Titulo:

Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
.

Sumario:

Los metales pesados son contaminantes que se generan por diferentes actividades siendo una de estas el vertimiento de aguas residuales por parte de las industrias en cuerpos de agua lo cual representa una gran amenaza para la biota acuática y terrestre, así como la salud. Estos contaminantes son persistentes, bioacumulables y no biodegradables, generando un efecto negativo en la cadena trófica de la zona de influencia. El níquel es un metal pesado que se emplea en diferentes tipos de industrias como las productoras de baterías. Este genera diferentes efectos nocivos en el cuerpo humano, como en el sistema cardiovascular o el digestivo cuando hay exposición en grandes cantidades. El objetivo del presente estudio es emplear la Ingeniería de P... Ver más

Guardado en:

1794-1237

2463-0950

21

2024-07-01

4226 pp. 1

18

Revista EIA - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1778
record_format ojs
spelling Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
Modeling and parametrization of an adsorption column for nickel removal using computer-aided process engineering
Los metales pesados son contaminantes que se generan por diferentes actividades siendo una de estas el vertimiento de aguas residuales por parte de las industrias en cuerpos de agua lo cual representa una gran amenaza para la biota acuática y terrestre, así como la salud. Estos contaminantes son persistentes, bioacumulables y no biodegradables, generando un efecto negativo en la cadena trófica de la zona de influencia. El níquel es un metal pesado que se emplea en diferentes tipos de industrias como las productoras de baterías. Este genera diferentes efectos nocivos en el cuerpo humano, como en el sistema cardiovascular o el digestivo cuando hay exposición en grandes cantidades. El objetivo del presente estudio es emplear la Ingeniería de Procesos Asistida por Computador (CAPE por sus siglas en inglés) para modelar una columna operativa a escala industrial tendiente a la adsorción Níquel (II) en solución acuosa aprovechando la biomasa de Theobroma cacao L. Por consiguiente, se empleó el software Aspen Adsorption para llevar a cabo múltiples simulaciones de una columna de adsorción utilizando diversas configuraciones a nivel industrial, con el objetivo de realizar un análisis de sensibilidad paramétrica. En los resultados obtenidos, se evidencia que el modelo Langmuir- modelo cinético de resistencia lineal global (LDF) utilizado para simular la columna de adsorción en la eliminación de Níquel (II) logra eficiencias de hasta un 95.8%. Las mejores condiciones para la simulación en la columna de adsorción fueron un caudal de entrada de 300 m3/día, una altura del lecho de 5 m y una concentración inicial de 2000 mg/L. Además,se observó que el aumento del caudal de entrada condujo a una disminución en el tiempode ruptura y saturación del proceso, mientras que, aumentar la altura del lecho presenta unincremento en el tiempo de ruptura y saturación. Por otro lado, la concentración no afecto demanera significativa a la eficiencia del proceso.
Heavy metals are pollutants that are generated by different activities, one of which is thedumping of wastewater by industries into bodies of water, which represents a great threatto aquatic and terrestrial biota, as well as health. These contaminants are persistent,bioaccumulative and non-biodegradable, generating a negative effect on the food chain in thearea of influence. Nickel is a heavy metal that is used in different types of industries suchas battery production. This generates different harmful effects on the human body, such asthe cardiovascular or digestive system when exposed in large quantities. The objective of thepresent study is to use Computer Aided Process Engineering (CAPE) to model an operationalcolumn on an industrial scale aimed at the adsorption of Nickel (II) in aqueous solution takingadvantage of the biomass of Theobroma cacao L. Consequently, Aspen Adsorption softwarewas used to carry out multiple simulations of an adsorption column using various industrialconfigurations, with the aim of performing a parametric sensitivity analysis. In the resultsobtained, it is evident that the Langmuir model - global linear resistance kinetic model (LDF)used to simulate the adsorption column in the elimination of Nickel (II) achieves efficienciesof up to 95.8%. The best conditions for the simulation in the adsorption column were aninlet flow rate of 300 m3/day, a bed height of 5 m and an initial concentration of 2000 mg/L.Furthermore, it was observed that increasing the inlet flow led to a decrease in the ruptureand saturation time of the process, while increasing the bed height presented an increase inthe rupture and saturation time. On the other hand, concentration did not significantly affectthe efficiency of the process.
González Delgado, Ángel Darío
Tejada Tovar, Candelaria Nahir
Villabona Ortiz , Ángel
Vergara Villadiego, Juan Carlos
Olivella Henao, Elkin Enrique
Biomaterials
CAPE
Kinetics
Breakthrough curve
Evaluation
Nickel (II)
Isotherms
Parameters
Simulation
Water Treatment
Biomateriales
CAPE
Cinética
Curva de ruptura
Evaluación
Níquel (II)
Isotermas
Parámetros
Simulación
Tratamiento de Aguas
21
42
Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42
Artículo de revista
Journal article
2024-07-01 00:00:00
2024-07-01 00:00:00
2024-07-01
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1778
10.24050/reia.v21i42.1778
https://doi.org/10.24050/reia.v21i42.1778
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4226 pp. 1
18
Agarwal, A., Upadhyay, U., Sreedhar, I. & Anitha, K. L. (2022) 'Simulation studies of Cu(II) removal from aqueous solution using olive stone', Cleaner Materials, 5, p. 100128. doi: 10.1016/j.clema.2022.100128.
Ahmed, S., Unar, I. N., Khan, H. A., Maitlo, G., Mahar, R. B., Jatoi, A. S., Memon, A. Q. & Shah, A. K. (2020) 'Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent', Environmental Science and Pollution Research, 27(9), pp. 9619–9636. doi: 10.1007/s11356-019-07441-8.
Ali Abd, A. & Roslee Othman, M. (2022) 'Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale', Fuel, 308, p. 121986. doi: 10.1016/j.fuel.2021.121986.
Almazán-Ruiz, F. J., Caballero, F., Cruz-Díaz, M. R., Rivero, E. P., Vazquez-Arenas, J. & González, I. (2015) 'Nickel recovery from an electroplating rinsing effluent using RCE bench scale and RCE pilot plant reactors: The influence of pH control', Chemical Engineering Research and Design, 97, pp. 18–27. doi: 10.1016/j.cherd.2015.02.022.
Benyahia, F. & O’Neill, K. E. (2005) 'Enhanced voidage correlations for packed beds of various particle shapes and sizes', Particulate Science and Technology, 23(2), pp. 169–177. doi: 10.1080/02726350590922242.
Biswal, B. K. & Balasubramanian, R. (2023) 'Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review', Journal of Environmental Chemical Engineering, 11(5), p. 110986. doi: 10.1016/j.jece.2023.110986.
Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S. & Zhou, Y. (2022) 'Isotherm models for adsorption of heavy metals from water - A review', Chemosphere, 307, p. 135545. doi: 10.1016/J.CHEMOSPHERE.2022.135545.
Dixon, A. G. (1988) 'Correlations for wall and particle shape effects on fixed bed bulk voidage', The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. doi: 10.1002/cjce.5450660501.
Fang, Y., Liu, L., Xiang, H., Wang, Y. & Sun, X. (2022) 'Biomass-based carbon microspheres for removing heavy metals from the environment: a review', Materials Today Sustainability, 18, p. 100136. doi: 10.1016/J.MTSUST.2022.100136.
González-Delgado, Á. D., Moreno-Sader, K. A. & Martínez-Consuegra, J. D. (2022) Biorrefinación sostenible del camarón: desarrollos desde la ingeniería de procesos asistida por computador. UNIMINUTO. doi: 10.26620/uniminuto/978-958-763-558-4.
González-Delgado, Á. D., Tejada-Tovar, C. & Villabona-Ortíz, A. (2022) 'Parametric Sensitivity Analysis of Chromium (Vi) Adsorption using Theobroma Cacao L Biomass via Process Simulation', Chemical Engineering Transactions, 92, pp. 535–540. doi: 10.3303/CET2292090.
Guan, W., Tian, S., Cao, D., Chen, Y. & Zhao, X. (2017) 'Electrooxidation of nickel-ammonia complexes and simultaneous electrodeposition recovery of nickel from practical nickel-electroplating rinse wastewater', Electrochimica Acta, 246, pp. 1230–1236. doi: 10.1016/j.electacta.2017.06.121.
Guan, Z., Guo, Y., Huang, Z., Liao, X., Chen, S., Ou, X., Sun, S., Liang, J., Cai, Y., Xie, W. & Xian, J. (2022) 'Simultaneous and efficient removal of organic Ni and Cu complexes from electroless plating effluent using integrated catalytic ozonation and chelating precipitation process in a continuous pilot-scale system', Chemical Engineering Journal, 428, p. 131250. doi: 10.1016/J.CEJ.2021.131250.
