Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance
.
Esta revisión tiene como objetivo analizar el uso del procesamiento de lenguaje natural en las investigaciones de trastornos mentales en adultos, como la depresión, ansiedad y los sentimientos de duelo. Realizando una búsqueda en cuatro bases de datos relevantes (PubMed, IEEE, ScienceDirect y LILACS) publicado en español e inglés desde 2017 hasta 2022 sin restricciones de país de origen. Se utilizaron términos MeSH y de texto libre para identificar estudios sobre la implementación del procesamiento del leguaje natural en la detección de condiciones de salud mental como la ansiedad, depresión y sentimientos de duelo. Se encontraron un total de 136 estudios relacionados, de los cuales se seleccionaron 32 artículos para la revisión. Donde se m... Ver más
2027-1786
2500-6517
17
2024-10-22
11
22
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Revista iberoamericana de psicología - 2023
id |
metarevistapublica_ibero_revistaiberoamericanadepsicologia_8-article-2731 |
---|---|
record_format |
ojs |
spelling |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance Microsoft. (2022). Large-scale custom natural language processing. Rizwan, M., Mushtaq, M. F., Akram, U., Mehmood, A., Ashraf, I., & Sahelices, B. (2022). Depression Classification From Tweets Using Small Deep Transfer Learning Language Models. IEEE Access, 10, 129176–129189. https://doi.org/10.1109/ACCESS.2022.3223049 Preoţiuc-Pietro, Daniel, Johannes Eichstaedt, Gregory Park, Maarten Sap, Laura Smith, Victoria Tobolsky, H. Andrew Schwartz, & Lyle Ungar. (2015). The role of personality age and gender in tweeting about mental illness. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 21–30. Petukhova, A., & Fachada, N. (2022). TextCL: A Python package for NLP preprocessing tasks. SoftwareX, 19. https://doi.org/10.1016/j.softx.2022.101122 Peters, M. D. J., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141–146. https://doi.org/10.1097/XEB.0000000000000050 Patel, R., Irving, J., Brinn, A., Taylor, M., Shetty, H., Pritchard, M., Stewart, R., Fusar-Poli, P., & Mcguire, P. (2022). Associations of presenting symptoms and subsequent adverse clinical outcomes in people with unipolar depression: A prospective natural language processing (NLP), transdiagnostic, network analysis of electronic health record (EHR) data. BMJ Open, 12(4). https://doi.org/10.1136/bmjopen-2021-056541 P. Resnik, W. Armstrong, L. Claudino, T. Nguyen, V.-A. Nguyen, & J. Boyd-Graber. (2015). Beyond LDA: Exploring supervised topic modeling for depression-related language in twitter. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 99–107. OPS. (2022b, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de La Salud . OPS. (2022a, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de Salud (OPS). https://www.paho.org/es/noticias/13-1-2022-estudio-advierte-sobre-elevados-niveles-depresion-pensamientos-suicidas-personal ONU. (2022). Estado de la salud mental tras la pandemia del COVID-19 y progreso de la Iniciativa Especial para la Salud Mental (2019-2023) de la OMS. Naciones Unidas . https://www.un.org/es/cr%C3%B3nica-onu/estado-de-la-salud-mental-tras-la-pandemia-del-covid-19-y-progreso-de-la-iniciativa#:~:text=Se%20calcula%20que%20la%20pandemia,las%20personas%20de%20buscar%20ayuda. OMS. (2022, September 28). La OMS y la OIT piden nuevas medidas para abordar los problemas de salud mental en el trabajo. Organización Mundial de La Salud. https://www.who.int/es/news/item/28-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work Noraset, T., Chatrinan, K., Tawichsri, T., Thaipisutikul, T., & Tuarob, S. (2022). Language-agnostic deep learning framework for automatic monitoring of population-level mental health from social networks. Journal of Biomedical Informatics, 133. https://doi.org/10.1016/j.jbi.2022.104145 Mishra, V., & Garg, T. (2018). A systematic study on predicting depression using text analytics. Ournal of Fundamental and Applied Sciences, 10(2). Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International Journal of Medical Informatics, 114, 57–65. https://doi.org/10.1016/j.ijmedinf.2018.03.013 Schoch-Ruppen, J., Ehlert, U., Uggowitzer, F., Weymerskirch, N., & Marca-Ghaemmaghami, P. La. (2018). Women’s word use in pregnancy: Associations with maternal characteristics, prenatal stress, and neonatal birth outcome. Frontiers in Psychology, 9(JUL). https://doi.org/10.3389/fpsyg.2018.01234 Matiisen, T. (2015). Demystifying Deep Reinforcement Learning | Computational Neuroscience Lab. Neuro.Cs.Ut.Ee. Mahalingasivam, V., Craik, A., Tomlinson, L. A., Ge, L., Hou, L., Wang, Q., Yang, K., Fogarty, D. G., & Keenan, C. (2021). A Systematic Review of COVID-19 and Kidney Transplantation. Kidney International Reports, 6(1), 24–45. https://doi.org/https://doi.org/10.1016/j.ekir.2020.10.023 Llamocuro-Mamani, P., Medrano-Espinoza, F., & Montealegre-Soto, D. (2021). Salud mental en la población peruana durante la COVID-19. Cirugía y Cirujanos, 89(3). https://doi.org/10.24875/CIRU.20001303 Liu, T., Meyerhoff, J., Eichstaedt, J. C., Karr, C. J., Kaiser, S. M., Kording, K. P., Mohr, D. C., & Ungar, L. H. (2022). The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders, 302, 7–14. https://doi.org/10.1016/j.jad.2021.12.048 Lior Rokach, & Oded Maimon. (2008). Data mining with decision trees: theory and applications. World Scientific. Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I., & Sanz, F. (2019). Detecting signs of depression in tweets in Spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research, 21(6). https://doi.org/10.2196/14199 Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research, 23(5), e15708. https://doi.org/10.2196/15708 Landoni, M., Silverio, S. A., Ciuffo, G., Daccò, M., Petrovic, M., Di Blasio, P., & Ionio, C. (2023). Linguistic features of postpartum depression using Linguistic Inquiry and Word Count text analysis. Journal of Neonatal Nursing, 29(1), 127–134. https://doi.org/10.1016/j.jnn.2022.04.001 L. Zhao, L. Li, X. Zheng, & J. Zhang. (2021). A BERT based sentiment analysis and key entity detection approach for online financial texts. Proc. IEEE 24th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD). https://doi.org/10.1109/CSCWD49262.2021.9437616 Kuliukas, L., Hauck, Y., Sweet, L., Vasilevski, V., Homer, C., Wynter, K., Wilson, A., Szabo, R., & Bradfield, Z. (2021). A cross sectional study of midwifery students’ experiences of COVID-19: Uncertainty and expendability. Nurse Education in Practice, 51, 102988. https://doi.org/https://doi.org/10.1016/j.nepr.2021.102988 Krishnamurti, T., Allen, K., Hayani, L., Rodriguez, S., & Davis, A. L. (2022). Identification of maternal depression risk from natural language collected in a mobile health app. Procedia Computer Science, 206, 132–140. https://doi.org/10.1016/j.procs.2022.09.092 Hermoso Contreras, Cristina Andrea Pelegrín Valero, Carmelo Mariano, Olivera Pueyo, & Francisco Javier. (2022). Detección de síntomas psiquiátricos y trastornos del comportamiento en pacientes con demencia. Utilidad de la versión española del Cambridge Behavioural Inventory - Revised (CBI - R). Universidad de Zaragoza. IBM. (2021). Aprendizaje supervisado. Rusell, S., & & Norvig, P. (2016). Artificial Intelligence: A Modern Approach Global. Harlow: Pearson. Saffar, A. H., Mann, T. K., & Ofoghi, B. (2023). Textual emotion detection in health: Advances and applications. Journal of Biomedical Informatics, 137, 104258. https://doi.org/10.1016/j.jbi.2022.104258 Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of facebook and twitter status updates. Journal of Medical Internet Research, 20(5). https://doi.org/10.2196/jmir.9267 Haug, S., & Kurpicz-Briki, M. (2022). Burnout and Depression Detection Using Affective Word List Ratings. Studies in Health Technology and Informatics, 292, 43–48. https://doi.org/10.3233/SHTI220318 Wang, L., Foer, D., MacPhaul, E., Lo, Y. C., Bates, D. W., & Zhou, L. (2022). PASCLex: A comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from electronic health record clinical notes. Journal of Biomedical Informatics, 125. https://doi.org/10.1016/j.jbi.2021.103951 Text http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/publishedVersion http://purl.org/redcol/resource_type/ARTREF http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article Ziemer, K. S., & Korkmaz, G. (2017). Using text to predict psychological and physical health: A comparison of human raters and computerized text analysis. Computers in Human Behavior, 76, 122–127. https://doi.org/10.1016/j.chb.2017.06.038 Yu, L., Jiang, W., Ren, Z., Xu, S., Zhang, L., & Hu, X. (2021). Detecting changes in attitudes toward depression on Chinese social media: A text analysis. Journal of Affective Disorders, 280, 354–363. https://doi.org/10.1016/j.jad.2020.11.040 Yang, K., Zhang, T., & Ananiadou, S. (2022). A mental state Knowledge–aware and Contrastive Network for early stress and depression detection on social media. Information Processing and Management, 59(4). https://doi.org/10.1016/j.ipm.2022.102961 Wiering, M., & Schmidhuber, J. (1998). Aprendizaje automático. Machine Learning, 33(1), 105–115. https://doi.org/10.1023/A:1007562800292 Vega, M. Á., Mora, L. M. Q., & Badilla, M. V. C. (2020). Artificial intelligence and machine learning in medicine. Revista Médica Sinergia, 5(8), 1–11. Sharma, C., Sharma, S., & Sakshi. (2022). Latent DIRICHLET allocation (LDA) based information modelling on BLOCKCHAIN technology: a review of trends and research patterns used in integration. Multimedia Tools and Applications, 81(25), 36805–36831. https://doi.org/10.1007/s11042-022-13500-z Vasudha Rani, V., & Sandhya Rani, K. (2016). Twitter Streaming and Analysis through R. Indian Journal of Science and Technology, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/97914 Valdivieso Jimenez, G. (2021). Uso de psicofármacos para síntomas neuropsiquiátricos en pacientes hospitalizados con COVID-19. Horizonte Médico (Lima), 21(2), e1272. https://doi.org/10.24265/horizmed.2021.v21n2.13 Vaci, N., Liu, Q., Kormilitzin, A., De Crescenzo, F., Kurtulmus, A., Harvey, J., O’Dell, B., Innocent, S., Tomlinson, A., Cipriani, A., & Nevado-Holgado, A. (2020). Natural language processing for structuring clinical text data on depression using UK-CRIS. Evidence-Based Mental Health, 23(1), 21–26. https://doi.org/10.1136/ebmental-2019-300134 U. Naseem, I. Razzak, K. Musial, & M. Imran. (2020). Transformer based deep intelligent contextual embedding for Twitter sentiment analysis. Future Gener. Computación. Syst, 113, 58–69. Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850 Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Tran, T., & Kavuluru, R. (2017). Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. Journal of Biomedical Informatics, 75, S138–S148. https://doi.org/10.1016/j.jbi.2017.06.010 The MathWorks, Inc. (2020). Cree modelos lingüísticos multipalabra y analícelos con Machine Learning. https://la.mathworks.com/discovery/ngram.html#:~:text=El%20modelado%20de%20n%2Dgramas,de%20word%20embedding%2C%20como%20word2vec. Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. IEEE Access, 7, 44883–44893. https://doi.org/10.1109/ACCESS.2019.2909180 Simón Martínez, V. (2022). Alteraciones neuropsicológicas en el trastorno obsesivo compulsivo refractario al tratamiento. UNIVERSIDAD COMPLUTENSE DE MADRID . Shehmir Javaid. (2022, March 31). Data Labeling For Natural Language Processing (NLP). AIMultiple. https://research.aimultiple.com/nlp-data-labeling/ Sharma, S., Kalra, V., & Agrawal, R. (2021). Depression discovery in cancer communities using deep learning. In Handbook of Deep Learning in Biomedical Engineering (pp. 123–154). Elsevier. https://doi.org/10.1016/B978-0-12-823014-5.00004-1 Hays DG. (1967). Introduction to Computational Linguistics, Mathematical Linguistics and Automatic Language Processing. Cambridge: American Elsevier Publishing Co. Guntuku, S. C., Schneider, R., Pelullo, A., Young, J., Wong, V., Ungar, L., Polsky, D., Volpp, K. G., & Merchant, R. (2019). Studying expressions of loneliness in individuals using twitter: an observational study. BMJ Open, 9(11). https://doi.org/10.1136/bmjopen-2019-030355 Giuntini, F. T., De Moraes, K. L. P., Cazzolato, M. T., Kirchner, L. D. F., Dos Reis, M. D. J. D., Traina, A. J. M., Campbell, A. T., & Ueyama, J. (2021). Tracing the Emotional Roadmap of Depressive Users on Social Media through Sequential Pattern Mining. IEEE Access, 9, 97621–97635. https://doi.org/10.1109/ACCESS.2021.3095759 processamento de linguagem natural Artículo de revista Núm. 2 , Año 2024 : Revista Iberoamericana de Psicología (Vol. 17 # 2) 2 17 transtornos mentais luto depressão ansiedade saúde mental trastornos mentales Bogotá: Corporación Universitaria Iberoamericana duelo depresión ansiedad salud mental procesamiento de lenguaje natural Montoya Arenas, David Andrés Torres Silva, Ever Augusto Pereira Montiel, Eider Alemán Acuña, Reyk Sayk Esta revisión tiene como objetivo analizar el uso del procesamiento de lenguaje natural en las investigaciones de trastornos mentales en adultos, como la depresión, ansiedad y los sentimientos de duelo. Realizando una búsqueda en cuatro bases de datos relevantes (PubMed, IEEE, ScienceDirect y LILACS) publicado en español e inglés desde 2017 hasta 2022 sin restricciones de país de origen. Se utilizaron términos MeSH y de texto libre para identificar estudios sobre la implementación del procesamiento del leguaje natural en la detección de condiciones de salud mental como la ansiedad, depresión y sentimientos de duelo. Se encontraron un total de 136 estudios relacionados, de los cuales se seleccionaron 32 artículos para la revisión. Donde se muestra un incremento de la utilización del procesamiento de lenguaje natural en la salud pública, espacialmente entre los años 2020 y 2022. Además, se observó que las redes sociales son una fuente de datos frecuentemente utilizada en estos estudios, y que los modelos de aprendizaje automático supervisados son los más prevalentes en la detección de depresión y ansiedad. El procesamiento de lenguaje natural puede mejorar la detección de problemas de salud mental en la salud pública. Los métodos de aprendizaje supervisados supervisado son los más comunes, pero los algoritmos basados en aprendizaje profundo presentan perspectivas innovadoras y se espera que esta tecnología siga en aumento para mejorar la detección y tratamiento de trastornos mentales. Es importante continuar investigando y desarrollando estas tecnologías para su aplicada en la salud pública.   application/pdf Publication Revista Iberoamericana de Psicología Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2018). Automated EEG-based screening of depression using deep convolutional neural network. Computer Methods and Programs in Biomedicine, 161, 103–113. https://doi.org/10.1016/j.cmpb.2018.04.012 Enzyme. (2020). Natural Language Processing: ¿Cómo es la técnica Word Embeddings? https://enzyme.biz/blog/natural-language-processing#:~:text=Sobre%20estos%20fundamentos%2C%20un%20ejemplo,entonces%20el%20vector%20%E2%80%9CReina%E2%80%9D. Elixmahir Dávila-Marrero, Gladiliz Rivera-Delpín, Ashley Rodríguez-Mercado, Raúl Olivo-Arroyo, & Jorge A. Montijo. (2021, May 26). Persistent Cognitive Manifestations Related to COVID-19. Universidad de Puerto Rico. https://revistas.upr.edu/index.php/psicologias/article/view/18973/16394 DeSouza, D. D., Robin, J., Gumus, M., & Yeung, A. (2021). Natural Language Processing as an Emerging Tool to Detect Late-Life Depression. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.719125 Cohen, A. S., Mitchell, K. R., & Elvevåg, B. (2014). What do we really know about blunted vocal affect and alogia? A meta-analysis of objective assessments. Schizophrenia Research, 159(2–3), 533–538. https://doi.org/10.1016/j.schres.2014.09.013 Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135. https://doi.org/10.1016/j.compbiomed.2021.104499 Charles Roe. (2017, December 6). Identify Data Patterns with Natural Language Processing and Machine Learning. DATAVERSITY. https://www.dataversity.net/identify-data-patterns-natural-language-processing-machine-learning/# Chae, S. W., & Lee, S. H. (2022). Sharing emotion while spectating video game play: Exploring Twitch users’ emotional change after the outbreak of the COVID-19 pandemic. Computers in Human Behavior, 131. https://doi.org/10.1016/j.chb.2022.107211 Carod Artal, F. J. (2020). Complicaciones neurológicas por coronavirus y COVID-19. Revista de Neurología, 70(09), 311. https://doi.org/10.33588/rn.7009.2020179 Burkhardt, H. A., Alexopoulos, G. S., Pullmann, M. D., Hull, T. D., Areán, P. A., & Cohen, T. (2021). Behavioral activation and depression symptomatology: Longitudinal assessment of linguistic indicators in text-based therapy sessions. Journal of Medical Internet Research, 23(7). https://doi.org/10.2196/28244 Albertson, B. (2021). TextMix: using NLP and APIs to generate chunked sentence scramble tasks. In CALL and professionalisation: short papers from EUROCALL (p. 6). Boivin, J., O., M., Duong, M., Cooper, O., Filipenko, D., Markert, M., Samuelsen, C., & Lenderking, W. R. (2022). Emotional reactions to infertility diagnosis: thematic and natural language processing analyses of the 1000 Dreams survey. Reproductive BioMedicine Online. https://doi.org/10.1016/j.rbmo.2022.08.107 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. Revista iberoamericana de psicología - 2023 https://creativecommons.org/licenses/by-nc-sa/4.0 Español https://reviberopsicologia.ibero.edu.co/article/view/2731 anxiety This review aims to analyze the use of natural language processing in research on mental disorders in adults, such as depression, anxiety, and grief. A search was conducted in four relevant databases (PubMed, IEEE, ScienceDirect, and LILACS) for articles published in Spanish and English from 2017 to 2022 without restrictions on country of origin. MeSH terms and free-text terms were used to identify studies on the implementation of natural language processing in the detection of mental health conditions such as anxiety, depression, and grief. A total of 136 related studies were found, of which 32 articles were selected for review. The findings show an increase in the utilization of natural language processing in public health, especially between 2020 and 2022. Furthermore, it was observed that social media is a frequently used data source in these studies, and supervised machine learning models are the most prevalent in detecting depression and anxiety. Natural language processing can improve the detection of mental health problems in public health. Supervised learning methods are the most common, but deep learning algorithms present innovative perspectives, and it is expected that this technology will continue to grow to enhance the detection and treatment of mental disorders. It is important to continue researching and developing these technologies for their application in public health.   Use of Natural Language Processing in Mental Health: Scoping Review natural language processing mental health depression grief mental disorders Journal article 11 https://reviberopsicologia.ibero.edu.co/article/download/2731/2047 10.33881/2027-1786.rip.17202 https://doi.org/10.33881/2027-1786.rip.17202 2027-1786 2024-10-22T00:00:00Z 2024-10-22T00:00:00Z 2024-10-22 22 2500-6517 |
institution |
CORPORACIÓN UNIVERSITARIA IBEROAMERICANA |
thumbnail |
https://nuevo.metarevistas.org/CORPORACIONUNIVERSITARIAIBEROAMERICANA/logo.png |
country_str |
Colombia |
collection |
Revista Iberoamericana de Psicología |
title |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance |
spellingShingle |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance Montoya Arenas, David Andrés Torres Silva, Ever Augusto Pereira Montiel, Eider Alemán Acuña, Reyk Sayk processamento de linguagem natural transtornos mentais luto depressão ansiedade saúde mental trastornos mentales duelo depresión ansiedad salud mental procesamiento de lenguaje natural anxiety natural language processing mental health depression grief mental disorders |
title_short |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance |
title_full |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance |
title_fullStr |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance |
title_full_unstemmed |
Procesamiento de lenguaje natural en la Salud Mental: Revisión de alcance |
title_sort |
procesamiento de lenguaje natural en la salud mental: revisión de alcance |
title_eng |
Use of Natural Language Processing in Mental Health: Scoping Review |
description |
Esta revisión tiene como objetivo analizar el uso del procesamiento de lenguaje natural en las investigaciones de trastornos mentales en adultos, como la depresión, ansiedad y los sentimientos de duelo. Realizando una búsqueda en cuatro bases de datos relevantes (PubMed, IEEE, ScienceDirect y LILACS) publicado en español e inglés desde 2017 hasta 2022 sin restricciones de país de origen. Se utilizaron términos MeSH y de texto libre para identificar estudios sobre la implementación del procesamiento del leguaje natural en la detección de condiciones de salud mental como la ansiedad, depresión y sentimientos de duelo. Se encontraron un total de 136 estudios relacionados, de los cuales se seleccionaron 32 artículos para la revisión. Donde se muestra un incremento de la utilización del procesamiento de lenguaje natural en la salud pública, espacialmente entre los años 2020 y 2022. Además, se observó que las redes sociales son una fuente de datos frecuentemente utilizada en estos estudios, y que los modelos de aprendizaje automático supervisados son los más prevalentes en la detección de depresión y ansiedad. El procesamiento de lenguaje natural puede mejorar la detección de problemas de salud mental en la salud pública. Los métodos de aprendizaje supervisados supervisado son los más comunes, pero los algoritmos basados en aprendizaje profundo presentan perspectivas innovadoras y se espera que esta tecnología siga en aumento para mejorar la detección y tratamiento de trastornos mentales. Es importante continuar investigando y desarrollando estas tecnologías para su aplicada en la salud pública.
 
|
description_eng |
This review aims to analyze the use of natural language processing in research on mental disorders in adults, such as depression, anxiety, and grief. A search was conducted in four relevant databases (PubMed, IEEE, ScienceDirect, and LILACS) for articles published in Spanish and English from 2017 to 2022 without restrictions on country of origin. MeSH terms and free-text terms were used to identify studies on the implementation of natural language processing in the detection of mental health conditions such as anxiety, depression, and grief. A total of 136 related studies were found, of which 32 articles were selected for review. The findings show an increase in the utilization of natural language processing in public health, especially between 2020 and 2022. Furthermore, it was observed that social media is a frequently used data source in these studies, and supervised machine learning models are the most prevalent in detecting depression and anxiety. Natural language processing can improve the detection of mental health problems in public health. Supervised learning methods are the most common, but deep learning algorithms present innovative perspectives, and it is expected that this technology will continue to grow to enhance the detection and treatment of mental disorders. It is important to continue researching and developing these technologies for their application in public health.
 
|
author |
Montoya Arenas, David Andrés Torres Silva, Ever Augusto Pereira Montiel, Eider Alemán Acuña, Reyk Sayk |
author_facet |
Montoya Arenas, David Andrés Torres Silva, Ever Augusto Pereira Montiel, Eider Alemán Acuña, Reyk Sayk |
topicspa_str_mv |
processamento de linguagem natural transtornos mentais luto depressão ansiedade saúde mental trastornos mentales duelo depresión ansiedad salud mental procesamiento de lenguaje natural |
topic |
processamento de linguagem natural transtornos mentais luto depressão ansiedade saúde mental trastornos mentales duelo depresión ansiedad salud mental procesamiento de lenguaje natural anxiety natural language processing mental health depression grief mental disorders |
topic_facet |
processamento de linguagem natural transtornos mentais luto depressão ansiedade saúde mental trastornos mentales duelo depresión ansiedad salud mental procesamiento de lenguaje natural anxiety natural language processing mental health depression grief mental disorders |
citationvolume |
17 |
citationissue |
2 |
citationedition |
Núm. 2 , Año 2024 : Revista Iberoamericana de Psicología (Vol. 17 # 2) |
publisher |
Bogotá: Corporación Universitaria Iberoamericana |
ispartofjournal |
Revista Iberoamericana de Psicología |
source |
https://reviberopsicologia.ibero.edu.co/article/view/2731 |
language |
Español |
format |
Article |
