Titulo:

Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
.

Sumario:

Esta revisión tiene como objetivo analizar el uso del procesamiento de lenguaje natural en las investigaciones de trastornos mentales en adultos, como la depresión, ansiedad y los sentimientos de duelo. Realizando una búsqueda en cuatro bases de datos relevantes (PubMed, IEEE, ScienceDirect y LILACS) publicado en español e inglés desde 2017 hasta 2022 sin restricciones de país de origen. Se utilizaron términos MeSH y de texto libre para identificar estudios sobre la implementación del procesamiento del leguaje natural en la detección de condiciones de salud mental como la ansiedad, depresión y sentimientos de duelo. Se encontraron un total de 136 estudios relacionados, de los cuales se seleccionaron 32 artículos para la revisión. Donde se m... Ver más

Guardado en:

2027-1786

2500-6517

17

2024-10-22

11

22

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Revista iberoamericana de psicología - 2023

id metarevistapublica_ibero_revistaiberoamericanadepsicologia_8-article-2731
record_format ojs
spelling Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
Microsoft. (2022). Large-scale custom natural language processing.
Rizwan, M., Mushtaq, M. F., Akram, U., Mehmood, A., Ashraf, I., & Sahelices, B. (2022). Depression Classification From Tweets Using Small Deep Transfer Learning Language Models. IEEE Access, 10, 129176–129189. https://doi.org/10.1109/ACCESS.2022.3223049
Preoţiuc-Pietro, Daniel, Johannes Eichstaedt, Gregory Park, Maarten Sap, Laura Smith, Victoria Tobolsky, H. Andrew Schwartz, & Lyle Ungar. (2015). The role of personality age and gender in tweeting about mental illness. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 21–30.
Petukhova, A., & Fachada, N. (2022). TextCL: A Python package for NLP preprocessing tasks. SoftwareX, 19. https://doi.org/10.1016/j.softx.2022.101122
Peters, M. D. J., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141–146. https://doi.org/10.1097/XEB.0000000000000050
Patel, R., Irving, J., Brinn, A., Taylor, M., Shetty, H., Pritchard, M., Stewart, R., Fusar-Poli, P., & Mcguire, P. (2022). Associations of presenting symptoms and subsequent adverse clinical outcomes in people with unipolar depression: A prospective natural language processing (NLP), transdiagnostic, network analysis of electronic health record (EHR) data. BMJ Open, 12(4). https://doi.org/10.1136/bmjopen-2021-056541
P. Resnik, W. Armstrong, L. Claudino, T. Nguyen, V.-A. Nguyen, & J. Boyd-Graber. (2015). Beyond LDA: Exploring supervised topic modeling for depression-related language in twitter. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 99–107.
OPS. (2022b, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de La Salud .
OPS. (2022a, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de Salud (OPS). https://www.paho.org/es/noticias/13-1-2022-estudio-advierte-sobre-elevados-niveles-depresion-pensamientos-suicidas-personal
ONU. (2022). Estado de la salud mental tras la pandemia del COVID-19 y progreso de la Iniciativa Especial para la Salud Mental (2019-2023) de la OMS. Naciones Unidas . https://www.un.org/es/cr%C3%B3nica-onu/estado-de-la-salud-mental-tras-la-pandemia-del-covid-19-y-progreso-de-la-iniciativa#:~:text=Se%20calcula%20que%20la%20pandemia,las%20personas%20de%20buscar%20ayuda.
OMS. (2022, September 28). La OMS y la OIT piden nuevas medidas para abordar los problemas de salud mental en el trabajo. Organización Mundial de La Salud. https://www.who.int/es/news/item/28-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work
Noraset, T., Chatrinan, K., Tawichsri, T., Thaipisutikul, T., & Tuarob, S. (2022). Language-agnostic deep learning framework for automatic monitoring of population-level mental health from social networks. Journal of Biomedical Informatics, 133. https://doi.org/10.1016/j.jbi.2022.104145
Mishra, V., & Garg, T. (2018). A systematic study on predicting depression using text analytics. Ournal of Fundamental and Applied Sciences, 10(2).
Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International Journal of Medical Informatics, 114, 57–65. https://doi.org/10.1016/j.ijmedinf.2018.03.013
Schoch-Ruppen, J., Ehlert, U., Uggowitzer, F., Weymerskirch, N., & Marca-Ghaemmaghami, P. La. (2018). Women’s word use in pregnancy: Associations with maternal characteristics, prenatal stress, and neonatal birth outcome. Frontiers in Psychology, 9(JUL). https://doi.org/10.3389/fpsyg.2018.01234
Matiisen, T. (2015). Demystifying Deep Reinforcement Learning | Computational Neuroscience Lab. Neuro.Cs.Ut.Ee.
Mahalingasivam, V., Craik, A., Tomlinson, L. A., Ge, L., Hou, L., Wang, Q., Yang, K., Fogarty, D. G., & Keenan, C. (2021). A Systematic Review of COVID-19 and Kidney Transplantation. Kidney International Reports, 6(1), 24–45. https://doi.org/https://doi.org/10.1016/j.ekir.2020.10.023
Llamocuro-Mamani, P., Medrano-Espinoza, F., & Montealegre-Soto, D. (2021). Salud mental en la población peruana durante la COVID-19. Cirugía y Cirujanos, 89(3). https://doi.org/10.24875/CIRU.20001303
Liu, T., Meyerhoff, J., Eichstaedt, J. C., Karr, C. J., Kaiser, S. M., Kording, K. P., Mohr, D. C., & Ungar, L. H. (2022). The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders, 302, 7–14. https://doi.org/10.1016/j.jad.2021.12.048
Lior Rokach, & Oded Maimon. (2008). Data mining with decision trees: theory and applications. World Scientific.
Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I., & Sanz, F. (2019). Detecting signs of depression in tweets in Spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research, 21(6). https://doi.org/10.2196/14199
Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research, 23(5), e15708. https://doi.org/10.2196/15708
Landoni, M., Silverio, S. A., Ciuffo, G., Daccò, M., Petrovic, M., Di Blasio, P., & Ionio, C. (2023). Linguistic features of postpartum depression using Linguistic Inquiry and Word Count text analysis. Journal of Neonatal Nursing, 29(1), 127–134. https://doi.org/10.1016/j.jnn.2022.04.001
L. Zhao, L. Li, X. Zheng, & J. Zhang. (2021). A BERT based sentiment analysis and key entity detection approach for online financial texts. Proc. IEEE 24th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD). https://doi.org/10.1109/CSCWD49262.2021.9437616
Kuliukas, L., Hauck, Y., Sweet, L., Vasilevski, V., Homer, C., Wynter, K., Wilson, A., Szabo, R., & Bradfield, Z. (2021). A cross sectional study of midwifery students’ experiences of COVID-19: Uncertainty and expendability. Nurse Education in Practice, 51, 102988. https://doi.org/https://doi.org/10.1016/j.nepr.2021.102988
Krishnamurti, T., Allen, K., Hayani, L., Rodriguez, S., & Davis, A. L. (2022). Identification of maternal depression risk from natural language collected in a mobile health app. Procedia Computer Science, 206, 132–140. https://doi.org/10.1016/j.procs.2022.09.092
Hermoso Contreras, Cristina Andrea Pelegrín Valero, Carmelo Mariano, Olivera Pueyo, & Francisco Javier. (2022). Detección de síntomas psiquiátricos y trastornos del comportamiento en pacientes con demencia. Utilidad de la versión española del Cambridge Behavioural Inventory - Revised (CBI - R). Universidad de Zaragoza. IBM. (2021). Aprendizaje supervisado.
Rusell, S., & & Norvig, P. (2016). Artificial Intelligence: A Modern Approach Global. Harlow: Pearson. Saffar, A. H., Mann, T. K., & Ofoghi, B. (2023). Textual emotion detection in health: Advances and applications. Journal of Biomedical Informatics, 137, 104258. https://doi.org/10.1016/j.jbi.2022.104258
Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of facebook and twitter status updates. Journal of Medical Internet Research, 20(5). https://doi.org/10.2196/jmir.9267
Haug, S., & Kurpicz-Briki, M. (2022). Burnout and Depression Detection Using Affective Word List Ratings. Studies in Health Technology and Informatics, 292, 43–48. https://doi.org/10.3233/SHTI220318
Wang, L., Foer, D., MacPhaul, E., Lo, Y. C., Bates, D. W., & Zhou, L. (2022). PASCLex: A comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from electronic health record clinical notes. Journal of Biomedical Informatics, 125. https://doi.org/10.1016/j.jbi.2021.103951
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ARTREF
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Ziemer, K. S., & Korkmaz, G. (2017). Using text to predict psychological and physical health: A comparison of human raters and computerized text analysis. Computers in Human Behavior, 76, 122–127. https://doi.org/10.1016/j.chb.2017.06.038
Yu, L., Jiang, W., Ren, Z., Xu, S., Zhang, L., & Hu, X. (2021). Detecting changes in attitudes toward depression on Chinese social media: A text analysis. Journal of Affective Disorders, 280, 354–363. https://doi.org/10.1016/j.jad.2020.11.040
Yang, K., Zhang, T., & Ananiadou, S. (2022). A mental state Knowledge–aware and Contrastive Network for early stress and depression detection on social media. Information Processing and Management, 59(4). https://doi.org/10.1016/j.ipm.2022.102961
Wiering, M., & Schmidhuber, J. (1998). Aprendizaje automático. Machine Learning, 33(1), 105–115. https://doi.org/10.1023/A:1007562800292
Vega, M. Á., Mora, L. M. Q., & Badilla, M. V. C. (2020). Artificial intelligence and machine learning in medicine. Revista Médica Sinergia, 5(8), 1–11.
Sharma, C., Sharma, S., & Sakshi. (2022). Latent DIRICHLET allocation (LDA) based information modelling on BLOCKCHAIN technology: a review of trends and research patterns used in integration. Multimedia Tools and Applications, 81(25), 36805–36831. https://doi.org/10.1007/s11042-022-13500-z
Vasudha Rani, V., & Sandhya Rani, K. (2016). Twitter Streaming and Analysis through R. Indian Journal of Science and Technology, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/97914
Valdivieso Jimenez, G. (2021). Uso de psicofármacos para síntomas neuropsiquiátricos en pacientes hospitalizados con COVID-19. Horizonte Médico (Lima), 21(2), e1272. https://doi.org/10.24265/horizmed.2021.v21n2.13
Vaci, N., Liu, Q., Kormilitzin, A., De Crescenzo, F., Kurtulmus, A., Harvey, J., O’Dell, B., Innocent, S., Tomlinson, A., Cipriani, A., & Nevado-Holgado, A. (2020). Natural language processing for structuring clinical text data on depression using UK-CRIS. Evidence-Based Mental Health, 23(1), 21–26. https://doi.org/10.1136/ebmental-2019-300134
U. Naseem, I. Razzak, K. Musial, & M. Imran. (2020). Transformer based deep intelligent contextual embedding for Twitter sentiment analysis. Future Gener. Computación. Syst, 113, 58–69.
Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., …
Tran, T., & Kavuluru, R. (2017). Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. Journal of Biomedical Informatics, 75, S138–S148. https://doi.org/10.1016/j.jbi.2017.06.010
The MathWorks, Inc. (2020). Cree modelos lingüísticos multipalabra y analícelos con Machine Learning. https://la.mathworks.com/discovery/ngram.html#:~:text=El%20modelado%20de%20n%2Dgramas,de%20word%20embedding%2C%20como%20word2vec.
Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. IEEE Access, 7, 44883–44893. https://doi.org/10.1109/ACCESS.2019.2909180
Simón Martínez, V. (2022). Alteraciones neuropsicológicas en el trastorno obsesivo compulsivo refractario al tratamiento. UNIVERSIDAD COMPLUTENSE DE MADRID .
Shehmir Javaid. (2022, March 31). Data Labeling For Natural Language Processing (NLP). AIMultiple. https://research.aimultiple.com/nlp-data-labeling/
Sharma, S., Kalra, V., & Agrawal, R. (2021). Depression discovery in cancer communities using deep learning. In Handbook of Deep Learning in Biomedical Engineering (pp. 123–154). Elsevier. https://doi.org/10.1016/B978-0-12-823014-5.00004-1
Hays DG. (1967). Introduction to Computational Linguistics, Mathematical Linguistics and Automatic Language Processing. Cambridge: American Elsevier Publishing Co.
Guntuku, S. C., Schneider, R., Pelullo, A., Young, J., Wong, V., Ungar, L., Polsky, D., Volpp, K. G., & Merchant, R. (2019). Studying expressions of loneliness in individuals using twitter: an observational study. BMJ Open, 9(11). https://doi.org/10.1136/bmjopen-2019-030355
Giuntini, F. T., De Moraes, K. L. P., Cazzolato, M. T., Kirchner, L. D. F., Dos Reis, M. D. J. D., Traina, A. J. M., Campbell, A. T., & Ueyama, J. (2021). Tracing the Emotional Roadmap of Depressive Users on Social Media through Sequential Pattern Mining. IEEE Access, 9, 97621–97635. https://doi.org/10.1109/ACCESS.2021.3095759
processamento de linguagem natural
Artículo de revista
Núm. 2 , Año 2024 : Revista Iberoamericana de Psicología (Vol. 17 # 2)
2
17
transtornos mentais
luto
depressão
ansiedade
saúde mental
trastornos mentales
Bogotá: Corporación Universitaria Iberoamericana
duelo
depresión
ansiedad
salud mental
procesamiento de lenguaje natural
Montoya Arenas, David Andrés
Torres Silva, Ever Augusto
Pereira Montiel, Eider
Alemán Acuña, Reyk Sayk
Esta revisión tiene como objetivo analizar el uso del procesamiento de lenguaje natural en las investigaciones de trastornos mentales en adultos, como la depresión, ansiedad y los sentimientos de duelo. Realizando una búsqueda en cuatro bases de datos relevantes (PubMed, IEEE, ScienceDirect y LILACS) publicado en español e inglés desde 2017 hasta 2022 sin restricciones de país de origen. Se utilizaron términos MeSH y de texto libre para identificar estudios sobre la implementación del procesamiento del leguaje natural en la detección de condiciones de salud mental como la ansiedad, depresión y sentimientos de duelo. Se encontraron un total de 136 estudios relacionados, de los cuales se seleccionaron 32 artículos para la revisión. Donde se muestra un incremento de la utilización del procesamiento de lenguaje natural en la salud pública, espacialmente entre los años 2020 y 2022. Además, se observó que las redes sociales son una fuente de datos frecuentemente utilizada en estos estudios, y que los modelos de aprendizaje automático supervisados son los más prevalentes en la detección de depresión y ansiedad. El procesamiento de lenguaje natural puede mejorar la detección de problemas de salud mental en la salud pública. Los métodos de aprendizaje supervisados supervisado son los más comunes, pero los algoritmos basados en aprendizaje profundo presentan perspectivas innovadoras y se espera que esta tecnología siga en aumento para mejorar la detección y tratamiento de trastornos mentales. Es importante continuar investigando y desarrollando estas tecnologías para su aplicada en la salud pública.  
application/pdf
Publication
Revista Iberoamericana de Psicología
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2018). Automated EEG-based screening of depression using deep convolutional neural network. Computer Methods and Programs in Biomedicine, 161, 103–113. https://doi.org/10.1016/j.cmpb.2018.04.012
Enzyme. (2020). Natural Language Processing: ¿Cómo es la técnica Word Embeddings? https://enzyme.biz/blog/natural-language-processing#:~:text=Sobre%20estos%20fundamentos%2C%20un%20ejemplo,entonces%20el%20vector%20%E2%80%9CReina%E2%80%9D.
Elixmahir Dávila-Marrero, Gladiliz Rivera-Delpín, Ashley Rodríguez-Mercado, Raúl Olivo-Arroyo, & Jorge A. Montijo. (2021, May 26). Persistent Cognitive Manifestations Related to COVID-19. Universidad de Puerto Rico. https://revistas.upr.edu/index.php/psicologias/article/view/18973/16394
DeSouza, D. D., Robin, J., Gumus, M., & Yeung, A. (2021). Natural Language Processing as an Emerging Tool to Detect Late-Life Depression. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.719125
Cohen, A. S., Mitchell, K. R., & Elvevåg, B. (2014). What do we really know about blunted vocal affect and alogia? A meta-analysis of objective assessments. Schizophrenia Research, 159(2–3), 533–538. https://doi.org/10.1016/j.schres.2014.09.013
Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135. https://doi.org/10.1016/j.compbiomed.2021.104499
Charles Roe. (2017, December 6). Identify Data Patterns with Natural Language Processing and Machine Learning. DATAVERSITY. https://www.dataversity.net/identify-data-patterns-natural-language-processing-machine-learning/#
Chae, S. W., & Lee, S. H. (2022). Sharing emotion while spectating video game play: Exploring Twitch users’ emotional change after the outbreak of the COVID-19 pandemic. Computers in Human Behavior, 131. https://doi.org/10.1016/j.chb.2022.107211
Carod Artal, F. J. (2020). Complicaciones neurológicas por coronavirus y COVID-19. Revista de Neurología, 70(09), 311. https://doi.org/10.33588/rn.7009.2020179
Burkhardt, H. A., Alexopoulos, G. S., Pullmann, M. D., Hull, T. D., Areán, P. A., & Cohen, T. (2021). Behavioral activation and depression symptomatology: Longitudinal assessment of linguistic indicators in text-based therapy sessions. Journal of Medical Internet Research, 23(7). https://doi.org/10.2196/28244
Albertson, B. (2021). TextMix: using NLP and APIs to generate chunked sentence scramble tasks. In CALL and professionalisation: short papers from EUROCALL (p. 6).
Boivin, J., O., M., Duong, M., Cooper, O., Filipenko, D., Markert, M., Samuelsen, C., & Lenderking, W. R. (2022). Emotional reactions to infertility diagnosis: thematic and natural language processing analyses of the 1000 Dreams survey. Reproductive BioMedicine Online. https://doi.org/10.1016/j.rbmo.2022.08.107
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Revista iberoamericana de psicología - 2023
https://creativecommons.org/licenses/by-nc-sa/4.0
Español
https://reviberopsicologia.ibero.edu.co/article/view/2731
anxiety
This review aims to analyze the use of natural language processing in research on mental disorders in adults, such as depression, anxiety, and grief. A search was conducted in four relevant databases (PubMed, IEEE, ScienceDirect, and LILACS) for articles published in Spanish and English from 2017 to 2022 without restrictions on country of origin. MeSH terms and free-text terms were used to identify studies on the implementation of natural language processing in the detection of mental health conditions such as anxiety, depression, and grief. A total of 136 related studies were found, of which 32 articles were selected for review. The findings show an increase in the utilization of natural language processing in public health, especially between 2020 and 2022. Furthermore, it was observed that social media is a frequently used data source in these studies, and supervised machine learning models are the most prevalent in detecting depression and anxiety. Natural language processing can improve the detection of mental health problems in public health. Supervised learning methods are the most common, but deep learning algorithms present innovative perspectives, and it is expected that this technology will continue to grow to enhance the detection and treatment of mental disorders. It is important to continue researching and developing these technologies for their application in public health.  
