese, E., Hansen, H. S. & Avigliano, L. (2010). The endocannabinoid system and its relevance for nutrition. Annual Reviews of Nutrition, 30, 423-440.
Matias, I., Cristino, L. & Di Marzo, V. (2008). Endocannabinoids: Some like it fat (and sweet too). Journal of Neuroendocrinology, 20(1), 100-109.
Melis, T., Succu, S., Sanna, F., Boi, A., Argiolas, A. & Melis, M. R. (2007). The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neuroscience Letters, 419 (3), 231-235.
Nederkoorn, C., Braet, B., Van Eijs, Y., Tanghe, A. & Jansen, A. (2006). Why obese children cannot resist food: The role of impulsivity. Eating Behaviors, 7, 315-322.
Pandolfo, P., Pamplona, F. A., Prediger, R. D. & Takahashi, R. N. (2007). Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by the cannabinoid receptor agonist WIN 55,212-2. European Journal of Pharmacology, 563(1–3), 141-148.
Paxinos, G. & Watson, C. (1998). The brain in stereotaxic coordinates. New York: Academic Press.
Perello, M., Chuang, J., Scott, M. M. & Lutter, M. (2010). Translational Neuroscience approaches to hyperphagia. The Journal of Neuroscience, 30(35), 11549-11554.
Quarta C., Bellocchio L., Manzini G., Mazza R., Cervino C., Braulke L., Fekete C., Latorre R., Nanni C., Bucci M., Clemens L., Heldmaier G., Watanabe M., Leste-Lassere T., Maitre M., Tedesco L., FanelliF., Reuss S., KlausS., Srivastava R., Monory K., Valerio A., Grandis A., de Giorgio R., Pasquali R., Nisoli E., Cota D., Lutz B., Marsicano G. & Pagotto U. (2010). CB1 signaling in forebrain and sympathetic neurons is a key Determinant of endocannabinoid actions on energy balance. Cell Metabolism, 11, 273-285.
Ravinet-Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrié, P. (2004). CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. International Journal of Obesity, 28, 640-648.
Sanudo-Pena, M.C., Patrick, S. L., Patrick, R.L. & Walker, J.M. (1996). Effects of intranigral cannabinoids on rotational behavior in rats: Interactions with the dopaminergic system. Neuroscience Letters, 206, 21-24.
Soria-Gómez, E., Matías, I., Rueda-Orozco, P. E., Cisneros, M., Petrosino, S., Navarro, L. Di Marzo, V. & Próspero-García, O. (2007). Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. British Journal of Pharmacology, 151, 1109-1116.
Verty, A.N., McGregor, I.S. & Mallet, P.E. (2005). Paraventricular hypothalamic CB(1) cannabinoid receptors are involved in the feeding stimulatory effects of Delta(9)tetrahydrocannabinol. Neuropharmacology, 49 (8), 1101-1109.
https://actacolombianapsicologia.ucatolica.edu.co/article/download/165/205
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD CATÓLICA DE COLOMBIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADCATOLICADECOLOMBIA/logo.png
country_str Colombia
collection Acta Colombiana de Psicología
title Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
spellingShingle Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
Cortés Salazar, Felipe
Suárez Ortíz, Josué Omar
Cendejas Trejo, Nancy Mónica
Mancilla Díaz, Juan Manuel
López Alonso, Verónica Elsa
Escartín Pérez, Rodrigo Erick
Cannabinoids
Food
Nucleus accumbens shell
Behavioral satiety sequence
Canabinoides
Alimentación
Núcleo accumbens shell
Secuencia de saciedad conductual
title_short Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
title_full Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
title_fullStr Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
title_full_unstemmed Efectos de la activación del receptor cannabinoide CB1 en el núcleo accumbens shell sobre la conducta alimentaria.
title_sort efectos de la activación del receptor cannabinoide cb1 en el núcleo accumbens shell sobre la conducta alimentaria.
title_eng Effects of CB1 cannabinoid receptor activation in the nucleos accumbens shell on feeding behavior.
