Titulo:

La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
.

Sumario:

Dado el continuo crecimiento del parque automotor a nivel mundial, constantemente se evidencia la problemática asociada a la disposición final de los residuos de neumáticos; que no solo se generan en altos volúmenes, sino que también representan una problemática para su adecuada disposición o aprovechamiento. El objetivo de este artículo de revisión se concentró en identificar las principales técnicas de aprovechamiento para este tipo de residuos a partir de su aporte energético y potencial uso en la industria, haciendo un énfasis particular en la técnica de pirolisis, comparando diferentes tipos de reactores y evaluando los rendimientos energéticos encontrados para la generación del aceite pirolítico; Identificando de esta forma técnicas a... Ver más

Guardado en:

2027-8101

2619-5232

13

2021-12-20

41

60

santiago andres mejia madrigal, sergio augusto upegui sosa - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_tdea_cuadernoactiva_14_article_728
record_format ojs
institution TECNOLOGICO DE ANTIOQUIA INSTITUCION UNIVERSITARIA
thumbnail https://nuevo.metarevistas.org/TECNOLOGICODEANTIOQUIAINSTITUCIONUNIVERSITARIA/logo.png
country_str Colombia
collection Cuaderno activa
title La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
spellingShingle La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
mejia madrigal, santiago andres
upegui sosa, sergio augusto
Waste tyres (ELT)
elastomers
pyrolysis
pyrolytic oil
energy recover
Neumáticos de desecho (ELT)
elastómeros
pirolisis
aceite pirolítico
aprovechamiento energético
title_short La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
title_full La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
title_fullStr La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
title_full_unstemmed La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
title_sort la pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. una revisón
title_eng A review of pyrolysis and other methods of using waste tyre as an energy source for industry
description Dado el continuo crecimiento del parque automotor a nivel mundial, constantemente se evidencia la problemática asociada a la disposición final de los residuos de neumáticos; que no solo se generan en altos volúmenes, sino que también representan una problemática para su adecuada disposición o aprovechamiento. El objetivo de este artículo de revisión se concentró en identificar las principales técnicas de aprovechamiento para este tipo de residuos a partir de su aporte energético y potencial uso en la industria, haciendo un énfasis particular en la técnica de pirolisis, comparando diferentes tipos de reactores y evaluando los rendimientos energéticos encontrados para la generación del aceite pirolítico; Identificando de esta forma técnicas adicionales con alta importancia actual a nivel internacional que podrían ser implementadas en un país como Colombia. Lo anterior, arrojó que las técnicas de pirolisis de lecho fijo y cama fluidizada son las más estudiadas, las cuales han mostrado resultados entre el 55 % y 60 % de rendimiento con temperaturas optimas de calentamiento entre 450 °C y 550 °C. También es importante resaltar aquellos parámetros que influyen en el rendimiento final del aceite el cual dada la información recolectada puede deberse a tamaños de  partícula pequeños, tiempos de calentamiento cortos de hasta 5 segundos ,composición de la materia prima  como son productos con mayor porcentaje de caucho natural permiten obtener un producto de mayor calidad con un poder calorífico de hasta 40MJ/kg el cual es comparable con combustibles como el biodisel , keroseno, fuel oil ligero, entre otros para ser usado como fuente de energía. Partiendo del alto porcentaje de carbono que contienen los neumáticos (de aproximadamente un 29,40%), lo cual lo hace un buen candidato para la producción de energía. Es por esto que se encuentra en la pirolisis una estrategia viable de aprovechamiento energético para los residuos de neumáticos, generando a través de esta técnica un aprovechamiento eficiente de éstos como fuente de energía.
description_eng Given the continuous growth of the vehicle fleet worldwide, there is constant evidence of the problems associated with the final disposal of waste tires, which are not only generated in high volumes, but also represent a problem for their proper disposal or use. The objective of this review article was to identify the main utilization techniques for this type of waste from its energy contribution and potential use in industry making a particular emphasis on the pyrolysis technique, comparing different types of reactors and evaluating the energy yields found for the generation of pyrolytic oil; identifying in this way additional techniques with high current international importance that could be implemented in a country like Colombia. This showed that fixed bed and fluidized bed pyrolysis techniques are the most studied, which have shown results between 55 and 60 % of efficiency with optimal heating temperatures between 450 °C and 550 °C. It is also important to highlight those parameters that influence the final performance of the oil which, given the information collected, may be due to small particle sizes, short heating times of up to 5 seconds, composition of the raw material, such as products with a higher percentage of natural rubber, allow for a higher quality product with a calorific value of up to 40MJ/kg, which is comparable to fuels such as biodiesel, kerosene, light fuel oil, among others, for use as an energy source. Starting with the high percentage of carbon contained in tires (approximately 29.40%), which makes it a good candidate for energy production.This is why pyrolysis is a viable strategy for the energy use of tyre waste, generating through this technique an efficient use of these tyres as an energy source.
author mejia madrigal, santiago andres
upegui sosa, sergio augusto
author_facet mejia madrigal, santiago andres
upegui sosa, sergio augusto
topic Waste tyres (ELT)
elastomers
pyrolysis
pyrolytic oil
energy recover
Neumáticos de desecho (ELT)
elastómeros
pirolisis
aceite pirolítico
aprovechamiento energético
topic_facet Waste tyres (ELT)
elastomers
pyrolysis
pyrolytic oil
energy recover
Neumáticos de desecho (ELT)
elastómeros
pirolisis
aceite pirolítico
aprovechamiento energético
topicspa_str_mv Neumáticos de desecho (ELT)
elastómeros
pirolisis
aceite pirolítico
aprovechamiento energético
citationvolume 13
citationissue 1
citationedition Núm. 1 , Año 2021 : Volumen 13
publisher Tecnológico de Antioquia - Institución Universitaria
ispartofjournal Cuaderno activa
source https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/728
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0
santiago andres mejia madrigal, sergio augusto upegui sosa - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references J. Domingues, T. Marques, A. Mateus, P. Carreira, and C. Malça, “An additive manufacturing solution to produce big green parts from tires and recycled plastics,” Procedia Manuf., vol. 12, no. December 2016, pp. 242-248, 2017, doi: 10.1016/j.promfg.2017.08.028. [2] A. Siddika, M. A. Al Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review,” Constr. Build. Mater., vol. 224, pp. 711-731, 2019, doi: 10.1016/j.conbuildmat.2019.07.108. [3] J. S. Yadav and S. K. Tiwari, “The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review,” Environ. Dev. Sustain., vol. 21, no. 2, pp. 485-568, 2019, doi: 10.1007/s10668-017-0054-2. [4] S. M. S. M. K. Samarakoon, P. Ruben, J. Wie, and L. Evangelista, “Case Studies in Construction Materials Mechanical performance of concrete made of steel fi bers from tire waste,” Case Stud. Constr. Mater., vol. 11, p. e00259, 2019, doi: 10.1016/j.cscm.2019.e00259. [5] E. B. Machin, D. T. Pedroso, and J. A. de Carvalho, “Energetic valorization of waste tires,” Renew. Sustain. Energy Rev., vol. 68, no. December 2015, pp. 306-315, 2017, doi: 10.1016/j.rser.2016.09.110. [6] M. Policella, Z. Wang, K. G. Burra, and A. K. Gupta, “Characteristics of syngas from pyrolysis and CO 2 -assisted gasification of waste tires,” Appl. Energy, vol. 254, no. July, p. 113678, 2019, doi: 10.1016/j.apenergy.2019.113678. [7] W. Ruwona, G. Danha, and E. Muzenda, “ScienceDirect ScienceDirect ScienceDirect A Review on Material and Energy Recovery from Waste Tyres A Review on Material and Energy Recovery from Waste Tyres,” Procedia Manuf., vol. 35, pp. 216-222, 2019, doi: 10.1016/j.promfg.2019.05.029. [8] M. S. Hossain, M. R. Islam, M. S. Rahman, M. A. Kader, and H. Haniu, “Biofuel from Co-pyrolysis of Solid Tire Waste and Rice Husk,” Energy Procedia, vol. 110, no. December 2016, pp. 453-458, 2017, doi: 10.1016/j.egypro.2017.03.168. [9] S. Uçar and S. Karagöz, “Co-pyrolysis of pine nut shells with scrap tires,” Fuel, vol. 137, pp. 85-93, 2014, doi: 10.1016/j.fuel.2014.07.082. [10] A. Hasan and I. Dincer, “ScienceDirect Assessment of an Integrated Gasification Combined Cycle using waste tires for hydrogen and fresh water production,” Int. J. Hydrogen Energy, vol. 44, no. 36, pp. 19730-19741, 2019, doi: 10.1016/j.ijhydene.2019.05.075. [11] K. Winternitz, M. Heggie, and J. Baird, “Extended producer responsibility for waste tyres in the EU: Lessons learnt from three case studies - Belgium, Italy and the Netherlands,” Waste Manag., vol. 89, pp. 386-396, 2019, doi: 10.1016/j.wasman.2019.04.023. [12] G. Jaime, P. Arroyave, S. Milena, V. Restrepo, D. Hernán, and G. Vásquez, “Aplicaciones de caucho reciclado€¯: una revisión de la literatura Applications of recycled rubber€¯: a literature review Ciencia e Ingeniería Neogranadina,” pp. 27-50, 2017. [13] L. A. S. Tendencias and M. D. E. Desarrollo, “Facultad de Ciencias Exactas Y Naturales MUNDIALES DE DESARROLLO SOSTENIBLE Article history€¯:,” no. November 2013, 2015. [14] “res_1326_de_2017-llantas_usadas.pdf.” . [15] E. E. Okoro, N. O. Erivona, S. E. Sanni, K. B. Orodu, and K. C. Igwilo, “Modification of waste tire pyrolytic oil as base fluid for synthetic lube oil blending and production: waste tire utilization approach,” J. Mater. Cycles Waste Manag., no. 0123456789, 2020, doi: 10.1007/s10163-020-01018-1. [16] L. Patiño and M. Rodríguez, “Llantas usadas: materia prima para pavimentos y múltiples ecoaplicaciones,” Rev. Ontare, vol. 5, pp. 1-34, 2018, doi: 10.21158/23823399.v5.n0.2017.2004. [17] G. Castro, “M E C a N I C a F . I . U . B . a . I N G . G U I L L E R M O C a S T R O,” Diciembre, pp. 1-57, 2008. [18] P. T. Williams, “Pyrolysis of waste tyres: A review,” Waste Manag., vol. 33, no. 8, pp. 1714-1728, 2013, doi: 10.1016/j.wasman.2013.05.003. [19] D. Landi, M. Marconi, I. Meo, and M. Germani, “Reuse scenarios of tires textile fibers: An environmental evaluation,” Procedia Manuf., vol. 21, no. 2017, pp. 329-336, 2018, doi: 10.1016/j.promfg.2018.02.128. [20] V. Malijonyte, E. Dace, F. Romagnoli, I. Kliopova, and M. Gedrovics, “A Comparative Life Cycle Assessment of Energy Recovery from end-of-life Tires and Selected Solid Waste,” Energy Procedia, vol. 95, pp. 257-264, 2016, doi: 10.1016/j.egypro.2016.09.064. [21] R. Krzy, H. Jouhara, N. Spencer, and D. Czajczy, “Use of pyrolytic gas from waste tire as a fuel€¯: A review,” vol. 2025, 2017, doi: 10.1016/j.energy.2017.05.042. [22] G. Castro, “M E C a N I C a F . I . U . B . a . I N G . G U I L L E R M O C a S T R O,” Diciembre, pp. 1-57, 2008, [Online]. Available: http://campus.fi.uba.ar/file.php/295/Material_Complementario/Materiales_y_Compuestos_para_la_Industria_del_Neumatico.pdf. [23] P. T. Williams and A. J. Brindle, “Aromatic chemicals from the catalytic pyrolysis of scrap tyres,” vol. 67, pp. 143-164, 2003. [24] E. Muzenda, “A Comparative Review of Waste Tyre Pyrolysis , Gasification and Liquefaction ( PGL ) Processes,” 2014. [25] E. B. Machin, D. T. Pedroso, and J. A. de Carvalho, “Technical assessment of discarded tires gasification as alternative technology for electricity generation,” Waste Manag., vol. 68, pp. 412-420, 2017, doi: 10.1016/j.wasman.2017.07.004. [26] P. Nowakowski, “The influence of preliminary processing of end-of-life tires on transportation cost and vehicle exhausts emissions,” 2020. [27] K. Street, “2017 U . S . Scrap Tire Management Summary About the U . S . Tire Manufacturers Association,” 2018. [28] N. Puy, J. D. Martı, V. Navarro, and A. M. Mastral, “Waste tyre pyrolysis - A review,” vol. 23, pp. 179-213, 2013, doi: 10.1016/j.rser.2013.02.038. [29] N. T. y M. Wilson, “Analisis del riesgo de la gasificacion y pirolisis,” Gaia, p. 18, 2017, [Online]. Available: http://www.no-burn.org/wp-content/uploads/Gasificaci. [30] V. Belgiorno, G. De Feo, C. Della Rocca, and R. M. A. Napoli, “Energy from gasification of solid wastes,” vol. 23, pp. 1-15, 2003. [31] A. Franco and N. Giannini, “Perspectives for the use of biomass as fuel in combined cycle power plants,” vol. 44, pp. 163-177, 2005, doi: 10.1016/j.ijthermalsci.2004.07.005. [32] S. Porto et al., “Optimizing H 2 Production from Waste Tires via Combined Steam Gasification and Catalytic Reforming,” pp. 2232-2241, 2011. [33] A. Mohajerani, L. Burnett, J. V Smith, S. Markovski, and G. Rodwell, “Resources , Conservation & Recycling Recycling waste rubber tyres in construction materials and associated environmental considerations€¯: A review,” Resour. Conserv. Recycl., vol. 155, no. January, p. 104679, 2020, doi: 10.1016/j.resconrec.2020.104679. [34] T. Ratnakiran, Wankhade D Bhattacharya, “Pyrolysis oil an emerging alternate fuel for future (Review), ” J. Pharmacogn. Phytochem., vol. 6, no. 6, pp. 239-243, 2017, [Online]. Available: http://www.phytojournal.com/archives/2017/vol6issue6/PartD/6-4-382-970.pdf. [35] C. T. DANIEL and D. F. CAMILO, “DISEÑO CONCEPTUAL DE UNA PLANTA PARA EL APROVECHAMIENTO DE CAUCHO MOLIDO DE NEUMÁTICOS USADOS A PARTIR DE PIRÓLISIS,” 2018. [36] A. Alsaleh and M. L. Sattler, “Waste Tire Pyrolysis€¯: Influential Parameters and Product Properties,” pp. 129-135, 2014, doi: 10.1007/s40518-014-0019-0. [37] F. Esaclona, S. Rodríguez, J. Antonio, and A. Beatón, “Reactores En Lecho Fluidizado,” Tecnol. Química, vol. XXIX, pp. 205-212, 2009, doi: 10.1590/2224-6185.2009.0.%x. [38] X. Dai, “Pyrolysis of waste tires in a circulating fluidized-bed reactor,” vol. 26, pp. 385-399, 2001. [39] J. I. Osayi, S. Iyuke, M. O. Daramola, P. Osifo, I. J. Van Der Walt, and S. E. Ogbeide, “Pyrolytic conversion of used tyres to liquid fuel€¯: characterization and effect of operating conditions,” J. Mater. Cycles Waste Manag., vol. 20, no. 2, pp. 1273-1285, 2018, doi: 10.1007/s10163-017-0690-5. [40] A. Ferna, M. V Navarro, R. Murillo, T. Garcı, and A. M. Mastral, “Waste Tire Pyrolysis€¯: Comparison between Fixed Bed Reactor and Moving Bed Reactor,” pp. 4029-4033, 2008. [41] S. Galvagno, S. Casu, T. Casabianca, A. Calabrese, and G. Cornacchia, “Pyrolysis process for the treatment of scrap tyres€¯: preliminary experimental results,” vol. 22, pp. 917-923, 2002. [42] H. Hu et al., “Chemosphere The fate of sulfur during rapid pyrolysis of scrap tires,” Chemosphere, vol. 97, pp. 102-107, 2014, doi: 10.1016/j.chemosphere.2013.10.037. [43] C. Ilk, “Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods,” vol. 102, pp. 605-612, 2012, doi: 10.1016/j.fuel.2012.06.067. [44] Y. Kar, “Catalytic pyrolysis of car tire waste using expanded perlite,” Waste Manag., vol. 31, no. 8, pp. 1772-1782, 2011, doi: 10.1016/j.wasman.2011.04.005. [45] J. Shah, M. R. Jan, and F. Mabood, “Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons Via Base Catalysts,” vol. 27, no. 2, pp. 103-109, 2008. [46] M. Rofiqul Islam, H. Haniu, and M. Rafiqul Alam Beg, “Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties,” Fuel, vol. 87, no. 13-14, pp. 3112-3122, 2008, doi: 10.1016/j.fuel.2008.04.036. [47] S. Chouaya, M. A. Abbassi, R. B. Younes, and A. Zoulalian, “Scrap Tires Pyrolysis: Product Yields, Properties and Chemical Compositions of Pyrolytic Oil,” Russ. J. Appl. Chem., vol. 91, no. 10, pp. 1603-1611, 2018, doi: 10.1134/S1070427218100063. [48] F. J. W. David, “Evaluación de un reactor de lecho fluidizado en el proceso de pirólisis catalítica usando desecho de caucho de llanta,” Univ. los Andes, pp. 1-86, 2016. [49] Q. Xue, T. J. Heindel, and R. O. Fox, “A CFD model for biomass fast pyrolysis in fluidized-bed reactors,” Chem. Eng. Sci., vol. 66, no. 11, pp. 2440-2452, 2011, doi: 10.1016/j.ces.2011.03.010. [50] P. T. Williams and D. T. Taylor, “The pyrolysis of scrap automotive and heating rate on product composition,” vol. 69, pp. 1474-1482, 1990.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-12-20
date_accessioned 2021-12-20T00:00:00Z
date_available 2021-12-20T00:00:00Z
url https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/728
url_doi https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/728
issn 2027-8101
eissn 2619-5232
citationstartpage 41
citationendpage 60
url2_str_mv https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/728/1361
_version_ 1811200385527840768
spelling La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
A review of pyrolysis and other methods of using waste tyre as an energy source for industry
Dado el continuo crecimiento del parque automotor a nivel mundial, constantemente se evidencia la problemática asociada a la disposición final de los residuos de neumáticos; que no solo se generan en altos volúmenes, sino que también representan una problemática para su adecuada disposición o aprovechamiento. El objetivo de este artículo de revisión se concentró en identificar las principales técnicas de aprovechamiento para este tipo de residuos a partir de su aporte energético y potencial uso en la industria, haciendo un énfasis particular en la técnica de pirolisis, comparando diferentes tipos de reactores y evaluando los rendimientos energéticos encontrados para la generación del aceite pirolítico; Identificando de esta forma técnicas adicionales con alta importancia actual a nivel internacional que podrían ser implementadas en un país como Colombia. Lo anterior, arrojó que las técnicas de pirolisis de lecho fijo y cama fluidizada son las más estudiadas, las cuales han mostrado resultados entre el 55 % y 60 % de rendimiento con temperaturas optimas de calentamiento entre 450 °C y 550 °C. También es importante resaltar aquellos parámetros que influyen en el rendimiento final del aceite el cual dada la información recolectada puede deberse a tamaños de  partícula pequeños, tiempos de calentamiento cortos de hasta 5 segundos ,composición de la materia prima  como son productos con mayor porcentaje de caucho natural permiten obtener un producto de mayor calidad con un poder calorífico de hasta 40MJ/kg el cual es comparable con combustibles como el biodisel , keroseno, fuel oil ligero, entre otros para ser usado como fuente de energía. Partiendo del alto porcentaje de carbono que contienen los neumáticos (de aproximadamente un 29,40%), lo cual lo hace un buen candidato para la producción de energía. Es por esto que se encuentra en la pirolisis una estrategia viable de aprovechamiento energético para los residuos de neumáticos, generando a través de esta técnica un aprovechamiento eficiente de éstos como fuente de energía.
Given the continuous growth of the vehicle fleet worldwide, there is constant evidence of the problems associated with the final disposal of waste tires, which are not only generated in high volumes, but also represent a problem for their proper disposal or use. The objective of this review article was to identify the main utilization techniques for this type of waste from its energy contribution and potential use in industry making a particular emphasis on the pyrolysis technique, comparing different types of reactors and evaluating the energy yields found for the generation of pyrolytic oil; identifying in this way additional techniques with high current international importance that could be implemented in a country like Colombia. This showed that fixed bed and fluidized bed pyrolysis techniques are the most studied, which have shown results between 55 and 60 % of efficiency with optimal heating temperatures between 450 °C and 550 °C. It is also important to highlight those parameters that influence the final performance of the oil which, given the information collected, may be due to small particle sizes, short heating times of up to 5 seconds, composition of the raw material, such as products with a higher percentage of natural rubber, allow for a higher quality product with a calorific value of up to 40MJ/kg, which is comparable to fuels such as biodiesel, kerosene, light fuel oil, among others, for use as an energy source. Starting with the high percentage of carbon contained in tires (approximately 29.40%), which makes it a good candidate for energy production.This is why pyrolysis is a viable strategy for the energy use of tyre waste, generating through this technique an efficient use of these tyres as an energy source.