rights |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0. Revista iberoamericana de psicología - 2023 https://creativecommons.org/licenses/by-nc-sa/4.0 |
references |
Microsoft. (2022). Large-scale custom natural language processing. Rizwan, M., Mushtaq, M. F., Akram, U., Mehmood, A., Ashraf, I., & Sahelices, B. (2022). Depression Classification From Tweets Using Small Deep Transfer Learning Language Models. IEEE Access, 10, 129176–129189. https://doi.org/10.1109/ACCESS.2022.3223049 Preoţiuc-Pietro, Daniel, Johannes Eichstaedt, Gregory Park, Maarten Sap, Laura Smith, Victoria Tobolsky, H. Andrew Schwartz, & Lyle Ungar. (2015). The role of personality age and gender in tweeting about mental illness. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 21–30. Petukhova, A., & Fachada, N. (2022). TextCL: A Python package for NLP preprocessing tasks. SoftwareX, 19. https://doi.org/10.1016/j.softx.2022.101122 Peters, M. D. J., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. (2015). Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare, 13(3), 141–146. https://doi.org/10.1097/XEB.0000000000000050 Patel, R., Irving, J., Brinn, A., Taylor, M., Shetty, H., Pritchard, M., Stewart, R., Fusar-Poli, P., & Mcguire, P. (2022). Associations of presenting symptoms and subsequent adverse clinical outcomes in people with unipolar depression: A prospective natural language processing (NLP), transdiagnostic, network analysis of electronic health record (EHR) data. BMJ Open, 12(4). https://doi.org/10.1136/bmjopen-2021-056541 P. Resnik, W. Armstrong, L. Claudino, T. Nguyen, V.-A. Nguyen, & J. Boyd-Graber. (2015). Beyond LDA: Exploring supervised topic modeling for depression-related language in twitter. Proc. 2nd Workshop Comput. Lingüística Clin. Psicología., 99–107. OPS. (2022b, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de La Salud . OPS. (2022a, January 13). Estudio advierte sobre elevados niveles de depresión y pensamientos suicidas en personal de salud de América Latina durante la pandemia. Organización Panamericana de Salud (OPS). https://www.paho.org/es/noticias/13-1-2022-estudio-advierte-sobre-elevados-niveles-depresion-pensamientos-suicidas-personal ONU. (2022). Estado de la salud mental tras la pandemia del COVID-19 y progreso de la Iniciativa Especial para la Salud Mental (2019-2023) de la OMS. Naciones Unidas . https://www.un.org/es/cr%C3%B3nica-onu/estado-de-la-salud-mental-tras-la-pandemia-del-covid-19-y-progreso-de-la-iniciativa#:~:text=Se%20calcula%20que%20la%20pandemia,las%20personas%20de%20buscar%20ayuda. OMS. (2022, September 28). La OMS y la OIT piden nuevas medidas para abordar los problemas de salud mental en el trabajo. Organización Mundial de La Salud. https://www.who.int/es/news/item/28-09-2022-who-and-ilo-call-for-new-measures-to-tackle-mental-health-issues-at-work Noraset, T., Chatrinan, K., Tawichsri, T., Thaipisutikul, T., & Tuarob, S. (2022). Language-agnostic deep learning framework for automatic monitoring of population-level mental health from social networks. Journal of Biomedical Informatics, 133. https://doi.org/10.1016/j.jbi.2022.104145 Mishra, V., & Garg, T. (2018). A systematic study on predicting depression using text analytics. Ournal of Fundamental and Applied Sciences, 10(2). Mehta, N., & Pandit, A. (2018). Concurrence of big data analytics and healthcare: A systematic review. International Journal of Medical Informatics, 114, 57–65. https://doi.org/10.1016/j.ijmedinf.2018.03.013 Schoch-Ruppen, J., Ehlert, U., Uggowitzer, F., Weymerskirch, N., & Marca-Ghaemmaghami, P. La. (2018). Women’s word use in pregnancy: Associations with maternal characteristics, prenatal stress, and neonatal birth outcome. Frontiers in Psychology, 9(JUL). https://doi.org/10.3389/fpsyg.2018.01234 Matiisen, T. (2015). Demystifying Deep Reinforcement Learning | Computational Neuroscience Lab. Neuro.Cs.Ut.Ee. Mahalingasivam, V., Craik, A., Tomlinson, L. A., Ge, L., Hou, L., Wang, Q., Yang, K., Fogarty, D. G., & Keenan, C. (2021). A Systematic Review of COVID-19 and Kidney Transplantation. Kidney International Reports, 6(1), 24–45. https://doi.org/https://doi.org/10.1016/j.ekir.2020.10.023 Llamocuro-Mamani, P., Medrano-Espinoza, F., & Montealegre-Soto, D. (2021). Salud mental en la población peruana durante la COVID-19. Cirugía y Cirujanos, 89(3). https://doi.org/10.24875/CIRU.20001303 Liu, T., Meyerhoff, J., Eichstaedt, J. C., Karr, C. J., Kaiser, S. M., Kording, K. P., Mohr, D. C., & Ungar, L. H. (2022). The relationship between text message sentiment and self-reported depression. Journal of Affective Disorders, 302, 7–14. https://doi.org/10.1016/j.jad.2021.12.048 Lior Rokach, & Oded Maimon. (2008). Data mining with decision trees: theory and applications. World Scientific. Leis, A., Ronzano, F., Mayer, M. A., Furlong, L. I., & Sanz, F. (2019). Detecting signs of depression in tweets in Spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research, 21(6). https://doi.org/10.2196/14199 Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research, 23(5), e15708. https://doi.org/10.2196/15708 Landoni, M., Silverio, S. A., Ciuffo, G., Daccò, M., Petrovic, M., Di Blasio, P., & Ionio, C. (2023). Linguistic features of postpartum depression using Linguistic Inquiry and Word Count text analysis. Journal of Neonatal Nursing, 29(1), 127–134. https://doi.org/10.1016/j.jnn.2022.04.001 L. Zhao, L. Li, X. Zheng, & J. Zhang. (2021). A BERT based sentiment analysis and key entity detection approach for online financial texts. Proc. IEEE 24th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD). https://doi.org/10.1109/CSCWD49262.2021.9437616 Kuliukas, L., Hauck, Y., Sweet, L., Vasilevski, V., Homer, C., Wynter, K., Wilson, A., Szabo, R., & Bradfield, Z. (2021). A cross sectional study of midwifery students’ experiences of COVID-19: Uncertainty and expendability. Nurse Education in Practice, 51, 102988. https://doi.org/https://doi.org/10.1016/j.nepr.2021.102988 Krishnamurti, T., Allen, K., Hayani, L., Rodriguez, S., & Davis, A. L. (2022). Identification of maternal depression risk from natural language collected in a mobile health app. Procedia Computer Science, 206, 132–140. https://doi.org/10.1016/j.procs.2022.09.092 Hermoso Contreras, Cristina Andrea Pelegrín Valero, Carmelo Mariano, Olivera Pueyo, & Francisco Javier. (2022). Detección de síntomas psiquiátricos y trastornos del comportamiento en pacientes con demencia. Utilidad de la versión española del Cambridge Behavioural Inventory - Revised (CBI - R). Universidad de Zaragoza. IBM. (2021). Aprendizaje supervisado. Rusell, S., & & Norvig, P. (2016). Artificial Intelligence: A Modern Approach Global. Harlow: Pearson. Saffar, A. H., Mann, T. K., & Ofoghi, B. (2023). Textual emotion detection in health: Advances and applications. Journal of Biomedical Informatics, 137, 104258. https://doi.org/10.1016/j.jbi.2022.104258 Seabrook, E. M., Kern, M. L., Fulcher, B. D., & Rickard, N. S. (2018). Predicting depression from language-based emotion dynamics: Longitudinal analysis of facebook and twitter status updates. Journal of Medical Internet Research, 20(5). https://doi.org/10.2196/jmir.9267 Haug, S., & Kurpicz-Briki, M. (2022). Burnout and Depression Detection Using Affective Word List Ratings. Studies in Health Technology and Informatics, 292, 43–48. https://doi.org/10.3233/SHTI220318 Wang, L., Foer, D., MacPhaul, E., Lo, Y. C., Bates, D. W., & Zhou, L. (2022). PASCLex: A comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from electronic health record clinical notes. Journal of Biomedical Informatics, 125. https://doi.org/10.1016/j.jbi.2021.103951 Ziemer, K. S., & Korkmaz, G. (2017). Using text to predict psychological and physical health: A comparison of human raters and computerized text analysis. Computers in Human Behavior, 76, 122–127. https://doi.org/10.1016/j.chb.2017.06.038 Yu, L., Jiang, W., Ren, Z., Xu, S., Zhang, L., & Hu, X. (2021). Detecting changes in attitudes toward depression on Chinese social media: A text analysis. Journal of Affective Disorders, 280, 354–363. https://doi.org/10.1016/j.jad.2020.11.040 Yang, K., Zhang, T., & Ananiadou, S. (2022). A mental state Knowledge–aware and Contrastive Network for early stress and depression detection on social media. Information Processing and Management, 59(4). https://doi.org/10.1016/j.ipm.2022.102961 Wiering, M., & Schmidhuber, J. (1998). Aprendizaje automático. Machine Learning, 33(1), 105–115. https://doi.org/10.1023/A:1007562800292 Vega, M. Á., Mora, L. M. Q., & Badilla, M. V. C. (2020). Artificial intelligence and machine learning in medicine. Revista Médica Sinergia, 5(8), 1–11. Sharma, C., Sharma, S., & Sakshi. (2022). Latent DIRICHLET allocation (LDA) based information modelling on BLOCKCHAIN technology: a review of trends and research patterns used in integration. Multimedia Tools and Applications, 81(25), 36805–36831. https://doi.org/10.1007/s11042-022-13500-z Vasudha Rani, V., & Sandhya Rani, K. (2016). Twitter Streaming and Analysis through R. Indian Journal of Science and Technology, 9(45). https://doi.org/10.17485/ijst/2016/v9i45/97914 Valdivieso Jimenez, G. (2021). Uso de psicofármacos para síntomas neuropsiquiátricos en pacientes hospitalizados con COVID-19. Horizonte Médico (Lima), 21(2), e1272. https://doi.org/10.24265/horizmed.2021.v21n2.13 Vaci, N., Liu, Q., Kormilitzin, A., De Crescenzo, F., Kurtulmus, A., Harvey, J., O’Dell, B., Innocent, S., Tomlinson, A., Cipriani, A., & Nevado-Holgado, A. (2020). Natural language processing for structuring clinical text data on depression using UK-CRIS. Evidence-Based Mental Health, 23(1), 21–26. https://doi.org/10.1136/ebmental-2019-300134 U. Naseem, I. Razzak, K. Musial, & M. Imran. (2020). Transformer based deep intelligent contextual embedding for Twitter sentiment analysis. Future Gener. Computación. Syst, 113, 58–69. Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850 Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Tran, T., & Kavuluru, R. (2017). Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. Journal of Biomedical Informatics, 75, S138–S148. https://doi.org/10.1016/j.jbi.2017.06.010 The MathWorks, Inc. (2020). Cree modelos lingüísticos multipalabra y analícelos con Machine Learning. https://la.mathworks.com/discovery/ngram.html#:~:text=El%20modelado%20de%20n%2Dgramas,de%20word%20embedding%2C%20como%20word2vec. Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in reddit social media forum. IEEE Access, 7, 44883–44893. https://doi.org/10.1109/ACCESS.2019.2909180 Simón Martínez, V. (2022). Alteraciones neuropsicológicas en el trastorno obsesivo compulsivo refractario al tratamiento. UNIVERSIDAD COMPLUTENSE DE MADRID . Shehmir Javaid. (2022, March 31). Data Labeling For Natural Language Processing (NLP). AIMultiple. https://research.aimultiple.com/nlp-data-labeling/ Sharma, S., Kalra, V., & Agrawal, R. (2021). Depression discovery in cancer communities using deep learning. In Handbook of Deep Learning in Biomedical Engineering (pp. 123–154). Elsevier. https://doi.org/10.1016/B978-0-12-823014-5.00004-1 Hays DG. (1967). Introduction to Computational Linguistics, Mathematical Linguistics and Automatic Language Processing. Cambridge: American Elsevier Publishing Co. Guntuku, S. C., Schneider, R., Pelullo, A., Young, J., Wong, V., Ungar, L., Polsky, D., Volpp, K. G., & Merchant, R. (2019). Studying expressions of loneliness in individuals using twitter: an observational study. BMJ Open, 9(11). https://doi.org/10.1136/bmjopen-2019-030355 Giuntini, F. T., De Moraes, K. L. P., Cazzolato, M. T., Kirchner, L. D. F., Dos Reis, M. D. J. D., Traina, A. J. M., Campbell, A. T., & Ueyama, J. (2021). Tracing the Emotional Roadmap of Depressive Users on Social Media through Sequential Pattern Mining. IEEE Access, 9, 97621–97635. https://doi.org/10.1109/ACCESS.2021.3095759 Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adeli, H., & Subha, D. P. (2018). Automated EEG-based screening of depression using deep convolutional neural network. Computer Methods and Programs in Biomedicine, 161, 103–113. https://doi.org/10.1016/j.cmpb.2018.04.012 Enzyme. (2020). Natural Language Processing: ¿Cómo es la técnica Word Embeddings? https://enzyme.biz/blog/natural-language-processing#:~:text=Sobre%20estos%20fundamentos%2C%20un%20ejemplo,entonces%20el%20vector%20%E2%80%9CReina%E2%80%9D. Elixmahir Dávila-Marrero, Gladiliz Rivera-Delpín, Ashley Rodríguez-Mercado, Raúl Olivo-Arroyo, & Jorge A. Montijo. (2021, May 26). Persistent Cognitive Manifestations Related to COVID-19. Universidad de Puerto Rico. https://revistas.upr.edu/index.php/psicologias/article/view/18973/16394 DeSouza, D. D., Robin, J., Gumus, M., & Yeung, A. (2021). Natural Language Processing as an Emerging Tool to Detect Late-Life Depression. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.719125 Cohen, A. S., Mitchell, K. R., & Elvevåg, B. (2014). What do we really know about blunted vocal affect and alogia? A meta-analysis of objective assessments. Schizophrenia Research, 159(2–3), 533–538. https://doi.org/10.1016/j.schres.2014.09.013 Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135. https://doi.org/10.1016/j.compbiomed.2021.104499 Charles Roe. (2017, December 6). Identify Data Patterns with Natural Language Processing and Machine Learning. DATAVERSITY. https://www.dataversity.net/identify-data-patterns-natural-language-processing-machine-learning/# Chae, S. W., & Lee, S. H. (2022). Sharing emotion while spectating video game play: Exploring Twitch users’ emotional change after the outbreak of the COVID-19 pandemic. Computers in Human Behavior, 131. https://doi.org/10.1016/j.chb.2022.107211 Carod Artal, F. J. (2020). Complicaciones neurológicas por coronavirus y COVID-19. Revista de Neurología, 70(09), 311. https://doi.org/10.33588/rn.7009.2020179 Burkhardt, H. A., Alexopoulos, G. S., Pullmann, M. D., Hull, T. D., Areán, P. A., & Cohen, T. (2021). Behavioral activation and depression symptomatology: Longitudinal assessment of linguistic indicators in text-based therapy sessions. Journal of Medical Internet Research, 23(7). https://doi.org/10.2196/28244 Albertson, B. (2021). TextMix: using NLP and APIs to generate chunked sentence scramble tasks. In CALL and professionalisation: short papers from EUROCALL (p. 6). Boivin, J., O., M., Duong, M., Cooper, O., Filipenko, D., Markert, M., Samuelsen, C., & Lenderking, W. R. (2022). Emotional reactions to infertility diagnosis: thematic and natural language processing analyses of the 1000 Dreams survey. Reproductive BioMedicine Online. https://doi.org/10.1016/j.rbmo.2022.08.107 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-10-22 |
date_accessioned |
2024-10-22T00:00:00Z |
date_available |
2024-10-22T00:00:00Z |
url |
https://reviberopsicologia.ibero.edu.co/article/view/2731 |
url_doi |
https://doi.org/10.33881/2027-1786.rip.17202 |
issn |
2027-1786 |
eissn |
2500-6517 |
doi |
10.33881/2027-1786.rip.17202 |
citationstartpage |
11 |
citationendpage |
22 |
url2_str_mv |
https://reviberopsicologia.ibero.edu.co/article/download/2731/2047 |
_version_ |
1814589435716567040 |