Titulo:

Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
.

Sumario:

A nivel mundial la programación de computadores es una de las habilidades más demandadas en el mercado laboral y es un componente esencial del plan de estudios en cualquier programa universitario de ingeniería de sistemas. Muchos estudiantes de este tipo de cursos tienen dificultades cuando intentan resolver ejercicios y terminan abandonando o perdiendo el curso. Una forma de ayudar a los programadores principiantes a superar las dificultades para aprender a programar es emplear ayudas automáticas, las cuales consisten en el suministro de sugerencias personalizadas en el proceso de solución de los ejercicios de programación que realizan los estudiantes. Uno de los principales desafíos asociados con la generación de ayudas para la programaci... Ver más

Guardado en:

2027-8101

2619-5232

13

2021-12-20

89

102

Victor Daniel Gil-Vera - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_tdea_cuadernoactiva_14_article_838
record_format ojs
institution TECNOLOGICO DE ANTIOQUIA INSTITUCION UNIVERSITARIA
thumbnail https://nuevo.metarevistas.org/TECNOLOGICODEANTIOQUIAINSTITUCIONUNIVERSITARIA/logo.png
country_str Colombia
collection Cuaderno activa
title Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
spellingShingle Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
Gil-Vera, Victor Daniel
Guías de datos, ordenador, ciencia, educación, programación, informática.
title_short Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
title_full Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
title_fullStr Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
title_full_unstemmed Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
title_sort revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
title_eng Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
description A nivel mundial la programación de computadores es una de las habilidades más demandadas en el mercado laboral y es un componente esencial del plan de estudios en cualquier programa universitario de ingeniería de sistemas. Muchos estudiantes de este tipo de cursos tienen dificultades cuando intentan resolver ejercicios y terminan abandonando o perdiendo el curso. Una forma de ayudar a los programadores principiantes a superar las dificultades para aprender a programar es emplear ayudas automáticas, las cuales consisten en el suministro de sugerencias personalizadas en el proceso de solución de los ejercicios de programación que realizan los estudiantes. Uno de los principales desafíos asociados con la generación de ayudas para la programación, es la modelación automática de los pasos de la solución a partir de un gran número de soluciones correctas, debido a la diversidad de posibles soluciones que un estudiante puede escribir. El objetivo de este trabajo es presentar una revisión sistemática de literatura (RSL) sobre los algoritmos existentes para generar automáticamente ayudas automáticas a partir de un conjunto de soluciones correctas. Se concluye que, a pesar de que diferentes investigaciones han demostrado la efectividad de este tipo de ayudas, su empleabilidad masiva apenas comienza a implementarse.
description_eng Worldwide, computer programming is one of the most in-demand skills in the job market and is an essential component of the curriculum in any university systems engineering program. Many students of such courses have difficulties when trying to solve exercises and end up dropping out or losing the course. One way to help novice programmers overcome difficulties in learning to program is to employ automatic aids, which consist of providing personalized suggestions in the process of solving programming exercises that students perform. One of the main challenges associated with the generation of programming aids is the automatic modeling of the solution steps from a large number of correct solutions, due to the diversity of possible solutions that a student can write. The objective of this paper is to present a systematic literature review (SLR) on existing algorithms to automatically generate automatic aids from a set of correct solutions. This paper concludes that, although different researches have demonstrated the effectiveness of this type of aids, their massive employability is just beginning to be implemented.
author Gil-Vera, Victor Daniel
author_facet Gil-Vera, Victor Daniel
topicspa_str_mv Guías de datos, ordenador, ciencia, educación, programación, informática.
topic Guías de datos, ordenador, ciencia, educación, programación, informática.
topic_facet Guías de datos, ordenador, ciencia, educación, programación, informática.
citationvolume 13
citationissue 1
citationedition Núm. 1 , Año 2021 : Volumen 13
publisher Tecnológico de Antioquia - Institución Universitaria
ispartofjournal Cuaderno activa
source https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/838
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