Use of Natural Language Processing in Mental Health: Scoping Review
natural language processing
mental health
depression
grief
mental disorders
Journal article
11
https://reviberopsicologia.ibero.edu.co/article/download/2731/2047
10.33881/2027-1786.rip.17202
https://doi.org/10.33881/2027-1786.rip.17202
2027-1786
2024-10-22T00:00:00Z
2024-10-22T00:00:00Z
2024-10-22
22
2500-6517
institution CORPORACIÓN UNIVERSITARIA IBEROAMERICANA
thumbnail https://nuevo.metarevistas.org/CORPORACIONUNIVERSITARIAIBEROAMERICANA/logo.png
country_str Colombia
collection Revista Iberoamericana de Psicología
title Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
spellingShingle Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
Montoya Arenas, David Andrés
Torres Silva, Ever Augusto
Pereira Montiel, Eider
Alemán Acuña, Reyk Sayk
processamento de linguagem natural
transtornos mentais
luto
depressão
ansiedade
saúde mental
trastornos mentales
duelo
depresión
ansiedad
salud mental
procesamiento de lenguaje natural
anxiety
natural language processing
mental health
depression
grief
mental disorders
title_short Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
title_full Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
title_fullStr Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
title_full_unstemmed Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
title_sort procesamiento de lenguaje natural en la salud mental: revisión de alcance
title_eng Use of Natural Language Processing in Mental Health: Scoping Review
description Esta revisión tiene como objetivo analizar el uso del procesamiento de lenguaje natural en las investigaciones de trastornos mentales en adultos, como la depresión, ansiedad y los sentimientos de duelo. Realizando una búsqueda en cuatro bases de datos relevantes (PubMed, IEEE, ScienceDirect y LILACS) publicado en español e inglés desde 2017 hasta 2022 sin restricciones de país de origen. Se utilizaron términos MeSH y de texto libre para identificar estudios sobre la implementación del procesamiento del leguaje natural en la detección de condiciones de salud mental como la ansiedad, depresión y sentimientos de duelo. Se encontraron un total de 136 estudios relacionados, de los cuales se seleccionaron 32 artículos para la revisión. Donde se muestra un incremento de la utilización del procesamiento de lenguaje natural en la salud pública, espacialmente entre los años 2020 y 2022. Además, se observó que las redes sociales son una fuente de datos frecuentemente utilizada en estos estudios, y que los modelos de aprendizaje automático supervisados son los más prevalentes en la detección de depresión y ansiedad. El procesamiento de lenguaje natural puede mejorar la detección de problemas de salud mental en la salud pública. Los métodos de aprendizaje supervisados supervisado son los más comunes, pero los algoritmos basados en aprendizaje profundo presentan perspectivas innovadoras y se espera que esta tecnología siga en aumento para mejorar la detección y tratamiento de trastornos mentales. Es importante continuar investigando y desarrollando estas tecnologías para su aplicada en la salud pública.  
description_eng This review aims to analyze the use of natural language processing in research on mental disorders in adults, such as depression, anxiety, and grief. A search was conducted in four relevant databases (PubMed, IEEE, ScienceDirect, and LILACS) for articles published in Spanish and English from 2017 to 2022 without restrictions on country of origin. MeSH terms and free-text terms were used to identify studies on the implementation of natural language processing in the detection of mental health conditions such as anxiety, depression, and grief. A total of 136 related studies were found, of which 32 articles were selected for review. The findings show an increase in the utilization of natural language processing in public health, especially between 2020 and 2022. Furthermore, it was observed that social media is a frequently used data source in these studies, and supervised machine learning models are the most prevalent in detecting depression and anxiety. Natural language processing can improve the detection of mental health problems in public health. Supervised learning methods are the most common, but deep learning algorithms present innovative perspectives, and it is expected that this technology will continue to grow to enhance the detection and treatment of mental disorders. It is important to continue researching and developing these technologies for their application in public health.  
author Montoya Arenas, David Andrés
Torres Silva, Ever Augusto
Pereira Montiel, Eider
Alemán Acuña, Reyk Sayk
author_facet Montoya Arenas, David Andrés
Torres Silva, Ever Augusto
Pereira Montiel, Eider
Alemán Acuña, Reyk Sayk
topicspa_str_mv processamento de linguagem natural
transtornos mentais
luto
depressão
ansiedade
saúde mental
trastornos mentales
duelo
depresión
ansiedad
salud mental
procesamiento de lenguaje natural
topic processamento de linguagem natural
transtornos mentais
luto
depressão
ansiedade
saúde mental
trastornos mentales
duelo
depresión
ansiedad
salud mental
procesamiento de lenguaje natural
anxiety
natural language processing
mental health
depression
grief
mental disorders
topic_facet processamento de linguagem natural
transtornos mentais
luto
depressão
ansiedade
saúde mental
trastornos mentales
duelo
depresión
ansiedad
salud mental
procesamiento de lenguaje natural
anxiety
natural language processing
mental health
depression
grief
mental disorders
citationvolume 17
citationissue 2
citationedition Núm. 2 , Año 2024 : Revista Iberoamericana de Psicología (Vol. 17 # 2)
publisher Bogotá: Corporación Universitaria Iberoamericana
ispartofjournal Revista Iberoamericana de Psicología
source https://reviberopsicologia.ibero.edu.co/article/view/2731
language Español
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Revista iberoamericana de psicología - 2023
https://creativecommons.org/licenses/by-nc-sa/4.0
references Microsoft. (2022). Large-scale custom natural language processing.
Rizwan, M., Mushtaq, M. F., Akram, U., Mehmood, A., Ashraf, I., & Sahelices, B. (2022). Depression Classification From Tweets Using Small Deep Transfer Learning Language Models. IEEE Access, 10, 129176–129189. https://doi.org/10.1109/ACCESS.2022.3223049
Preoţiuc-Pietro, Daniel, Johannes Eichstaedt, Gregory Park, Maarten Sap, Laura Smith, Victoria Tobolsky, H. Andrew Schwartz, & Lyle Ungar. (2015). The role of personality age and gender in tweeting about mental illness. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 21–30.
Petukhova, A., & Fachada, N. (2022). TextCL: A Python package for NLP preprocessing tasks. SoftwareX, 19. https://doi.org/10.1016/j.softx.2022.101122
Peters, M. D. J., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141–146. https://doi.org/10.1097/XEB.0000000000000050
Patel, R., Irving, J., Brinn, A., Taylor, M., Shetty, H., Pritchard, M., Stewart, R., Fusar-Poli, P., & Mcguire, P. (2022). Associations of presenting symptoms and subsequent adverse clinical outcomes in people with unipolar depression: A prospective natural language processing (NLP), transdiagnostic, network analysis of electronic health record (EHR) data. BMJ Open, 12(4). https://doi.org/10.1136/bmjopen-2021-056541
P. Resnik, W. Armstrong, L. Claudino, T. Nguyen, V.-A. Nguyen, & J. Boyd-Graber. (2015). Beyond LDA: Exploring supervised topic modeling for depression-related language in twitter. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 99–107.
OPS. (2022b, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de La Salud .
OPS. (2022a, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de Salud (OPS). https://www.paho.org/es/noticias/13-1-2022-estudio-advierte-sobre-elevados-niveles-depresion-pensamientos-suicidas-personal
ONU. (2022). Estado de la salud mental tras la pandemia del COVID-19 y progreso de la Iniciativa Especial para la Salud Mental (2019-2023) de la OMS. Naciones Unidas . https://www.un.org/es/cr%C3%B3nica-onu/estado-de-la-salud-mental-tras-la-pandemia-del-covid-19-y-progreso-de-la-iniciativa#:~:text=Se%20calcula%20que%20la%20pandemia,las%20personas%20de%20buscar%20ayuda.
OMS. (2022, September 28). La OMS y la OIT piden nuevas medidas para abordar los problemas de salud mental en el trabajo. Organización Mundial de La Salud. https://www.who.int/es/news/item/28-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work
Noraset, T., Chatrinan, K., Tawichsri, T., Thaipisutikul, T., & Tuarob, S. (2022). Language-agnostic deep learning framework for automatic monitoring of population-level mental health from social networks. Journal of Biomedical Informatics, 133. https://doi.org/10.1016/j.jbi.2022.104145
Mishra, V., & Garg, T. (2018). A systematic study on predicting depression using text analytics. Ournal of Fundamental and Applied Sciences, 10(2).
Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International Journal of Medical Informatics, 114, 57–65. https://doi.org/10.1016/j.ijmedinf.2018.03.013
Schoch-Ruppen, J., Ehlert, U., Uggowitzer, F., Weymerskirch, N., & Marca-Ghaemmaghami, P. La. (2018). Women’s word use in pregnancy: Associations with maternal characteristics, prenatal stress, and neonatal birth outcome. Frontiers in Psychology, 9(JUL). https://doi.org/10.3389/fpsyg.2018.01234
Matiisen, T. (2015). Demystifying Deep Reinforcement Learning | Computational Neuroscience Lab. Neuro.Cs.Ut.Ee.
Mahalingasivam, V., Craik, A., Tomlinson, L. A., Ge, L., Hou, L., Wang, Q., Yang, K., Fogarty, D. G., & Keenan, C. (2021). A Systematic Review of COVID-19 and Kidney Transplantation. Kidney International Reports, 6(1), 24–45. https://doi.org/https://doi.org/10.1016/j.ekir.2020.10.023
Llamocuro-Mamani, P., Medrano-Espinoza, F., & Montealegre-Soto, D. (2021). Salud mental en la población peruana durante la COVID-19. Cirugía y Cirujanos, 89(3). https://doi.org/10.24875/CIRU.20001303
Liu, T., Meyerhoff, J., Eichstaedt, J. C., Karr, C. J., Kaiser, S. M., Kording, K. P., Mohr, D. C., & Ungar, L. H. (2022). The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders, 302, 7–14. https://doi.org/10.1016/j.jad.2021.12.048
Lior Rokach, & Oded Maimon. (2008). Data mining with decision trees: theory and applications. World Scientific.
Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I., & Sanz, F. (2019). Detecting signs of depression in tweets in Spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research, 21(6). https://doi.org/10.2196/14199
Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research, 23(5), e15708. https://doi.org/10.2196/15708
Landoni, M., Silverio, S. A., Ciuffo, G., Daccò, M., Petrovic, M., Di Blasio, P., & Ionio, C. (2023). Linguistic features of postpartum depression using Linguistic Inquiry and Word Count text analysis. Journal of Neonatal Nursing, 29(1), 127–134. https://doi.org/10.1016/j.jnn.2022.04.001
L. Zhao, L. Li, X. Zheng, & J. Zhang. (2021). A BERT based sentiment analysis and key entity detection approach for online financial texts. Proc. IEEE 24th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD). https://doi.org/10.1109/CSCWD49262.2021.9437616
Kuliukas, L., Hauck, Y., Sweet, L., Vasilevski, V., Homer, C., Wynter, K., Wilson, A., Szabo, R., & Bradfield, Z. (2021). A cross sectional study of midwifery students’ experiences of COVID-19: Uncertainty and expendability. Nurse Education in Practice, 51, 102988. https://doi.org/https://doi.org/10.1016/j.nepr.2021.102988
Krishnamurti, T., Allen, K., Hayani, L., Rodriguez, S., & Davis, A. L. (2022). Identification of maternal depression risk from natural language collected in a mobile health app. Procedia Computer Science, 206, 132–140. https://doi.org/10.1016/j.procs.2022.09.092
Hermoso Contreras, Cristina Andrea Pelegrín Valero, Carmelo Mariano, Olivera Pueyo, & Francisco Javier. (2022). Detección de síntomas psiquiátricos y trastornos del comportamiento en pacientes con demencia. Utilidad de la versión española del Cambridge Behavioural Inventory - Revised (CBI - R). Universidad de Zaragoza. IBM. (2021). Aprendizaje supervisado.
Rusell, S., & & Norvig, P. (2016). Artificial Intelligence: A Modern Approach Global. Harlow: Pearson. Saffar, A. H., Mann, T. K., & Ofoghi, B. (2023). Textual emotion detection in health: Advances and applications. Journal of Biomedical Informatics, 137, 104258. https://doi.org/10.1016/j.jbi.2022.104258
Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of facebook and twitter status updates. Journal of Medical Internet Research, 20(5). https://doi.org/10.2196/jmir.9267
Haug, S., & Kurpicz-Briki, M. (2022). Burnout and Depression Detection Using Affective Word List Ratings. Studies in Health Technology and Informatics, 292, 43–48. https://doi.org/10.3233/SHTI220318
Wang, L., Foer, D., MacPhaul, E., Lo, Y. C., Bates, D. W., & Zhou, L. (2022). PASCLex: A comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from electronic health record clinical notes. Journal of Biomedical Informatics, 125. https://doi.org/10.1016/j.jbi.2021.103951
Ziemer, K. S., & Korkmaz, G. (2017). Using text to predict psychological and physical health: A comparison of human raters and computerized text analysis. Computers in Human Behavior, 76, 122–127. https://doi.org/10.1016/j.chb.2017.06.038
Yu, L., Jiang, W., Ren, Z., Xu, S., Zhang, L., & Hu, X. (2021). Detecting changes in attitudes toward depression on Chinese social media: A text analysis. Journal of Affective Disorders, 280, 354–363. https://doi.org/10.1016/j.jad.2020.11.040
Yang, K., Zhang, T., & Ananiadou, S. (2022). A mental state Knowledge–aware and Contrastive Network for early stress and depression detection on social media. Information Processing and Management, 59(4). https://doi.org/10.1016/j.ipm.2022.102961
Wiering, M., & Schmidhuber, J. (1998). Aprendizaje automático. Machine Learning, 33(1), 105–115. https://doi.org/10.1023/A:1007562800292
Vega, M. Á., Mora, L. M. Q., & Badilla, M. V. C. (2020). Artificial intelligence and machine learning in medicine. Revista Médica Sinergia, 5(8), 1–11.
Sharma, C., Sharma, S., & Sakshi. (2022). Latent DIRICHLET allocation (LDA) based information modelling on BLOCKCHAIN technology: a review of trends and research patterns used in integration. Multimedia Tools and Applications, 81(25), 36805–36831. https://doi.org/10.1007/s11042-022-13500-z
Vasudha Rani, V., & Sandhya Rani, K. (2016). Twitter Streaming and Analysis through R. Indian Journal of Science and Technology, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/97914
Valdivieso Jimenez, G. (2021). Uso de psicofármacos para síntomas neuropsiquiátricos en pacientes hospitalizados con COVID-19. Horizonte Médico (Lima), 21(2), e1272. https://doi.org/10.24265/horizmed.2021.v21n2.13
Vaci, N., Liu, Q., Kormilitzin, A., De Crescenzo, F., Kurtulmus, A., Harvey, J., O’Dell, B., Innocent, S., Tomlinson, A., Cipriani, A., & Nevado-Holgado, A. (2020). Natural language processing for structuring clinical text data on depression using UK-CRIS. Evidence-Based Mental Health, 23(1), 21–26. https://doi.org/10.1136/ebmental-2019-300134
U. Naseem, I. Razzak, K. Musial, & M. Imran. (2020). Transformer based deep intelligent contextual embedding for Twitter sentiment analysis. Future Gener. Computación. Syst, 113, 58–69.
Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., …
Tran, T., & Kavuluru, R. (2017). Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. Journal of Biomedical Informatics, 75, S138–S148. https://doi.org/10.1016/j.jbi.2017.06.010
The MathWorks, Inc. (2020). Cree modelos lingüísticos multipalabra y analícelos con Machine Learning. https://la.mathworks.com/discovery/ngram.html#:~:text=El%20modelado%20de%20n%2Dgramas,de%20word%20embedding%2C%20como%20word2vec.
Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. IEEE Access, 7, 44883–44893. https://doi.org/10.1109/ACCESS.2019.2909180
Simón Martínez, V. (2022). Alteraciones neuropsicológicas en el trastorno obsesivo compulsivo refractario al tratamiento. UNIVERSIDAD COMPLUTENSE DE MADRID .
Shehmir Javaid. (2022, March 31). Data Labeling For Natural Language Processing (NLP). AIMultiple. https://research.aimultiple.com/nlp-data-labeling/
Sharma, S., Kalra, V., & Agrawal, R. (2021). Depression discovery in cancer communities using deep learning. In Handbook of Deep Learning in Biomedical Engineering (pp. 123–154). Elsevier. https://doi.org/10.1016/B978-0-12-823014-5.00004-1
Hays DG. (1967). Introduction to Computational Linguistics, Mathematical Linguistics and Automatic Language Processing. Cambridge: American Elsevier Publishing Co.
Guntuku, S. C., Schneider, R., Pelullo, A., Young, J., Wong, V., Ungar, L., Polsky, D., Volpp, K. G., & Merchant, R. (2019). Studying expressions of loneliness in individuals using twitter: an observational study. BMJ Open, 9(11). https://doi.org/10.1136/bmjopen-2019-030355
Giuntini, F. T., De Moraes, K. L. P., Cazzolato, M. T., Kirchner, L. D. F., Dos Reis, M. D. J. D., Traina, A. J. M., Campbell, A. T., & Ueyama, J. (2021). Tracing the Emotional Roadmap of Depressive Users on Social Media through Sequential Pattern Mining. IEEE Access, 9, 97621–97635. https://doi.org/10.1109/ACCESS.2021.3095759
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2018). Automated EEG-based screening of depression using deep convolutional neural network. Computer Methods and Programs in Biomedicine, 161, 103–113. https://doi.org/10.1016/j.cmpb.2018.04.012
Enzyme. (2020). Natural Language Processing: ¿Cómo es la técnica Word Embeddings? https://enzyme.biz/blog/natural-language-processing#:~:text=Sobre%20estos%20fundamentos%2C%20un%20ejemplo,entonces%20el%20vector%20%E2%80%9CReina%E2%80%9D.
Elixmahir Dávila-Marrero, Gladiliz Rivera-Delpín, Ashley Rodríguez-Mercado, Raúl Olivo-Arroyo, & Jorge A. Montijo. (2021, May 26). Persistent Cognitive Manifestations Related to COVID-19. Universidad de Puerto Rico. https://revistas.upr.edu/index.php/psicologias/article/view/18973/16394
DeSouza, D. D., Robin, J., Gumus, M., & Yeung, A. (2021). Natural Language Processing as an Emerging Tool to Detect Late-Life Depression. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.719125
Cohen, A. S., Mitchell, K. R., & Elvevåg, B. (2014). What do we really know about blunted vocal affect and alogia? A meta-analysis of objective assessments. Schizophrenia Research, 159(2–3), 533–538. https://doi.org/10.1016/j.schres.2014.09.013
Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135. https://doi.org/10.1016/j.compbiomed.2021.104499
Charles Roe. (2017, December 6). Identify Data Patterns with Natural Language Processing and Machine Learning. DATAVERSITY. https://www.dataversity.net/identify-data-patterns-natural-language-processing-machine-learning/#
Chae, S. W., & Lee, S. H. (2022). Sharing emotion while spectating video game play: Exploring Twitch users’ emotional change after the outbreak of the COVID-19 pandemic. Computers in Human Behavior, 131. https://doi.org/10.1016/j.chb.2022.107211
Carod Artal, F. J. (2020). Complicaciones neurológicas por coronavirus y COVID-19. Revista de Neurología, 70(09), 311. https://doi.org/10.33588/rn.7009.2020179
Burkhardt, H. A., Alexopoulos, G. S., Pullmann, M. D., Hull, T. D., Areán, P. A., & Cohen, T. (2021). Behavioral activation and depression symptomatology: Longitudinal assessment of linguistic indicators in text-based therapy sessions. Journal of Medical Internet Research, 23(7). https://doi.org/10.2196/28244
Albertson, B. (2021). TextMix: using NLP and APIs to generate chunked sentence scramble tasks. In CALL and professionalisation: short papers from EUROCALL (p. 6).
Boivin, J., O., M., Duong, M., Cooper, O., Filipenko, D., Markert, M., Samuelsen, C., & Lenderking, W. R. (2022). Emotional reactions to infertility diagnosis: thematic and natural language processing analyses of the 1000 Dreams survey. Reproductive BioMedicine Online. https://doi.org/10.1016/j.rbmo.2022.08.107
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-10-22
date_accessioned 2024-10-22T00:00:00Z
date_available 2024-10-22T00:00:00Z
url https://reviberopsicologia.ibero.edu.co/article/view/2731
url_doi https://doi.org/10.33881/2027-1786.rip.17202
issn 2027-1786
eissn 2500-6517
doi 10.33881/2027-1786.rip.17202
citationstartpage 11
citationendpage 22
url2_str_mv https://reviberopsicologia.ibero.edu.co/article/download/2731/2047
_version_ 1814589435716567040