Hardyianto Vai Bahrun, M., Kamin, Z., Anisuzzaman, S. M., Bono, A. & Bahrun, M. H. V. (2021) 'Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column', Journal of Engineering Science and Technology, 16(2), pp. 1213–1231.
Jmiai, A., El Hayaoui, W., El-Asri, A., Skotta, A., Elhayaoui, W., Tamimi, M., Assabbane, A. & El Issami, S. (2023) 'Suspended matter and heavy metals (Cu and Zn) removal from water by coagulation/flocculation process using a new Bio-flocculant: Lepidium sativum', Journal of the Taiwan Institute of Chemical Engineers, 145, pp. 1876–1070. doi: 10.21203/rs.3.rs-1792666/v1.
Juela, D., Vera, M., Cruzat, C., Astudillo, A. & Vanegas, E. (2022) 'A new approach for scaling up fixed-bed adsorption columns for aqueous systems: A case of antibiotic removal on natural adsorbent', Process Safety and Environmental Protection, 159, pp. 953–963. doi: 10.1016/j.psep.2022.01.046.
Júnior, C. J. C. & Pessoa Filho, P. de A. (2023) 'Modeling and simulation of an industrial adsorption process of dehydration of natural gas in 4A molecular sieves: Effect of adsorbent aging', Results in Engineering, 18, p. 101144. doi: 10.1016/j.rineng.2023.101144.
Koua, B. K., Koffi, P. M. E. & Gbaha, P. (2019) 'Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans', Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. doi: 10.1016/j.jssas.2017.01.002.
Kumar, A., Kumar, V., Thakur, M., Bakshi, P., Koul, A., Javaid, A., Radziemska, M. & Pandey, V. C. (2023) 'Comprehensive review of nickel biogeochemistry, bioavailability, and health risks in the environment', Land Degradation and Development, 34(14), pp. 4141–4156. doi: 10.1002/ldr.4775.
Kumar, V. & Kumar, M. (2022) Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development. ELSEVIER. doi: 10.1016/C2020-0-04469-5.
Lara, J., Tejada, C., Villabona, Á., Arrieta, A. & Granados Conde, C. (2016) 'Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao', Revista ION, 29(2), pp. 113–124. doi: 10.18273/REVION.V29N2-2016009.
Marcantonio, V., Bocci, E., Ouweltjes, J. P., Del Zotto, L. & Monarca, D. (2020) 'Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus', International Journal of Hydrogen Energy, 45(11), pp. 6651–6662. doi: 10.1016/j.ijhydene.2019.12.142.
Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z. & Muhammad, A. (2022) 'Adsorption Kinetics and Isotherm Models: A Review', Caliphate Journal of Science and Technology, 4(2), pp. 230–243.
Naiya, T. K., Bhattacharya, A. K. & Das, S. K. (2009) 'Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina', Journal of Colloid and Interface Science, 333(1), pp. 14–26. doi: 10.1016/j.jcis.2009.01.011.
Qin, L., Xia, T., Li, X., Wu, X., Xie, W., Li, L., Zou, B., Guo, S. & He, T. (2023) 'Ni2+ adsorption on a new biochar from rice husk hydrochar and its excellent reuse in different simulated nickel plating wastewater', Journal of Environmental Management, 325, p. 116493. doi: 10.1016/j.jenvman.2022.116493.
Rehman, A., Ihsanullah, I. & Atieh, M. A. (2021) 'A novel magnetic carbon composite derived from lignocellulosic biomass as a potential adsorbent for the removal of ciprofloxacin', Environmental Science and Pollution Research, 28(30), pp. 40206–40218. doi: 10.1007/s11356-021-13373-6.
Saif, M. S., Abdulkareem, M. S., Jawad, A. H., Ajeel, M. A., Nomanbhay, S. & Ghaffar, S. H. A. (2022) 'Development of biomass-based activated carbon as an adsorbent from sago palm bark waste for Ni(II) adsorption', International Journal of Environmental Science and Technology, 19(10), pp. 10043–10058. doi: 10.1007/s13762-021-03738-w.
Tejada-Tovar, C., González-Delgado, Á. D., Olmos-Roldán, G. & Sarmiento-Suárez, J. A. (2021) 'Comparison of adsorption kinetic models for heavy metals (Cr(VI), Hg(II) and Pb(II)) on agro-industrial biomass from Theobroma cacao and Bactris guineensis', Contemporary Engineering Sciences, 14(1), pp. 19–29. doi: 10.12988/ces.2021.91405.
Tejada-Tovar, C., Olmos-Roldán, G., Villabona-Ortíz, Á. & González-Delgado, Á. D. (2019) 'Optimization of continuous adsorption of lead and chromium on biomass from avocado shell and seed', Ingeniería y Competitividad, 21(1), pp. 121–130. doi: 10.25100/iyc.v21i1.6852.