description La obesidad y sus patologías relacionadas son riesgos de salud muy conocidos. Aunque la obesidad y el sobrepeso tienen causas multifactoriales, la sobreingesta de alimento es frecuente en estas condiciones. De acuerdo con modelos animales, los endocanabinoides y sus receptores en el cerebro juegan un papel clave en la génesis y desarrollo de la obesidad. Se ha propuesto que los receptores a canabinoides CB1 (RCB1) expresados en el núcleo accumbensshell (NAcS) están involucrados en el incremento de las propiedades hedónicas del alimento. Para probar esta hipótesis, este estudio tuvo como objetivo evaluar los efectos de la activación de los RCB1 en el NAcS sobre la ingesta de alimento estándar durante la fase de luz del ciclo luz-oscuridad. Se evaluaron los efectos de la activación de los RCB1 con WIN 55-212-2 y CP 55,940 (0.125, 0.25, y 0.5 nmol) en el NAcS sobre la conducta alimentaria y la secuencia de saciedad conductual en ratas. Se encontró que ambos agonistas aumentaron la ingesta de alimento y demoraron la expresión de la saciedad durante la fase de luz. Lo anterior sugiere que los agonistas canabinoides estimulan el consumo de alimento cuando la motivación por el mismo es baja y la palatabilidad es normal.
description_eng Obesity and its related pathologies are well- known health hazards. Although obesity and overweight have multifactorial causes, overeating is common in both of these conditions. According to animal models, endocannabinoids and their receptors in the brain play a key role in the genesis and development of obesity. It has been proposed that the cannabinoid receptors CB1 (RCB1) expressed in the nucleus accumbens shell (NAC) are involved in the increase of the hedonic properties of food. To test this hypothesis, thisstudy aimed to assess the effects of activating the NACs RCB1 on standard food intake during the light phase of the light-dark cycle. The effects of activating the RCB1 with CP 55,940 and WIN 55-212-2 (0.125, 0.25 and 0.5 nmol) in the NACS on feeding behavior and the behavioral satiety sequence of rats were assessed. It wasfound that both agonists increased food intake and delayed expression of satiety during the light phase. These results suggest that cannabinoid agonists encourage food intake when motivation is low and palatability is normal.
author Cortés Salazar, Felipe
Suárez Ortíz, Josué Omar
Cendejas Trejo, Nancy Mónica
Mancilla Díaz, Juan Manuel
López Alonso, Verónica Elsa
Escartín Pérez, Rodrigo Erick
author_facet Cortés Salazar, Felipe
Suárez Ortíz, Josué Omar
Cendejas Trejo, Nancy Mónica
Mancilla Díaz, Juan Manuel
López Alonso, Verónica Elsa
Escartín Pérez, Rodrigo Erick
topic Cannabinoids
Food
Nucleus accumbens shell
Behavioral satiety sequence
Canabinoides
Alimentación
Núcleo accumbens shell
Secuencia de saciedad conductual
topic_facet Cannabinoids
Food
Nucleus accumbens shell
Behavioral satiety sequence
Canabinoides
Alimentación
Núcleo accumbens shell
Secuencia de saciedad conductual
topicspa_str_mv Canabinoides
Alimentación
Núcleo accumbens shell
Secuencia de saciedad conductual
citationvolume 17
citationissue 2
publisher Universidad Católica de Colombia
ispartofjournal Acta Colombiana de Psicología
source https://actacolombianapsicologia.ucatolica.edu.co/article/view/165
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Acta Colombiana de Psicología - 2014
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Bassareo, V. & Di Chiara, G. (1999). Modulation of feedinginduced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 11(12), 4389-4397.
Berner, L. A., Avena, N. M. & Hoebel, B. G. (2008). Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity (Silver Spring) 16,1998-2002. Cota, D., Marsicano, G., Tschöp, M., Grübler, Y., Flachskamm, C., Schubert, M., Auer, D., Yassouridis, A., Thöne-Reineke, C., Ortmann, S., Tomassoni, F., Cervino, C., Nisoli, E., Linthorst, A. C., Pasquali, R., Lutz, B., Stalla, G. K. & Pagotto, U. (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. Journal of Clinical Investigation, 112, 423-431.
Di Patrizio, N. V. & Simansky, K. J. (2008). Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats.Journal of Neuroscience, 28(39),9702-9709.
Dimitriou, S. G., Rice, H. B. & Corwin, R. L. (2000). Effects of limited access to a fat option on food intake and body composition in female rats. International Journal of Eating Disorders, 28,436-445.
Drews, E., Schneider, M. & Koch, M. (2005). Effects of the cannabinoid receptor agonist win 55,212-2 on operant behavior and locomotor activity in rats. Pharmacology Biochemistry and Behavior, 80(1),145-150.
Escartín-Pérez, R. E., Cendejas-Trejo, N. M., Cruz-Martínez, A. M., González-Hernández B., Mancilla-Díaz, J. M. & Florán-Garduño, B. (2009). Role of cannabinoid CB1 receptors on macronutrient selection and satiety in rats. Physiology and Behavior, 96, 646-650.
Gardner, E. L. (2005). Endocannabinoid signaling system and brain reward: Emphasis on dopamine. Pharmacology, Biochemistry and Behavior, 81(2), 263-284.
Gong, J. P., Onaivi, E. S., Ishiguro, H., Liu, Q. R., Tagliaferro, P. A., Brusco, A. & Uhla, G. R. (2006). Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Research, 1071,10-23.
González, B., Paz, F., Florán, L., Aceves, J., Erlij, D. & Floran, B. (2009). Cannabinoid agonists stimulate [3H]-GABA release in the globus pallidus of the rat when Gi proteinreceptor coupling is restricted. Journal of Pharmacology and Experimental Therapeutics, 328, 822-828.
Guegan, T., Cutando, L., Ayuso, E., Santini, E., Fisone, G., Bosch, F., Martinez, A., Valjent, E., Maldonado, R. & Martina, M. (2013). Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit. European Neuropsychopharmacology, 23(2), 146-159. Jamshidy, N. & Taylor, D.A. (2001). Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats.British Journal of Pharmacology, 134, 1151-1154.
Kirkham, T. C., Williams, C. M., Fezza, F., & Di Marzo, V. (2002). Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. British Journal of Pharmacology, 136(4), 550-557.
Maccarrone, M., Gasperi, V., Catani, M. V., Diep, T. A., Dainese, E., Hansen, H. S. & Avigliano, L. (2010). The endocannabinoid system and its relevance for nutrition. Annual Reviews of Nutrition, 30, 423-440.
Matias, I., Cristino, L. & Di Marzo, V. (2008). Endocannabinoids: Some like it fat (and sweet too). Journal of Neuroendocrinology, 20(1), 100-109.
Melis, T., Succu, S., Sanna, F., Boi, A., Argiolas, A. & Melis, M. R. (2007). The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neuroscience Letters, 419 (3), 231-235.
Nederkoorn, C., Braet, B., Van Eijs, Y., Tanghe, A. & Jansen, A. (2006). Why obese children cannot resist food: The role of impulsivity. Eating Behaviors, 7, 315-322.
Pandolfo, P., Pamplona, F. A., Prediger, R. D. & Takahashi, R. N. (2007). Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention deficit hyperactivity disorder, to the locomotor stimulation induced by the cannabinoid receptor agonist WIN 55,212-2. European Journal of Pharmacology, 563(1–3), 141-148.
Paxinos, G. & Watson, C. (1998). The brain in stereotaxic coordinates. New York: Academic Press.
Perello, M., Chuang, J., Scott, M. M. & Lutter, M. (2010). Translational Neuroscience approaches to hyperphagia. The Journal of Neuroscience, 30(35), 11549-11554.
Quarta C., Bellocchio L., Manzini G., Mazza R., Cervino C., Braulke L., Fekete C., Latorre R., Nanni C., Bucci M., Clemens L., Heldmaier G., Watanabe M., Leste-Lassere T., Maitre M., Tedesco L., FanelliF., Reuss S., KlausS., Srivastava R., Monory K., Valerio A., Grandis A., de Giorgio R., Pasquali R., Nisoli E., Cota D., Lutz B., Marsicano G. & Pagotto U. (2010). CB1 signaling in forebrain and sympathetic neurons is a key Determinant of endocannabinoid actions on energy balance. Cell Metabolism, 11, 273-285.
Ravinet-Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrié, P. (2004). CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. International Journal of Obesity, 28, 640-648.
Sanudo-Pena, M.C., Patrick, S. L., Patrick, R.L. & Walker, J.M. (1996). Effects of intranigral cannabinoids on rotational behavior in rats: Interactions with the dopaminergic system. Neuroscience Letters, 206, 21-24.
Soria-Gómez, E., Matías, I., Rueda-Orozco, P. E., Cisneros, M., Petrosino, S., Navarro, L. Di Marzo, V. & Próspero-García, O. (2007). Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. British Journal of Pharmacology, 151, 1109-1116.
Verty, A.N., McGregor, I.S. & Mallet, P.E. (2005). Paraventricular hypothalamic CB(1) cannabinoid receptors are involved in the feeding stimulatory effects of Delta(9)tetrahydrocannabinol. Neuropharmacology, 49 (8), 1101-1109.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2014-07-01
date_accessioned 2014-07-01T00:00:00Z
date_available 2014-07-01T00:00:00Z
url https://actacolombianapsicologia.ucatolica.edu.co/article/view/165
url_doi https://doi.org/10.14718/ACP.2014.17.2.7
issn 0123-9155
eissn 1909-9711
doi 10.14718/ACP.2014.17.2.7
citationstartpage 61
citationendpage 68
url2_str_mv https://actacolombianapsicologia.ucatolica.edu.co/article/download/165/205
_version_ 1811200665614024704