Titulo:

Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
.

Sumario:

Propuesta de optimización multiobjetivo con coeficientes difusos en restricciones y en funciones objetivo.AbstractFuzzy sets, and more specifically, fuzzy numbers can be a very suitable way to include uncertainty within the formulation and solution of linear problems with multiple goals. Goals in a decision problem do not need to be either maximized, or minimized, as in classical mathematical programming, but they are substituted by aspiration levels, and they need to be met in order to satisfy the decision-maker. Experience shows that it is easier for the decision-maker to formulate both objectives and constraints with fuzzy coefficients, rather than specify a defined quantity for the matrices A, b or g. This paper shows the versatility of... Ver más

Guardado en:

2027-8101

2619-5232

7

2016-07-19

13

25

CUADERNO ACTIVA - 2016

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_tdea_cuadernoactiva_14_article_244
record_format ojs
spelling Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
Propuesta de optimización multiobjetivo con coeficientes difusos en restricciones y en funciones objetivo.AbstractFuzzy sets, and more specifically, fuzzy numbers can be a very suitable way to include uncertainty within the formulation and solution of linear problems with multiple goals. Goals in a decision problem do not need to be either maximized, or minimized, as in classical mathematical programming, but they are substituted by aspiration levels, and they need to be met in order to satisfy the decision-maker. Experience shows that it is easier for the decision-maker to formulate both objectives and constraints with fuzzy coefficients, rather than specify a defined quantity for the matrices A, b or g. This paper shows the versatility of a methodology that solves multi-objective linear problems, formulated with fuzzy coefficients. This conception becomes an alternative in contrast with the hard methodologies predominant in Operations Research, since the fuzzy approach allows the decision-maker to make uncertain assumptions both for the formulation and solution of optimization problems.Keywords: Fuzzy logic, multi-criteria analysis, triangular fuzzy numbers.ResumenLos conjuntos difusos y específicamente los números difusos constituyen una manera efectiva de incluir la incertidumbre en la formulación y solución de problemas lineales de optimización multiobjetivo. Las metas en un problema de decisión no necesitan ser maximizadas ni minimizadas, como ocurre en las herramientas clásicas de programación matemática, sino que se pueden sustituir por niveles de aspiración, las cuales constituyen las expectativas para un decisor. La experiencia demuestra que es más fácil para el decisor formular los objetivos y las restricciones en un problema con coeficientes difusos, en vez de simplemente especificar un número concreto en las matrices A, b ó g. Este artículo presenta la versatilidad de una formulación metodológica que permite resolver problemas multiobjetivo de tipo lineal, los cuales son formulados con coeficientes difusos. Esta concepción constituye una alternativa a las metodologías duras que dominan la investigación de operaciones, dado que la aproximación difusa permite que los decisores realicen presunciones inciertas en la formulación y solución en los problemas de optimización.Palabras Clave: Lógica difusa, análisis multiobjetivo, números triangulares difusos.
Correa Henao, Gabriel Jaime
Peña Zapata, Gloria Elena
7
1
Artículo de revista
Journal article
2016-07-19T00:00:00Z
2016-07-19T00:00:00Z
2016-07-19
application/pdf
Tecnológico de Antioquia - Institución Universitaria
Cuaderno activa
2027-8101
2619-5232
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/244
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/244
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
CUADERNO ACTIVA - 2016
13
25
Al-Najjar, C. & Malakooti, B. (2011). Hybrid-LP: Finding advanced starting points for simplex, and pivoting LP methods. Computers & Operations Research, 38 (2), 427-434.
Antonsson, E. K. & Sebastian, H. J. (1999). Fuzzy sets in engineering design, Practical Applications of Fuzzy Technologies. Springer.
Bellman, R. E. & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17 (4), 141-164.
Berredo, R. C., Ekel, P. Y., Martini, S. C., Palhares, R. M., Parreiras, R. O. & Pereira, J. G. (2013). Decision making in fuzzy environment and multicriteria power engineering problems. International Journal of Electrical Power & Energy Systems, 33 (3), 623-632.
Bit, A. K., Biswal, M. P. & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50 (2), 135-141.
Carlsson, C. & Fuller, R. (2002). Fuzzy reasoning in decision making and optimization. Springer, Amsterdam.
Correa-Henao, G. J. (2015). Metodologías para la toma de decisiones apoyadas en modelos difusos. Editorial Académica Española, Hamburgo (Alemania), 304.
Correa-Henao, G. J., Peña-Zapata, G. E. & Álvarez, H. D. (2003). Propuestas metodológicas para la solución de problemas multiobjetivo, mediante el uso de conjuntos y de operadores difusos. Avances en Sistemas e Informática, 1 (1), 13-19.
Chanas, S. (1989). Fuzzy programming in multiobjective linear programming: a parametric approach. Fuzzy Sets and Systems, 29 (3), 303-313.
Chanas, S. & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82 (3), 299-305.
Chen, J. J., Hwang, L., Beckmann, M. J. & Krelle, W. (1992). Fuzzy multiple attribute decision making: methods and applications. New York: Springer-Verlag.
Chen, S. M., Yang, M. W., Yang, S. W., Sheu, T. W. & Liau, C. J. (2012). Multicriteria Fuzzy Decision Making Based on Interval-Valued Intuitionistic Fuzzy Sets. Expert Systems with Applications, 39 (15), 12085-12091.
Dubois, D., Kerre, E., Mesiar, R., & Prade, H. (2000). Fuzzy Interval Analysis, Fundamentals of Fuzzy Sets. Springer.
Dubois, D. & Prade, H., (1979). Decision-Making Under Fuzziness. Advances in Fuzzy Set Theory and Applications, 279-302.
Eiselt, H. A. & Laporte, G. (1992). The Use of Domains in Multicriteria Decision Making. European Journal of Operational Research, 61 (3), 292-298.
Ekel, P. Y., Martini, S. C. & Palhares, R. M. (2008). Multicriteria Analysis in Decision Making under Information Uncertainty. Applied Mathematics and Computation, 200 (2), 501-516.
Fullér, R. & Zimmermann, H. J. (1993). Fuzzy Reasoning for Solving Fuzzy Mathematical Programming Problems. Fuzzy Sets and Systems, 60 (2), 121-133.
Grzegorzewski, P. & Pasternak-Winiarska, K. (2014). Natural Trapezoidal Approximations of Fuzzy Numbers. Fuzzy Sets and Systems, 0.
Gupta, P. & Mehlawat, M. K. (2009). Bectorá “Chandra Type Duality in Fuzzy Linear Programming with Exponential Membership Functions. Fuzzy Sets and System, 160 (22), 3290-3308.
Hillier, F. S. & Lieberman, G. J. (2002). Investigación de operaciones. McGraw: Hill.
Joseph, A. (1995). Parametric Formulation of the General Integer Linear Programming Problem. Computers & Operations Research, 22 (9), 883-892.
Li, D. F. & Wan, S. P. (2013). Fuzzy Linear Programming Approach to Multiattribute Decision Making with Multiple Types of Attribute Values and Incomplete Weight Information. Applied Soft Computing, 13 (11), 4333-4348.
Luhandjula, M. K. (1987). Multiple Objective Programming Problems with Possibilistic Coefficients. Fuzzy Sets and Systems, 21 (2), 135-145.
Luo, J., Li, W. & Wang, Q. (2014. Checking Strong Optimality of Interval Linear Programming with Inequality Constraints and Nonnegative Constraints. Journal of Computational and Applied Mathematics, 260, 180-190.
Mahdavi-Amiri, N. & Nasseri, S. H. (2007). Duality Results and a Dual Simplex Method for Linear Programming Problems with Trapezoidal Fuzzy Variables. Fuzzy Sets and Systems, 158 (17), 1961-1978.
Maleki, H. R., Tata, M. & Mashinchi, M. (2000). Linear Programming with Fuzzy Variables. Fuzzy Sets and Systems, 109, (1), 21-33.
Martínez, E., Marquardt, W. & Pantelides, C. (2006). A Simplex Search Method for Experimental Optimization with Multiple Objectives, Computer Aided Chemical Engineering. Retrieved from: http://www.sciencedirect.com/science/article/pii/S1570794606800751
Ojha, A. K. & Biswal, K. K. (2006). Multi-Objective Geometric Programming Problem with ሊ-Constraint Method. Applied Mathematical Modelling, 38, (2), 47-758.
Ozgen, D. & Gulsun, B. (2013). Combining Possibilistic Linear Programming and Fuzzy AHP for Solving the Multi-Objective Capacitated Multi-Facility Location Problem. Information Sciences, 268.
Petrovic-Lazarevic, S. & Abraham, A. (2002). Optimizing Linear Programming Technique Using Fuzzy Logic, Hybrid Information Systems. Springer, 269-283.
Petrovic-Lazarevic, S. & Abraham, A. (2004). Hybrid Fuzzy-Linear Programming Approach for Multi Criteria Decision Making Problems. ArXiv preprint cs/0405019.
Ramík, J. & Ímánek, J. (1985). Inequality Relation between Fuzzy Numbers and Its Use in Fuzzy Optimization. Fuzzy Sets and Systems, 16 (2), 123-138.
Sakawa, M. (2002). Genetic Algorithms and Fuzzy Multiobjective Optimization. Springer.
Sakawa, M., Inuiguchi, M., Kato, K. & Ikeda, T. (1996). A Fuzzy Satisficing Method for Multiobjective Linear Optimal Control Problems. Fuzzy Sets and Systems, 78 (2), 223-229.
Sakawa, M., Katagiri, H. & Matsui, T. (2014). Interactive Fuzzy Stochastic Two-Level Linear Programming with Simple Recourse. Information Sciences, 1.
Sakawa, M. & Matsui, T. (2013a). Interactive Fuzzy Programming for Fuzzy Random Two-Level Linear Programming Problems through Probability Maximization with Possibility. Expert Systems with Applications, 40 (7), 2487-2492.
Sakawa, M. & Matsui, T. (2013b). Interactive Fuzzy Random Cooperative Two-Level Linear Programming through Level Sets Based Probability Maximization. Expert Systems with Applications. 40 (4), 1400-1406.
Tanaka, H., Guo, P. & Zimmermann, H. J. (2000). Possibility Distributions of Fuzzy Decision Variables Obtained from Possibilistic Linear Programming Problems. Fuzzy Sets and Systems, 113 (2), 323-332.
Wang, J. Q., Nie, R., Zhang, H. Y. & Chen, X. H. (2013). New Operators on Triangular Intuitionistic Fuzzy Numbers and Their Applications in System Fault Analysis. Information Sciences, 251, 79-95.
Wibowo, S. & Deng, H. (2013). Consensus-Based Decision Support for Multicriteria Group Decision Making. Computers & Industrial Engineering, 66 (4), 625-633.
Yager, R. (1978). Fuzzy Decision Making Including Unequal Objectives. Fuzzy Sets and Systems, 1 (2), 87-95.
Yang, M. F., Lin, Y., (2013). Applying Fuzzy Multi-Objective Linear Programming to Project Management Decisions with the Interactive Two-Phase Method. Computers & Industrial Engineering, 66, (4), 1061-1069.
Zare M, Y. & Daneshmand, A. (1995). A Linear Approximation Method for Solving a Special Class of the Chance Constrained Programming Problem. European Journal of Operational Research, 80 (1), 213-225.
Zimmermann, H. J. (1987). Fuzzy Sets, Decision Making, and Expert Systems. International Series in Management Science/Operations Research. Dordrecht: Kluwer Academic.
Zimmermann, H. J. (1978). Fuzzy Programming and Linear Programming with Several Objective Functions. Fuzzy Sets and Systems. 1 (1), 45-55.
https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/244/236
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution TECNOLOGICO DE ANTIOQUIA INSTITUCION UNIVERSITARIA
thumbnail https://nuevo.metarevistas.org/TECNOLOGICODEANTIOQUIAINSTITUCIONUNIVERSITARIA/logo.png
country_str Colombia
collection Cuaderno activa
title Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
spellingShingle Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
Correa Henao, Gabriel Jaime
Peña Zapata, Gloria Elena
title_short Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
title_full Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
title_fullStr Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
title_full_unstemmed Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
title_sort multi-objective optimization proposal with fuzzy coefficients in both constraints and objective functions.
title_eng Multi-objective Optimization Proposal with Fuzzy Coefficients in both Constraints and Objective Functions.
description Propuesta de optimización multiobjetivo con coeficientes difusos en restricciones y en funciones objetivo.AbstractFuzzy sets, and more specifically, fuzzy numbers can be a very suitable way to include uncertainty within the formulation and solution of linear problems with multiple goals. Goals in a decision problem do not need to be either maximized, or minimized, as in classical mathematical programming, but they are substituted by aspiration levels, and they need to be met in order to satisfy the decision-maker. Experience shows that it is easier for the decision-maker to formulate both objectives and constraints with fuzzy coefficients, rather than specify a defined quantity for the matrices A, b or g. This paper shows the versatility of a methodology that solves multi-objective linear problems, formulated with fuzzy coefficients. This conception becomes an alternative in contrast with the hard methodologies predominant in Operations Research, since the fuzzy approach allows the decision-maker to make uncertain assumptions both for the formulation and solution of optimization problems.Keywords: Fuzzy logic, multi-criteria analysis, triangular fuzzy numbers.ResumenLos conjuntos difusos y específicamente los números difusos constituyen una manera efectiva de incluir la incertidumbre en la formulación y solución de problemas lineales de optimización multiobjetivo. Las metas en un problema de decisión no necesitan ser maximizadas ni minimizadas, como ocurre en las herramientas clásicas de programación matemática, sino que se pueden sustituir por niveles de aspiración, las cuales constituyen las expectativas para un decisor. La experiencia demuestra que es más fácil para el decisor formular los objetivos y las restricciones en un problema con coeficientes difusos, en vez de simplemente especificar un número concreto en las matrices A, b ó g. Este artículo presenta la versatilidad de una formulación metodológica que permite resolver problemas multiobjetivo de tipo lineal, los cuales son formulados con coeficientes difusos. Esta concepción constituye una alternativa a las metodologías duras que dominan la investigación de operaciones, dado que la aproximación difusa permite que los decisores realicen presunciones inciertas en la formulación y solución en los problemas de optimización.Palabras Clave: Lógica difusa, análisis multiobjetivo, números triangulares difusos.
author Correa Henao, Gabriel Jaime
Peña Zapata, Gloria Elena
author_facet Correa Henao, Gabriel Jaime
Peña Zapata, Gloria Elena
citationvolume 7
citationissue 1
publisher Tecnológico de Antioquia - Institución Universitaria
ispartofjournal Cuaderno activa
source https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/244
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
CUADERNO ACTIVA - 2016
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Al-Najjar, C. & Malakooti, B. (2011). Hybrid-LP: Finding advanced starting points for simplex, and pivoting LP methods. Computers & Operations Research, 38 (2), 427-434.
Antonsson, E. K. & Sebastian, H. J. (1999). Fuzzy sets in engineering design, Practical Applications of Fuzzy Technologies. Springer.
Bellman, R. E. & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17 (4), 141-164.
Berredo, R. C., Ekel, P. Y., Martini, S. C., Palhares, R. M., Parreiras, R. O. & Pereira, J. G. (2013). Decision making in fuzzy environment and multicriteria power engineering problems. International Journal of Electrical Power & Energy Systems, 33 (3), 623-632.
Bit, A. K., Biswal, M. P. & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50 (2), 135-141.
Carlsson, C. & Fuller, R. (2002). Fuzzy reasoning in decision making and optimization. Springer, Amsterdam.
Correa-Henao, G. J. (2015). Metodologías para la toma de decisiones apoyadas en modelos difusos. Editorial Académica Española, Hamburgo (Alemania), 304.
Correa-Henao, G. J., Peña-Zapata, G. E. & Álvarez, H. D. (2003). Propuestas metodológicas para la solución de problemas multiobjetivo, mediante el uso de conjuntos y de operadores difusos. Avances en Sistemas e Informática, 1 (1), 13-19.
Chanas, S. (1989). Fuzzy programming in multiobjective linear programming: a parametric approach. Fuzzy Sets and Systems, 29 (3), 303-313.
Chanas, S. & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82 (3), 299-305.
Chen, J. J., Hwang, L., Beckmann, M. J. & Krelle, W. (1992). Fuzzy multiple attribute decision making: methods and applications. New York: Springer-Verlag.
Chen, S. M., Yang, M. W., Yang, S. W., Sheu, T. W. & Liau, C. J. (2012). Multicriteria Fuzzy Decision Making Based on Interval-Valued Intuitionistic Fuzzy Sets. Expert Systems with Applications, 39 (15), 12085-12091.
Dubois, D., Kerre, E., Mesiar, R., & Prade, H. (2000). Fuzzy Interval Analysis, Fundamentals of Fuzzy Sets. Springer.
Dubois, D. & Prade, H., (1979). Decision-Making Under Fuzziness. Advances in Fuzzy Set Theory and Applications, 279-302.
Eiselt, H. A. & Laporte, G. (1992). The Use of Domains in Multicriteria Decision Making. European Journal of Operational Research, 61 (3), 292-298.
Ekel, P. Y., Martini, S. C. & Palhares, R. M. (2008). Multicriteria Analysis in Decision Making under Information Uncertainty. Applied Mathematics and Computation, 200 (2), 501-516.
Fullér, R. & Zimmermann, H. J. (1993). Fuzzy Reasoning for Solving Fuzzy Mathematical Programming Problems. Fuzzy Sets and Systems, 60 (2), 121-133.
Grzegorzewski, P. & Pasternak-Winiarska, K. (2014). Natural Trapezoidal Approximations of Fuzzy Numbers. Fuzzy Sets and Systems, 0.
Gupta, P. & Mehlawat, M. K. (2009). Bectorá “Chandra Type Duality in Fuzzy Linear Programming with Exponential Membership Functions. Fuzzy Sets and System, 160 (22), 3290-3308.
Hillier, F. S. & Lieberman, G. J. (2002). Investigación de operaciones. McGraw: Hill.
Joseph, A. (1995). Parametric Formulation of the General Integer Linear Programming Problem. Computers & Operations Research, 22 (9), 883-892.
Li, D. F. & Wan, S. P. (2013). Fuzzy Linear Programming Approach to Multiattribute Decision Making with Multiple Types of Attribute Values and Incomplete Weight Information. Applied Soft Computing, 13 (11), 4333-4348.
Luhandjula, M. K. (1987). Multiple Objective Programming Problems with Possibilistic Coefficients. Fuzzy Sets and Systems, 21 (2), 135-145.
Luo, J., Li, W. & Wang, Q. (2014. Checking Strong Optimality of Interval Linear Programming with Inequality Constraints and Nonnegative Constraints. Journal of Computational and Applied Mathematics, 260, 180-190.
Mahdavi-Amiri, N. & Nasseri, S. H. (2007). Duality Results and a Dual Simplex Method for Linear Programming Problems with Trapezoidal Fuzzy Variables. Fuzzy Sets and Systems, 158 (17), 1961-1978.
Maleki, H. R., Tata, M. & Mashinchi, M. (2000). Linear Programming with Fuzzy Variables. Fuzzy Sets and Systems, 109, (1), 21-33.
Martínez, E., Marquardt, W. & Pantelides, C. (2006). A Simplex Search Method for Experimental Optimization with Multiple Objectives, Computer Aided Chemical Engineering. Retrieved from: http://www.sciencedirect.com/science/article/pii/S1570794606800751
Ojha, A. K. & Biswal, K. K. (2006). Multi-Objective Geometric Programming Problem with ሊ-Constraint Method. Applied Mathematical Modelling, 38, (2), 47-758.
Ozgen, D. & Gulsun, B. (2013). Combining Possibilistic Linear Programming and Fuzzy AHP for Solving the Multi-Objective Capacitated Multi-Facility Location Problem. Information Sciences, 268.
Petrovic-Lazarevic, S. & Abraham, A. (2002). Optimizing Linear Programming Technique Using Fuzzy Logic, Hybrid Information Systems. Springer, 269-283.
Petrovic-Lazarevic, S. & Abraham, A. (2004). Hybrid Fuzzy-Linear Programming Approach for Multi Criteria Decision Making Problems. ArXiv preprint cs/0405019.
Ramík, J. & Ímánek, J. (1985). Inequality Relation between Fuzzy Numbers and Its Use in Fuzzy Optimization. Fuzzy Sets and Systems, 16 (2), 123-138.
Sakawa, M. (2002). Genetic Algorithms and Fuzzy Multiobjective Optimization. Springer.
Sakawa, M., Inuiguchi, M., Kato, K. & Ikeda, T. (1996). A Fuzzy Satisficing Method for Multiobjective Linear Optimal Control Problems. Fuzzy Sets and Systems, 78 (2), 223-229.
Sakawa, M., Katagiri, H. & Matsui, T. (2014). Interactive Fuzzy Stochastic Two-Level Linear Programming with Simple Recourse. Information Sciences, 1.
Sakawa, M. & Matsui, T. (2013a). Interactive Fuzzy Programming for Fuzzy Random Two-Level Linear Programming Problems through Probability Maximization with Possibility. Expert Systems with Applications, 40 (7), 2487-2492.
Sakawa, M. & Matsui, T. (2013b). Interactive Fuzzy Random Cooperative Two-Level Linear Programming through Level Sets Based Probability Maximization. Expert Systems with Applications. 40 (4), 1400-1406.
Tanaka, H., Guo, P. & Zimmermann, H. J. (2000). Possibility Distributions of Fuzzy Decision Variables Obtained from Possibilistic Linear Programming Problems. Fuzzy Sets and Systems, 113 (2), 323-332.
Wang, J. Q., Nie, R., Zhang, H. Y. & Chen, X. H. (2013). New Operators on Triangular Intuitionistic Fuzzy Numbers and Their Applications in System Fault Analysis. Information Sciences, 251, 79-95.
Wibowo, S. & Deng, H. (2013). Consensus-Based Decision Support for Multicriteria Group Decision Making. Computers & Industrial Engineering, 66 (4), 625-633.
Yager, R. (1978). Fuzzy Decision Making Including Unequal Objectives. Fuzzy Sets and Systems, 1 (2), 87-95.
Yang, M. F., Lin, Y., (2013). Applying Fuzzy Multi-Objective Linear Programming to Project Management Decisions with the Interactive Two-Phase Method. Computers & Industrial Engineering, 66, (4), 1061-1069.
Zare M, Y. & Daneshmand, A. (1995). A Linear Approximation Method for Solving a Special Class of the Chance Constrained Programming Problem. European Journal of Operational Research, 80 (1), 213-225.
Zimmermann, H. J. (1987). Fuzzy Sets, Decision Making, and Expert Systems. International Series in Management Science/Operations Research. Dordrecht: Kluwer Academic.
Zimmermann, H. J. (1978). Fuzzy Programming and Linear Programming with Several Objective Functions. Fuzzy Sets and Systems. 1 (1), 45-55.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2016-07-19
date_accessioned 2016-07-19T00:00:00Z
date_available 2016-07-19T00:00:00Z
url https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/244
url_doi https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/244
issn 2027-8101
eissn 2619-5232
citationstartpage 13
citationendpage 25
url2_str_mv https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/download/244/236
_version_ 1811200374602727424