Victor Daniel Gil-Vera - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references 1] Rivers, K., y Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: a self-improving python programming tutor. International Journal of Artificial Intelligence in Education, 27(1), 37-64. [2] Le, N.-T. (2016). Analysis techniques for feedback-based educational systems for programming. In Advanced Computational Methods for Knowledge Engineering (pp. 141-152). Springer. [3] Barnes, T., y Stamper, J. (2008). Toward automatic hint generation for logic proof tutoring using historical student data. International Conference on Intelligent Tutoring Systems, 373-382. Springer. [4] Price, T. W., Dong, Y., Zhi, R., Paaßen, B., Lytle, N., Cateté, V., y Barnes, T. (2019). A Comparison of the Quality of Data-Driven Programming Hint Generation Algorithms. International Journal of Artificial Intelligence in Education, 29(3), 368-395. https://doi.org/10.1007/s40593-019-00177-z [5] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., y Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009 [6] Choudhury, R. R., Yin, H., y Fox, A. (2016). Scale-driven automatic hint generation for coding style. International Conference on Intelligent Tutoring Systems, 122-132. Springer. [7] Wiese, E. S., Yen, M., Chen, A., Santos, L. A., y Fox, A. (2017). Teaching students to recognize and implement good coding style. Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, 41-50. [8] Singh, R. (2014). Accessible programming using program synthesis. Massachusetts Institute of Technology, Department of Electrical Engineering. [9] Terman, S. (2016). GroverCode: code canonicalization and clustering applied to grading. Massachusetts Institute of Technology. [10] Lazar, T., y Bratko, I. (2014). Data-driven program synthesis for hint generation in programming tutors. International Conference on Intelligent Tutoring Systems, 306-311. Springer. [11] Price, T. W., Dong, Y., y Barnes, T. (2016). Generating Data-Driven Hints for Open-Ended Programming. International Educational Data Mining Society. [12] Perelman, D., Gulwani, S., y Grossman, D. (2014). Test-driven synthesis for automated feedback for introductory computer science assignments. Proceedings of Data Mining for Educational Assessment and Feedback (ASSESS 2014). [13] Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., €¦ Hartmann, B. (2017). Learning syntactic program transformations from examples. 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), 404-415. IEEE. [14] Phothilimthana, P. M., y Sridhara, S. (2017). High-coverage hint generation for massive courses: Do automated hints help CS1 students? Proceedings of the 2017 Acm Conference on Innovation and Technology in Computer Science Education, 182-187. [15] Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo, L., D’Antoni, L., y Hartmann, B. (2017). Writing reusable code feedback at scale with mixed-initiative program synthesis. Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, 89-98. [16] Suzuki, R., Soares, G., Glassman, E., Head, A., D’Antoni, L., y Hartmann, B. (2017). Exploring the design space of automatically synthesized hints for introductory programming assignments. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2951-2958. [17] Gross, S., Mokbel, B., Hammer, B., y Pinkwart, N. (2014). How to select an example? a comparison of selection strategies in example-based learning. International Conference on Intelligent Tutoring Systems, 340-347. Springer. [18] Paaßen, B., Jensen, J., y Hammer, B. (2016). Execution Traces as a Powerful Data Representation for Intelligent Tutoring Systems for Programming. International Educational Data Mining Society. [19] Kaleeswaran, S., Santhiar, A., Kanade, A., y Gulwani, S. (2016). Semi-supervised verified feedback generation. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 739-750. [20] Gulwani, S., Radiček, I., y Zuleger, F. (2018). Automated clustering and program repair for introductory programming assignments. ACM SIGPLAN Notices, 53(4), 465-480. [21] Marin, V. J., Pereira, T., Sridharan, S., y Rivero, C. R. (2017). Automated personalized feedback in introductory Java programming MOOCs. 2017 IEEE 33rd International Conference on Data Engineering (ICDE), 1259-1270. IEEE. [22] Zimmerman, K., y Rupakheti, C. R. (2015). An automated framework for recommending program elements to novices (n). 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 283-288. IEEE. [23] Chaturvedi, R. (2016). Task-based Example Miner for Intelligent Tutoring Systems. [24] Freeman, P., Watson, I., y Denny, P. (2016). Inferring student coding goals using abstract syntax trees. International Conference on Case-Based Reasoning, 139-153. Springer. [25] Irfan, M. T., y Gudivada, V. N. (2016). Handbook of Statistics. [On-line]. Vol. 35. [26] Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., y Chen, L. (2015). Data driven automatic feedback generation in the iList intelligent tutoring system. Technology, Instruction, Cognition and Learning, 10(1), 5-26. [27] Jin, W., Barnes, T., Stamper, J., Eagle, M. J., Johnson, M. W., y Lehmann, L. (2012). Program representation for automatic hint generation for a data-driven novice programming tutor. International Conference on Intelligent Tutoring Systems, 304-309. Springer. [28] Keuning, H. (2014). Strategy-based feedback for imperative programming exercises. Open Universiteit Nederland. [29] Price, T. W., Dong, Y., y Lipovac, D. (2017). iSnap: towards intelligent tutoring in novice programming environments. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, 483-488. [30] Paassen, B., Mokbel, B., y Hammer, B. (2016). Adaptive structure metrics for automated feedback provision in intelligent tutoring systems. Neurocomputing, 192, 3-13. https://doi.org/10.1016/j.neucom.2015.12.108
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-12-20
date_accessioned 2021-12-20T00:00:00Z
date_available 2021-12-20T00:00:00Z
url https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/838
url_doi https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/838
issn 2027-8101
eissn 2619-5232
citationstartpage 89
citationendpage 102
url2_str_mv https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/838/1364
_version_ 1811200387129016320
spelling Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
Revisión sistemática de literatura sobre generación automática de ayudas en ejercicios de programación
A nivel mundial la programación de computadores es una de las habilidades más demandadas en el mercado laboral y es un componente esencial del plan de estudios en cualquier programa universitario de ingeniería de sistemas. Muchos estudiantes de este tipo de cursos tienen dificultades cuando intentan resolver ejercicios y terminan abandonando o perdiendo el curso. Una forma de ayudar a los programadores principiantes a superar las dificultades para aprender a programar es emplear ayudas automáticas, las cuales consisten en el suministro de sugerencias personalizadas en el proceso de solución de los ejercicios de programación que realizan los estudiantes. Uno de los principales desafíos asociados con la generación de ayudas para la programación, es la modelación automática de los pasos de la solución a partir de un gran número de soluciones correctas, debido a la diversidad de posibles soluciones que un estudiante puede escribir. El objetivo de este trabajo es presentar una revisión sistemática de literatura (RSL) sobre los algoritmos existentes para generar automáticamente ayudas automáticas a partir de un conjunto de soluciones correctas. Se concluye que, a pesar de que diferentes investigaciones han demostrado la efectividad de este tipo de ayudas, su empleabilidad masiva apenas comienza a implementarse.
Worldwide, computer programming is one of the most in-demand skills in the job market and is an essential component of the curriculum in any university systems engineering program. Many students of such courses have difficulties when trying to solve exercises and end up dropping out or losing the course. One way to help novice programmers overcome difficulties in learning to program is to employ automatic aids, which consist of providing personalized suggestions in the process of solving programming exercises that students perform. One of the main challenges associated with the generation of programming aids is the automatic modeling of the solution steps from a large number of correct solutions, due to the diversity of possible solutions that a student can write. The objective of this paper is to present a systematic literature review (SLR) on existing algorithms to automatically generate automatic aids from a set of correct solutions. This paper concludes that, although different researches have demonstrated the effectiveness of this type of aids, their massive employability is just beginning to be implemented.
Gil-Vera, Victor Daniel
Guías de datos, ordenador, ciencia, educación, programación, informática.
13
1
Núm. 1 , Año 2021 : Volumen 13
Artículo de revista
Journal article
2021-12-20T00:00:00Z
2021-12-20T00:00:00Z
2021-12-20
application/pdf
Tecnológico de Antioquia - Institución Universitaria
Cuaderno activa
2027-8101
2619-5232
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/838
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/838
spa
https://creativecommons.org/licenses/by-nc-sa/4.0
Victor Daniel Gil-Vera - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
89
102
1] Rivers, K., y Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: a self-improving python programming tutor. International Journal of Artificial Intelligence in Education, 27(1), 37-64. [2] Le, N.-T. (2016). Analysis techniques for feedback-based educational systems for programming. In Advanced Computational Methods for Knowledge Engineering (pp. 141-152). Springer. [3] Barnes, T., y Stamper, J. (2008). Toward automatic hint generation for logic proof tutoring using historical student data. International Conference on Intelligent Tutoring Systems, 373-382. Springer. [4] Price, T. W., Dong, Y., Zhi, R., Paaßen, B., Lytle, N., Cateté, V., y Barnes, T. (2019). A Comparison of the Quality of Data-Driven Programming Hint Generation Algorithms. International Journal of Artificial Intelligence in Education, 29(3), 368-395. https://doi.org/10.1007/s40593-019-00177-z [5] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., y Linkman, S. (2009). Systematic literature reviews in software engineering - A systematic literature review. Information and Software Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009 [6] Choudhury, R. R., Yin, H., y Fox, A. (2016). Scale-driven automatic hint generation for coding style. International Conference on Intelligent Tutoring Systems, 122-132. Springer. [7] Wiese, E. S., Yen, M., Chen, A., Santos, L. A., y Fox, A. (2017). Teaching students to recognize and implement good coding style. Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, 41-50. [8] Singh, R. (2014). Accessible programming using program synthesis. Massachusetts Institute of Technology, Department of Electrical Engineering. [9] Terman, S. (2016). GroverCode: code canonicalization and clustering applied to grading. Massachusetts Institute of Technology. [10] Lazar, T., y Bratko, I. (2014). Data-driven program synthesis for hint generation in programming tutors. International Conference on Intelligent Tutoring Systems, 306-311. Springer. [11] Price, T. W., Dong, Y., y Barnes, T. (2016). Generating Data-Driven Hints for Open-Ended Programming. International Educational Data Mining Society. [12] Perelman, D., Gulwani, S., y Grossman, D. (2014). Test-driven synthesis for automated feedback for introductory computer science assignments. Proceedings of Data Mining for Educational Assessment and Feedback (ASSESS 2014). [13] Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., €¦ Hartmann, B. (2017). Learning syntactic program transformations from examples. 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), 404-415. IEEE. [14] Phothilimthana, P. M., y Sridhara, S. (2017). High-coverage hint generation for massive courses: Do automated hints help CS1 students? Proceedings of the 2017 Acm Conference on Innovation and Technology in Computer Science Education, 182-187. [15] Head, A., Glassman, E., Soares, G., Suzuki, R., Figueredo, L., D’Antoni, L., y Hartmann, B. (2017). Writing reusable code feedback at scale with mixed-initiative program synthesis. Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, 89-98. [16] Suzuki, R., Soares, G., Glassman, E., Head, A., D’Antoni, L., y Hartmann, B. (2017). Exploring the design space of automatically synthesized hints for introductory programming assignments. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2951-2958. [17] Gross, S., Mokbel, B., Hammer, B., y Pinkwart, N. (2014). How to select an example? a comparison of selection strategies in example-based learning. International Conference on Intelligent Tutoring Systems, 340-347. Springer. [18] Paaßen, B., Jensen, J., y Hammer, B. (2016). Execution Traces as a Powerful Data Representation for Intelligent Tutoring Systems for Programming. International Educational Data Mining Society. [19] Kaleeswaran, S., Santhiar, A., Kanade, A., y Gulwani, S. (2016). Semi-supervised verified feedback generation. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 739-750. [20] Gulwani, S., Radiček, I., y Zuleger, F. (2018). Automated clustering and program repair for introductory programming assignments. ACM SIGPLAN Notices, 53(4), 465-480. [21] Marin, V. J., Pereira, T., Sridharan, S., y Rivero, C. R. (2017). Automated personalized feedback in introductory Java programming MOOCs. 2017 IEEE 33rd International Conference on Data Engineering (ICDE), 1259-1270. IEEE. [22] Zimmerman, K., y Rupakheti, C. R. (2015). An automated framework for recommending program elements to novices (n). 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 283-288. IEEE. [23] Chaturvedi, R. (2016). Task-based Example Miner for Intelligent Tutoring Systems. [24] Freeman, P., Watson, I., y Denny, P. (2016). Inferring student coding goals using abstract syntax trees. International Conference on Case-Based Reasoning, 139-153. Springer. [25] Irfan, M. T., y Gudivada, V. N. (2016). Handbook of Statistics. [On-line]. Vol. 35. [26] Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., y Chen, L. (2015). Data driven automatic feedback generation in the iList intelligent tutoring system. Technology, Instruction, Cognition and Learning, 10(1), 5-26. [27] Jin, W., Barnes, T., Stamper, J., Eagle, M. J., Johnson, M. W., y Lehmann, L. (2012). Program representation for automatic hint generation for a data-driven novice programming tutor. International Conference on Intelligent Tutoring Systems, 304-309. Springer. [28] Keuning, H. (2014). Strategy-based feedback for imperative programming exercises. Open Universiteit Nederland. [29] Price, T. W., Dong, Y., y Lipovac, D. (2017). iSnap: towards intelligent tutoring in novice programming environments. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, 483-488. [30] Paassen, B., Mokbel, B., y Hammer, B. (2016). Adaptive structure metrics for automated feedback provision in intelligent tutoring systems. Neurocomputing, 192, 3-13. https://doi.org/10.1016/j.neucom.2015.12.108
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/838/1364
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/redcol/resource_type/ARTREV
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication