Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación
.
El presente artículo expone una revisión sobre las características coloidales del carbón, enfatizando acerca de su viscosidad, distribución del tamaño de poro, área superficial y volumen total de poro. Posteriormente se realiza un análisis de las mediciones de ángulo de contacto, los cuales se utilizan para obtener una indicación de la hidrofobicidad de las superficies sólidas, además se estudia la adsorción utilizando colectores químicos y el efecto que tiene en el proceso la temperatura. Luego se analiza el efecto del pH en la adsorción usando colectores biológicos y finalmente se realiza un estudio de la teoría DLVO, medidas de Potencial Zeta y punto isoeléctrico; con el fin de optimizar los procesos de separación, ya sea por métodos quí... Ver más
2027-8101
2619-5232
8
2016-09-27
101
117
Luis Fernando Cardona Palacio - 2016
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_tdea_cuadernoactiva_14_article_334 |
---|---|
record_format |
ojs |
spelling |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación Revision of Coal’s Colloidal Features for the Optimization of Separation Processes El presente artículo expone una revisión sobre las características coloidales del carbón, enfatizando acerca de su viscosidad, distribución del tamaño de poro, área superficial y volumen total de poro. Posteriormente se realiza un análisis de las mediciones de ángulo de contacto, los cuales se utilizan para obtener una indicación de la hidrofobicidad de las superficies sólidas, además se estudia la adsorción utilizando colectores químicos y el efecto que tiene en el proceso la temperatura. Luego se analiza el efecto del pH en la adsorción usando colectores biológicos y finalmente se realiza un estudio de la teoría DLVO, medidas de Potencial Zeta y punto isoeléctrico; con el fin de optimizar los procesos de separación, ya sea por métodos químicos como flotación o biológicos como bioflotación; estos últimos han demostrado que tienen un gran potencial para la limpieza del carbón con alto contenido de azufre y tienen la ventaja sobre las demás técnicas que utiliza colectores como microorganismos, que no impactan al ambiente.Palabras clave: bioflotación; colector; coloides; negro de carbón; reología This paper introduces a revision of coal’s colloidal features, emphasizing its viscosity, pore size distribution, surface area and total pore volume. Subsequently, an analysis of the contact angle measurements is done, which provide an indication of the hydrophobicity of solid surfaces. Additionally, adsorption is also studied by means of chemical collectors, as well as the effect of temperature on the process. pH effect in adsorption is also analyzed by using biological collectors, and finally, a study of DLVO theory, Zeta Potential measurements and isoelectric point (IEP) is done, in order to optimize separation processes, either by chemical methods such as flotation, or biological as bioflotation. The latter have proved a great potential for cleaning coal with high sulfur content, and have an advantage over other techniques, as they use collectors such as microorganisms which don’t impact the environment.Keywords: bioflotation; collector; colloids; carbon black; rheology Cardona Palacio, Luis Fernando 8 1 Artículo de revista Journal article 2016-09-27T00:00:00Z 2016-09-27T00:00:00Z 2016-09-27 application/pdf text/xml Tecnológico de Antioquia - Institución Universitaria Cuaderno activa 2027-8101 2619-5232 https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/334 10.53995/20278101.334 https://doi.org/10.53995/20278101.334 spa https://creativecommons.org/licenses/by-nc-sa/4.0 Luis Fernando Cardona Palacio - 2016 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. 101 117 Acharya, C., Sukla, L., y Misra, V. (2004). Biodepyritisation of coal. Journal of Chemical Technology & Biotechnology, 1-12. Adiga, K., Pithapurwala, Y. y Shah, D. (1988). Coal slurries in mixed liquid fuels: Rheology and ignition characteristics. Fuel Processing Technology, 59-69. Ahimou, F., Paquot, M., Jacques, P., Thonart, P., y Rouxhet, P. G. (2001). Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. Journal of Microbiological Methods, 119-126. Blázquez, M., Ballester, A., González, F. y Mier, J. (1991). Desulfuración de carbones. La biodesulfuración como alternativa. Canteras y Explotaciones, 40-49. Botero, A., Torem, M., y de Mesquita, L. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering, 21(1), 83-92. Casas, A. (2007). Bioflotação de magnesita, calcita e barita usando Rhodococcus opacus como biorreagente (tesis de doctorado). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brasil. Cheng, C., y Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021-7. Crawford, R., y Mainwaring, D. (2001). The influence of surfactant adsorption on the surface characterisation of Australian coals, 80, 313-320. Franco, A., y Diaz, A. R. (2009). The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control. Energy, 34(3), 348-354. Galdos, M., Cavalett, O., Seabra, J., Nogueira, L. A., y Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576-582. Hendryx, M. (2015). The public health impacts of surface coal mining, The Extractive Industries and Society, 2, 820-826. Ichihara, T., Fukuda, J., Takaha, T., Suzuki, S., Yuguchi, Y., y Kitamura, S. (2016). Small-angle X-ray scattering measurements of gel produced from α-amylase-treated cassava starch granules. Food Hydrocolloids, 55, 228-234. Kameya, Y., Hayashi, T., y Motosuke, M. (2016). Oxidation-resistant graphitic surface nanostructure of carbon black developed by ethanol thermal decomposition. Diamond and Related Materials, 65, 26-31. Kastrisianaki-Guyton, E., Chen, L., Rogers, S., Cosgrove, T., y van Duijneveldt, J. (2016). Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering. Journal of colloid and interface science, 472, 1-7. Kim, G., Park, K., Choi, J., Gomez-Flores, A., Han, Y., Choi, S., y Kim, H. (2015). Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. International Journal of Mineral Processing, 143, 98-104. Li, Y., Henze, D., Jack, D., Henderson, B., y Kinney, P. (2016). Assessing public health burden associated with exposure to ambient black carbon in the United States. The Science of the total environment, 539, 515-25. Madani, S., Badalyan, A., Biggs, M., y Pendleton, P. (2015). Uncertainty in pore size distribution derived from adsorption isotherms: I. Classical methods. Microporous and Mesoporous Materials, 214, 210-216. Mays, T. J. (2007). A new classification of pore sizes, Studies in Surface Science and Catalysis, 57-62. Mishra, S. K., y Panda, D. (2005). Studies on the adsorption of Brij-35 and CTAB at the coal-water interface. Journal of colloid and interface science, 283(2), 294-9. Naik, K., Reddy, P. y Misra, V. (2004). Optimization of coal flotation using statistical technique. Fuel Processing Technology, 85, 1473-1485. Ndikubwimana, T., Zeng, X., He, N., Xiao, Z., Xie, Y., Chang, J.-S. y Lu, Y. (2015). Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochemical Engineering Journal, 101, 160-167. Peng, Y., Liang, L., Tan, J., Sha, J. y Xie, G. (2015). Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. International Journal of Mineral Processing, 142, 17-21. Polat, M., Polat, H., Chander, S. (2003). Physical and chemical interactions in coal flotation. International Journal of Mineral Processing, 72, 199-213. Raichur, A.M., Misra, M., Bukka, K., y Smith, R. W. (1996). Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei. Colloids and Surfaces B: Biointerfaces, 13-24. Rincón, Y., García, C., Sarmiento, C., Rincón, C., y Mata, F. (2003). Predicción de las ecuaciones constitutivas para suspensiones de carbón- agua. Ciencia, 11(1), 77-86. Rong, R., y Hitchins, J. (1995). Preliminary study of correlations between fine coal characteristics and properties and their dewatering behaviour. Minerals Engineering, 8(3), 293-309. Seraji, M., Ghafoorian, N., y Bahramian, A. (2016). Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/ SiC aerogels using mercury porosimetry method. Journal of Non-Crystalline Solids, 435, 1-7. Sharma, P. (2001). Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals (tesis de doctorado). LuleÃ¥ University of Technology, LuleÃ¥, Suecia. Shukla, S., Kukade, S., Mandal, S., y Kundu, G. (2008). Coal-oil-water multiphase fuel: Rheological behavior and prediction of optimum particle size. Fuel, 87(15-16), 3428-3432. Sis, H., y Birinci, M. (2009). Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341(1-3), Vásquez, T., Botero, A., de Mesquita, L., y Torem, M. (2007). Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Minerals Engineering, 20(9), 939-944. Vijayalakshmi, S. y Raichur, A. (2002). Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int. J. Miner. Process, 67, 199-210. Vijayalakshmi, S. y Raichur, A. (2003). The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces, 29(4), 265-275. Volesky, B. (2007). Biosorption and me. Water research, 41(18), 4017-29. Wang, J., Feng, L., Davidsson, S. y Höök, M. (2013). Chinese coal supply and future production outlooks. Energy, 60, 204-214. Yianato, J. (2007). Fluid flow and kinetic modelling in flotation related processes columns and Mechanically Agitated Cells-A Review. Chemical Engineering Research and Design, 85, 1592-1600 https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/334/364 https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/334/1078 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_dcae04bc http://purl.org/redcol/resource_type/ARTREV info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
TECNOLOGICO DE ANTIOQUIA INSTITUCION UNIVERSITARIA |
thumbnail |
https://nuevo.metarevistas.org/TECNOLOGICODEANTIOQUIAINSTITUCIONUNIVERSITARIA/logo.png |
country_str |
Colombia |
collection |
Cuaderno activa |
title |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación |
spellingShingle |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación Cardona Palacio, Luis Fernando |
title_short |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación |
title_full |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación |
title_fullStr |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación |
title_full_unstemmed |
Revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación |
title_sort |
revisión de las características coloidales del carbón con el fin de optimizar los procesos de separación |
title_eng |
Revision of Coal’s Colloidal Features for the Optimization of Separation Processes |
description |
El presente artículo expone una revisión sobre las características coloidales del carbón, enfatizando acerca de su viscosidad, distribución del tamaño de poro, área superficial y volumen total de poro. Posteriormente se realiza un análisis de las mediciones de ángulo de contacto, los cuales se utilizan para obtener una indicación de la hidrofobicidad de las superficies sólidas, además se estudia la adsorción utilizando colectores químicos y el efecto que tiene en el proceso la temperatura. Luego se analiza el efecto del pH en la adsorción usando colectores biológicos y finalmente se realiza un estudio de la teoría DLVO, medidas de Potencial Zeta y punto isoeléctrico; con el fin de optimizar los procesos de separación, ya sea por métodos químicos como flotación o biológicos como bioflotación; estos últimos han demostrado que tienen un gran potencial para la limpieza del carbón con alto contenido de azufre y tienen la ventaja sobre las demás técnicas que utiliza colectores como microorganismos, que no impactan al ambiente.Palabras clave: bioflotación; colector; coloides; negro de carbón; reología
|
description_eng |
This paper introduces a revision of coal’s colloidal features, emphasizing its viscosity, pore size distribution, surface area and total pore volume. Subsequently, an analysis of the contact angle measurements is done, which provide an indication of the hydrophobicity of solid surfaces. Additionally, adsorption is also studied by means of chemical collectors, as well as the effect of temperature on the process. pH effect in adsorption is also analyzed by using biological collectors, and finally, a study of DLVO theory, Zeta Potential measurements and isoelectric point (IEP) is done, in order to optimize separation processes, either by chemical methods such as flotation, or biological as bioflotation. The latter have proved a great potential for cleaning coal with high sulfur content, and have an advantage over other techniques, as they use collectors such as microorganisms which don’t impact the environment.Keywords: bioflotation; collector; colloids; carbon black; rheology
|
author |
Cardona Palacio, Luis Fernando |
author_facet |
Cardona Palacio, Luis Fernando |
citationvolume |
8 |
citationissue |
1 |
publisher |
Tecnológico de Antioquia - Institución Universitaria |
ispartofjournal |
Cuaderno activa |
source |
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/334 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0 Luis Fernando Cardona Palacio - 2016 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Acharya, C., Sukla, L., y Misra, V. (2004). Biodepyritisation of coal. Journal of Chemical Technology & Biotechnology, 1-12. Adiga, K., Pithapurwala, Y. y Shah, D. (1988). Coal slurries in mixed liquid fuels: Rheology and ignition characteristics. Fuel Processing Technology, 59-69. Ahimou, F., Paquot, M., Jacques, P., Thonart, P., y Rouxhet, P. G. (2001). Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. Journal of Microbiological Methods, 119-126. Blázquez, M., Ballester, A., González, F. y Mier, J. (1991). Desulfuración de carbones. La biodesulfuración como alternativa. Canteras y Explotaciones, 40-49. Botero, A., Torem, M., y de Mesquita, L. (2008). Surface chemistry fundamentals of biosorption of Rhodococcus opacus and its effect in calcite and magnesite flotation. Minerals Engineering, 21(1), 83-92. Casas, A. (2007). Bioflotação de magnesita, calcita e barita usando Rhodococcus opacus como biorreagente (tesis de doctorado). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brasil. Cheng, C., y Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021-7. Crawford, R., y Mainwaring, D. (2001). The influence of surfactant adsorption on the surface characterisation of Australian coals, 80, 313-320. Franco, A., y Diaz, A. R. (2009). The future challenges for “clean coal technologies”: Joining efficiency increase and pollutant emission control. Energy, 34(3), 348-354. Galdos, M., Cavalett, O., Seabra, J., Nogueira, L. A., y Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576-582. Hendryx, M. (2015). The public health impacts of surface coal mining, The Extractive Industries and Society, 2, 820-826. Ichihara, T., Fukuda, J., Takaha, T., Suzuki, S., Yuguchi, Y., y Kitamura, S. (2016). Small-angle X-ray scattering measurements of gel produced from α-amylase-treated cassava starch granules. Food Hydrocolloids, 55, 228-234. Kameya, Y., Hayashi, T., y Motosuke, M. (2016). Oxidation-resistant graphitic surface nanostructure of carbon black developed by ethanol thermal decomposition. Diamond and Related Materials, 65, 26-31. Kastrisianaki-Guyton, E., Chen, L., Rogers, S., Cosgrove, T., y van Duijneveldt, J. (2016). Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering. Journal of colloid and interface science, 472, 1-7. Kim, G., Park, K., Choi, J., Gomez-Flores, A., Han, Y., Choi, S., y Kim, H. (2015). Bioflotation of malachite using different growth phases of Rhodococcus opacus: Effect of bacterial shape on detachment by shear flow. International Journal of Mineral Processing, 143, 98-104. Li, Y., Henze, D., Jack, D., Henderson, B., y Kinney, P. (2016). Assessing public health burden associated with exposure to ambient black carbon in the United States. The Science of the total environment, 539, 515-25. Madani, S., Badalyan, A., Biggs, M., y Pendleton, P. (2015). Uncertainty in pore size distribution derived from adsorption isotherms: I. Classical methods. Microporous and Mesoporous Materials, 214, 210-216. Mays, T. J. (2007). A new classification of pore sizes, Studies in Surface Science and Catalysis, 57-62. Mishra, S. K., y Panda, D. (2005). Studies on the adsorption of Brij-35 and CTAB at the coal-water interface. Journal of colloid and interface science, 283(2), 294-9. Naik, K., Reddy, P. y Misra, V. (2004). Optimization of coal flotation using statistical technique. Fuel Processing Technology, 85, 1473-1485. Ndikubwimana, T., Zeng, X., He, N., Xiao, Z., Xie, Y., Chang, J.-S. y Lu, Y. (2015). Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochemical Engineering Journal, 101, 160-167. Peng, Y., Liang, L., Tan, J., Sha, J. y Xie, G. (2015). Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. International Journal of Mineral Processing, 142, 17-21. Polat, M., Polat, H., Chander, S. (2003). Physical and chemical interactions in coal flotation. International Journal of Mineral Processing, 72, 199-213. Raichur, A.M., Misra, M., Bukka, K., y Smith, R. W. (1996). Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei. Colloids and Surfaces B: Biointerfaces, 13-24. Rincón, Y., García, C., Sarmiento, C., Rincón, C., y Mata, F. (2003). Predicción de las ecuaciones constitutivas para suspensiones de carbón- agua. Ciencia, 11(1), 77-86. Rong, R., y Hitchins, J. (1995). Preliminary study of correlations between fine coal characteristics and properties and their dewatering behaviour. Minerals Engineering, 8(3), 293-309. Seraji, M., Ghafoorian, N., y Bahramian, A. (2016). Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/ SiC aerogels using mercury porosimetry method. Journal of Non-Crystalline Solids, 435, 1-7. Sharma, P. (2001). Surface Studies Relevant to Microbial Adhesion and Bioflotation of Sulphide Minerals (tesis de doctorado). LuleÃ¥ University of Technology, LuleÃ¥, Suecia. Shukla, S., Kukade, S., Mandal, S., y Kundu, G. (2008). Coal-oil-water multiphase fuel: Rheological behavior and prediction of optimum particle size. Fuel, 87(15-16), 3428-3432. Sis, H., y Birinci, M. (2009). Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341(1-3), Vásquez, T., Botero, A., de Mesquita, L., y Torem, M. (2007). Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Minerals Engineering, 20(9), 939-944. Vijayalakshmi, S. y Raichur, A. (2002). Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int. J. Miner. Process, 67, 199-210. Vijayalakshmi, S. y Raichur, A. (2003). The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces, 29(4), 265-275. Volesky, B. (2007). Biosorption and me. Water research, 41(18), 4017-29. Wang, J., Feng, L., Davidsson, S. y Höök, M. (2013). Chinese coal supply and future production outlooks. Energy, 60, 204-214. Yianato, J. (2007). Fluid flow and kinetic modelling in flotation related processes columns and Mechanically Agitated Cells-A Review. Chemical Engineering Research and Design, 85, 1592-1600 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2016-09-27 |
date_accessioned |
2016-09-27T00:00:00Z |
date_available |
2016-09-27T00:00:00Z |
url |
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/334 |
url_doi |
https://doi.org/10.53995/20278101.334 |
issn |
2027-8101 |
eissn |
2619-5232 |
doi |
10.53995/20278101.334 |
citationstartpage |
101 |
citationendpage |
117 |
url2_str_mv |
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/334/364 |
url4_str_mv |
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/334/1078 |
_version_ |
1811200377415008256 |