mejia madrigal, santiago andres
upegui sosa, sergio augusto
Waste tyres (ELT)
elastomers
pyrolysis
pyrolytic oil
energy recover
Neumáticos de desecho (ELT)
elastómeros
pirolisis
aceite pirolítico
aprovechamiento energético
13
1
Núm. 1 , Año 2021 : Volumen 13
Artículo de revista
Journal article
2021-12-20T00:00:00Z
2021-12-20T00:00:00Z
2021-12-20
application/pdf
Tecnológico de Antioquia - Institución Universitaria
Cuaderno activa
2027-8101
2619-5232
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/728
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/728
spa
https://creativecommons.org/licenses/by-nc-sa/4.0
santiago andres mejia madrigal, sergio augusto upegui sosa - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
41
60
J. Domingues, T. Marques, A. Mateus, P. Carreira, and C. Malça, “An additive manufacturing solution to produce big green parts from tires and recycled plastics,” Procedia Manuf., vol. 12, no. December 2016, pp. 242-248, 2017, doi: 10.1016/j.promfg.2017.08.028. [2] A. Siddika, M. A. Al Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review,” Constr. Build. Mater., vol. 224, pp. 711-731, 2019, doi: 10.1016/j.conbuildmat.2019.07.108. [3] J. S. Yadav and S. K. Tiwari, “The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review,” Environ. Dev. Sustain., vol. 21, no. 2, pp. 485-568, 2019, doi: 10.1007/s10668-017-0054-2. [4] S. M. S. M. K. Samarakoon, P. Ruben, J. Wie, and L. Evangelista, “Case Studies in Construction Materials Mechanical performance of concrete made of steel fi bers from tire waste,” Case Stud. Constr. Mater., vol. 11, p. e00259, 2019, doi: 10.1016/j.cscm.2019.e00259. [5] E. B. Machin, D. T. Pedroso, and J. A. de Carvalho, “Energetic valorization of waste tires,” Renew. Sustain. Energy Rev., vol. 68, no. December 2015, pp. 306-315, 2017, doi: 10.1016/j.rser.2016.09.110. [6] M. Policella, Z. Wang, K. G. Burra, and A. K. Gupta, “Characteristics of syngas from pyrolysis and CO 2 -assisted gasification of waste tires,” Appl. Energy, vol. 254, no. July, p. 113678, 2019, doi: 10.1016/j.apenergy.2019.113678. [7] W. Ruwona, G. Danha, and E. Muzenda, “ScienceDirect ScienceDirect ScienceDirect A Review on Material and Energy Recovery from Waste Tyres A Review on Material and Energy Recovery from Waste Tyres,” Procedia Manuf., vol. 35, pp. 216-222, 2019, doi: 10.1016/j.promfg.2019.05.029. [8] M. S. Hossain, M. R. Islam, M. S. Rahman, M. A. Kader, and H. Haniu, “Biofuel from Co-pyrolysis of Solid Tire Waste and Rice Husk,” Energy Procedia, vol. 110, no. December 2016, pp. 453-458, 2017, doi: 10.1016/j.egypro.2017.03.168. [9] S. Uçar and S. Karagöz, “Co-pyrolysis of pine nut shells with scrap tires,” Fuel, vol. 137, pp. 85-93, 2014, doi: 10.1016/j.fuel.2014.07.082. [10] A. Hasan and I. Dincer, “ScienceDirect Assessment of an Integrated Gasification Combined Cycle using waste tires for hydrogen and fresh water production,” Int. J. Hydrogen Energy, vol. 44, no. 36, pp. 19730-19741, 2019, doi: 10.1016/j.ijhydene.2019.05.075. [11] K. Winternitz, M. Heggie, and J. Baird, “Extended producer responsibility for waste tyres in the EU: Lessons learnt from three case studies - Belgium, Italy and the Netherlands,” Waste Manag., vol. 89, pp. 386-396, 2019, doi: 10.1016/j.wasman.2019.04.023. [12] G. Jaime, P. Arroyave, S. Milena, V. Restrepo, D. Hernán, and G. Vásquez, “Aplicaciones de caucho reciclado€¯: una revisión de la literatura Applications of recycled rubber€¯: a literature review Ciencia e Ingeniería Neogranadina,” pp. 27-50, 2017. [13] L. A. S. Tendencias and M. D. E. Desarrollo, “Facultad de Ciencias Exactas Y Naturales MUNDIALES DE DESARROLLO SOSTENIBLE Article history€¯:,” no. November 2013, 2015. [14] “res_1326_de_2017-llantas_usadas.pdf.” . [15] E. E. Okoro, N. O. Erivona, S. E. Sanni, K. B. Orodu, and K. C. Igwilo, “Modification of waste tire pyrolytic oil as base fluid for synthetic lube oil blending and production: waste tire utilization approach,” J. Mater. Cycles Waste Manag., no. 0123456789, 2020, doi: 10.1007/s10163-020-01018-1. [16] L. Patiño and M. Rodríguez, “Llantas usadas: materia prima para pavimentos y múltiples ecoaplicaciones,” Rev. Ontare, vol. 5, pp. 1-34, 2018, doi: 10.21158/23823399.v5.n0.2017.2004. [17] G. Castro, “M E C a N I C a F . I . U . B . a . I N G . G U I L L E R M O C a S T R O,” Diciembre, pp. 1-57, 2008. [18] P. T. Williams, “Pyrolysis of waste tyres: A review,” Waste Manag., vol. 33, no. 8, pp. 1714-1728, 2013, doi: 10.1016/j.wasman.2013.05.003. [19] D. Landi, M. Marconi, I. Meo, and M. Germani, “Reuse scenarios of tires textile fibers: An environmental evaluation,” Procedia Manuf., vol. 21, no. 2017, pp. 329-336, 2018, doi: 10.1016/j.promfg.2018.02.128. [20] V. Malijonyte, E. Dace, F. Romagnoli, I. Kliopova, and M. Gedrovics, “A Comparative Life Cycle Assessment of Energy Recovery from end-of-life Tires and Selected Solid Waste,” Energy Procedia, vol. 95, pp. 257-264, 2016, doi: 10.1016/j.egypro.2016.09.064. [21] R. Krzy, H. Jouhara, N. Spencer, and D. Czajczy, “Use of pyrolytic gas from waste tire as a fuel€¯: A review,” vol. 2025, 2017, doi: 10.1016/j.energy.2017.05.042. [22] G. Castro, “M E C a N I C a F . I . U . B . a . I N G . G U I L L E R M O C a S T R O,” Diciembre, pp. 1-57, 2008, [Online]. Available: http://campus.fi.uba.ar/file.php/295/Material_Complementario/Materiales_y_Compuestos_para_la_Industria_del_Neumatico.pdf. [23] P. T. Williams and A. J. Brindle, “Aromatic chemicals from the catalytic pyrolysis of scrap tyres,” vol. 67, pp. 143-164, 2003. [24] E. Muzenda, “A Comparative Review of Waste Tyre Pyrolysis , Gasification and Liquefaction ( PGL ) Processes,” 2014. [25] E. B. Machin, D. T. Pedroso, and J. A. de Carvalho, “Technical assessment of discarded tires gasification as alternative technology for electricity generation,” Waste Manag., vol. 68, pp. 412-420, 2017, doi: 10.1016/j.wasman.2017.07.004. [26] P. Nowakowski, “The influence of preliminary processing of end-of-life tires on transportation cost and vehicle exhausts emissions,” 2020. [27] K. Street, “2017 U . S . Scrap Tire Management Summary About the U . S . Tire Manufacturers Association,” 2018. [28] N. Puy, J. D. Martı, V. Navarro, and A. M. Mastral, “Waste tyre pyrolysis - A review,” vol. 23, pp. 179-213, 2013, doi: 10.1016/j.rser.2013.02.038. [29] N. T. y M. Wilson, “Analisis del riesgo de la gasificacion y pirolisis,” Gaia, p. 18, 2017, [Online]. Available: http://www.no-burn.org/wp-content/uploads/Gasificaci. [30] V. Belgiorno, G. De Feo, C. Della Rocca, and R. M. A. Napoli, “Energy from gasification of solid wastes,” vol. 23, pp. 1-15, 2003. [31] A. Franco and N. Giannini, “Perspectives for the use of biomass as fuel in combined cycle power plants,” vol. 44, pp. 163-177, 2005, doi: 10.1016/j.ijthermalsci.2004.07.005. [32] S. Porto et al., “Optimizing H 2 Production from Waste Tires via Combined Steam Gasification and Catalytic Reforming,” pp. 2232-2241, 2011. [33] A. Mohajerani, L. Burnett, J. V Smith, S. Markovski, and G. Rodwell, “Resources , Conservation & Recycling Recycling waste rubber tyres in construction materials and associated environmental considerations€¯: A review,” Resour. Conserv. Recycl., vol. 155, no. January, p. 104679, 2020, doi: 10.1016/j.resconrec.2020.104679. [34] T. Ratnakiran, Wankhade D Bhattacharya, “Pyrolysis oil an emerging alternate fuel for future (Review), ” J. Pharmacogn. Phytochem., vol. 6, no. 6, pp. 239-243, 2017, [Online]. Available: http://www.phytojournal.com/archives/2017/vol6issue6/PartD/6-4-382-970.pdf. [35] C. T. DANIEL and D. F. CAMILO, “DISEÑO CONCEPTUAL DE UNA PLANTA PARA EL APROVECHAMIENTO DE CAUCHO MOLIDO DE NEUMÁTICOS USADOS A PARTIR DE PIRÓLISIS,” 2018. [36] A. Alsaleh and M. L. Sattler, “Waste Tire Pyrolysis€¯: Influential Parameters and Product Properties,” pp. 129-135, 2014, doi: 10.1007/s40518-014-0019-0. [37] F. Esaclona, S. Rodríguez, J. Antonio, and A. Beatón, “Reactores En Lecho Fluidizado,” Tecnol. Química, vol. XXIX, pp. 205-212, 2009, doi: 10.1590/2224-6185.2009.0.%x. [38] X. Dai, “Pyrolysis of waste tires in a circulating fluidized-bed reactor,” vol. 26, pp. 385-399, 2001. [39] J. I. Osayi, S. Iyuke, M. O. Daramola, P. Osifo, I. J. Van Der Walt, and S. E. Ogbeide, “Pyrolytic conversion of used tyres to liquid fuel€¯: characterization and effect of operating conditions,” J. Mater. Cycles Waste Manag., vol. 20, no. 2, pp. 1273-1285, 2018, doi: 10.1007/s10163-017-0690-5. [40] A. Ferna, M. V Navarro, R. Murillo, T. Garcı, and A. M. Mastral, “Waste Tire Pyrolysis€¯: Comparison between Fixed Bed Reactor and Moving Bed Reactor,” pp. 4029-4033, 2008. [41] S. Galvagno, S. Casu, T. Casabianca, A. Calabrese, and G. Cornacchia, “Pyrolysis process for the treatment of scrap tyres€¯: preliminary experimental results,” vol. 22, pp. 917-923, 2002. [42] H. Hu et al., “Chemosphere The fate of sulfur during rapid pyrolysis of scrap tires,” Chemosphere, vol. 97, pp. 102-107, 2014, doi: 10.1016/j.chemosphere.2013.10.037. [43] C. Ilk, “Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods,” vol. 102, pp. 605-612, 2012, doi: 10.1016/j.fuel.2012.06.067. [44] Y. Kar, “Catalytic pyrolysis of car tire waste using expanded perlite,” Waste Manag., vol. 31, no. 8, pp. 1772-1782, 2011, doi: 10.1016/j.wasman.2011.04.005. [45] J. Shah, M. R. Jan, and F. Mabood, “Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons Via Base Catalysts,” vol. 27, no. 2, pp. 103-109, 2008. [46] M. Rofiqul Islam, H. Haniu, and M. Rafiqul Alam Beg, “Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties,” Fuel, vol. 87, no. 13-14, pp. 3112-3122, 2008, doi: 10.1016/j.fuel.2008.04.036. [47] S. Chouaya, M. A. Abbassi, R. B. Younes, and A. Zoulalian, “Scrap Tires Pyrolysis: Product Yields, Properties and Chemical Compositions of Pyrolytic Oil,” Russ. J. Appl. Chem., vol. 91, no. 10, pp. 1603-1611, 2018, doi: 10.1134/S1070427218100063. [48] F. J. W. David, “Evaluación de un reactor de lecho fluidizado en el proceso de pirólisis catalítica usando desecho de caucho de llanta,” Univ. los Andes, pp. 1-86, 2016. [49] Q. Xue, T. J. Heindel, and R. O. Fox, “A CFD model for biomass fast pyrolysis in fluidized-bed reactors,” Chem. Eng. Sci., vol. 66, no. 11, pp. 2440-2452, 2011, doi: 10.1016/j.ces.2011.03.010. [50] P. T. Williams and D. T. Taylor, “The pyrolysis of scrap automotive and heating rate on product composition,” vol. 69, pp. 1474-1482, 1990.
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/728/1361
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
http://purl.org/redcol/resource_type/ARTREV
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication