Titulo:

Transformada Wavelet packet y Perceptrón Multicapa para identificación de voces con grado leve de desvío vocal
.

Sumario:

Introducción. Los trastornos laríngeos se caracterizan por un cambio en el patrón vibratorio de los pliegues vocales. Este trastorno puede tener un origen orgánico, descrito como la modificación anatómica de los pliegues vocales, o de origen funcional, provocado por abuso o mal uso de la voz. Los métodos de diagnóstico más comunes se realizan mediante procedimientos invasivos que causan malestar al paciente. Además, los desvíos vocales de grado leve no impiden que el individuo utilice la voz, lo que dificulta la identificación del problema y aumenta la posibilidad de complicaciones futuras. Objetivo. Por esas razones, el objetivo de esta investigación es desarrollar una herramienta alternativa, no invasiva para la identificación de voces co... Ver más

Guardado en:

2665-2056

4

2022-02-05

16

25

Revista de Investigación e Innovación en Ciencias de la Salud - 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

Descripción
Sumario:Introducción. Los trastornos laríngeos se caracterizan por un cambio en el patrón vibratorio de los pliegues vocales. Este trastorno puede tener un origen orgánico, descrito como la modificación anatómica de los pliegues vocales, o de origen funcional, provocado por abuso o mal uso de la voz. Los métodos de diagnóstico más comunes se realizan mediante procedimientos invasivos que causan malestar al paciente. Además, los desvíos vocales de grado leve no impiden que el individuo utilice la voz, lo que dificulta la identificación del problema y aumenta la posibilidad de complicaciones futuras. Objetivo. Por esas razones, el objetivo de esta investigación es desarrollar una herramienta alternativa, no invasiva para la identificación de voces con grado leve de desvío vocal aplicando Transformada Wavelet Packet (WPT) y la red neuronal artificial del tipo Perceptrón Mutlicapa (PMC). Métodos. Fue utilizado un banco de datos con 78 voces. Fueron extraídas las medidas de energía y entropía de Shannon usando las familias Daubechies 2 y Symlet 2 para después aplicar la red neuronal PMC. Resultados. La familia Symlet 2 fue más eficiente en su generalización, obteniendo un 99.75% y un 99.56% de precisión mediante el uso de medidas de energía y entropía de Shannon, respectivamente. La familia Daubechies 2, sin embargo, obtuvo menores índices de precisión: 91.17% y 70.01%, respectivamente. Conclusión. La combinación de WPT y PMC presentó alta precisión para la identificación de voces con grado leve de desvío vocal.