Tejada-Tovar, C., Rojas, J. L., Villabona-Ortíz, Á. & González-Delgado, Á. D. (2020) 'Experimental and theoretical investigation on kinetic adsorption models for lead and cadmium removal onto rice husk biomass', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), pp. 135–148. doi: 10.30492/ijcce.2020.117062.3295.
Tejada-Tovar, C., Villabona-Ortíz, Á., Jaimes, J. A. & González-Delgado, Á. D. (2022) 'Cu(II) adsorption via agroindustrial bioadsorbents: Isotherm, thermodynamic and dynamic modeling', Contemporary Engineering Sciences, 15(1), pp. 19–34. doi: 10.12988/ces.2022.91902.
Tejada-Tovar, C., Villabona-Ortíz, Á., Rojas, J. L. & González-Delgado, Á. D. (2022) 'Adsorption isotherm and dynamic behavior of lead(II) onto avocado peel and seed', International Journal of Environmental Science and Technology, 19(6), pp. 5101–5116. doi: 10.1007/s13762-021-03558-y.
Tong, X., Liu, W., Jin, X., Li, C., Yang, Q., Zeng, G., Hu, J., Chen, J., Hu, J., Chen, J., Deng, C. & Li, X. (2019) 'Activated biochar derived from iron-impregnated distillers grain for methylene blue removal: Adsorption performance and mechanism studies', Bioresource Technology, 274, pp. 1–9. doi: 10.1016/j.biortech.2018.11.091.
Tran, T. K. N., Bui, T. T. & Vu, M. T. (2018) 'Studies on the adsorption of Pb2+ by an industrial by-product using response surface methodology', Journal of Environmental Chemical Engineering, 6(4), pp. 5089–5097. doi: 10.1016/j.jece.2018.07.013.
Treviño-Cordero, H., Juárez-Aguilar, L. G., Mendoza-Castillo, D. I., Hernández-Montoya, V., Montes-Morán, M. A. & Bonilla-Petriciolet, A. (2013) 'Synthesis and characterization of activated carbons from coconut shell impregnated with FeCl3', Comptes Rendus Chimie, 16(2), pp. 173–182. doi: 10.1016/j.crci.2012.09.010.
Zhu, X., Wang, Y., Zhu, D., Wei, Q., Wang, Y. & Yang, J. (2022) 'Enhancing nickel adsorption capacity of biochar derived from herbal medicine residue by magnetic modification', Journal of Environmental Management, 324, p. 116365. doi: 10.1016/j.jenvman.2022.116365.
Zulfikar, M. A. & Setiyanto, H. (2013) 'Comparison of adsorption equilibrium, kinetics and thermodynamics of Pb(II) and Cr(III) on chitosan and modified chitosan', Carbohydrate Polymers, 97(2), pp. 425–432. doi: 10.1016/j.carbpol.2013.05.015.
https://revistas.eia.edu.co/index.php/reveia/article/download/1778/1625
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
spellingShingle Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
González Delgado, Ángel Darío
Tejada Tovar, Candelaria Nahir
Villabona Ortiz , Ángel
Vergara Villadiego, Juan Carlos
Olivella Henao, Elkin Enrique
Biomaterials
CAPE
Kinetics
Breakthrough curve
Evaluation
Nickel (II)
Isotherms
Parameters
Simulation
Water Treatment
Biomateriales
CAPE
Cinética
Curva de ruptura
Evaluación
Níquel (II)
Isotermas
Parámetros
Simulación
Tratamiento de Aguas
title_short Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
title_full Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
title_fullStr Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
title_full_unstemmed Modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
title_sort modelado y parametrización de una columna de adsorción para la remoción de níquel utilizando ingeniería de procesos asistida por computador
title_eng Modeling and parametrization of an adsorption column for nickel removal using computer-aided process engineering
description Los metales pesados son contaminantes que se generan por diferentes actividades siendo una de estas el vertimiento de aguas residuales por parte de las industrias en cuerpos de agua lo cual representa una gran amenaza para la biota acuática y terrestre, así como la salud. Estos contaminantes son persistentes, bioacumulables y no biodegradables, generando un efecto negativo en la cadena trófica de la zona de influencia. El níquel es un metal pesado que se emplea en diferentes tipos de industrias como las productoras de baterías. Este genera diferentes efectos nocivos en el cuerpo humano, como en el sistema cardiovascular o el digestivo cuando hay exposición en grandes cantidades. El objetivo del presente estudio es emplear la Ingeniería de Procesos Asistida por Computador (CAPE por sus siglas en inglés) para modelar una columna operativa a escala industrial tendiente a la adsorción Níquel (II) en solución acuosa aprovechando la biomasa de Theobroma cacao L. Por consiguiente, se empleó el software Aspen Adsorption para llevar a cabo múltiples simulaciones de una columna de adsorción utilizando diversas configuraciones a nivel industrial, con el objetivo de realizar un análisis de sensibilidad paramétrica. En los resultados obtenidos, se evidencia que el modelo Langmuir- modelo cinético de resistencia lineal global (LDF) utilizado para simular la columna de adsorción en la eliminación de Níquel (II) logra eficiencias de hasta un 95.8%. Las mejores condiciones para la simulación en la columna de adsorción fueron un caudal de entrada de 300 m3/día, una altura del lecho de 5 m y una concentración inicial de 2000 mg/L. Además,se observó que el aumento del caudal de entrada condujo a una disminución en el tiempode ruptura y saturación del proceso, mientras que, aumentar la altura del lecho presenta unincremento en el tiempo de ruptura y saturación. Por otro lado, la concentración no afecto demanera significativa a la eficiencia del proceso.
description_eng Heavy metals are pollutants that are generated by different activities, one of which is thedumping of wastewater by industries into bodies of water, which represents a great threatto aquatic and terrestrial biota, as well as health. These contaminants are persistent,bioaccumulative and non-biodegradable, generating a negative effect on the food chain in thearea of influence. Nickel is a heavy metal that is used in different types of industries suchas battery production. This generates different harmful effects on the human body, such asthe cardiovascular or digestive system when exposed in large quantities. The objective of thepresent study is to use Computer Aided Process Engineering (CAPE) to model an operationalcolumn on an industrial scale aimed at the adsorption of Nickel (II) in aqueous solution takingadvantage of the biomass of Theobroma cacao L. Consequently, Aspen Adsorption softwarewas used to carry out multiple simulations of an adsorption column using various industrialconfigurations, with the aim of performing a parametric sensitivity analysis. In the resultsobtained, it is evident that the Langmuir model - global linear resistance kinetic model (LDF)used to simulate the adsorption column in the elimination of Nickel (II) achieves efficienciesof up to 95.8%. The best conditions for the simulation in the adsorption column were aninlet flow rate of 300 m3/day, a bed height of 5 m and an initial concentration of 2000 mg/L.Furthermore, it was observed that increasing the inlet flow led to a decrease in the ruptureand saturation time of the process, while increasing the bed height presented an increase inthe rupture and saturation time. On the other hand, concentration did not significantly affectthe efficiency of the process.
author González Delgado, Ángel Darío
Tejada Tovar, Candelaria Nahir
Villabona Ortiz , Ángel
Vergara Villadiego, Juan Carlos
Olivella Henao, Elkin Enrique
author_facet González Delgado, Ángel Darío
Tejada Tovar, Candelaria Nahir
Villabona Ortiz , Ángel
Vergara Villadiego, Juan Carlos
Olivella Henao, Elkin Enrique
topic Biomaterials
CAPE
Kinetics
Breakthrough curve
Evaluation
Nickel (II)
Isotherms
Parameters
Simulation
Water Treatment
Biomateriales
CAPE
Cinética
Curva de ruptura
Evaluación
Níquel (II)
Isotermas
Parámetros
Simulación
Tratamiento de Aguas
topic_facet Biomaterials
CAPE
Kinetics
Breakthrough curve
Evaluation
Nickel (II)
Isotherms
Parameters
Simulation
Water Treatment
Biomateriales
CAPE
Cinética
Curva de ruptura
Evaluación
Níquel (II)
Isotermas
Parámetros
Simulación
Tratamiento de Aguas
topicspa_str_mv Biomateriales
CAPE
Cinética
Curva de ruptura
Evaluación
Níquel (II)
Isotermas
Parámetros
Simulación
Tratamiento de Aguas
citationvolume 21
citationissue 42
citationedition Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1778
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Agarwal, A., Upadhyay, U., Sreedhar, I. & Anitha, K. L. (2022) 'Simulation studies of Cu(II) removal from aqueous solution using olive stone', Cleaner Materials, 5, p. 100128. doi: 10.1016/j.clema.2022.100128.
Ahmed, S., Unar, I. N., Khan, H. A., Maitlo, G., Mahar, R. B., Jatoi, A. S., Memon, A. Q. & Shah, A. K. (2020) 'Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent', Environmental Science and Pollution Research, 27(9), pp. 9619–9636. doi: 10.1007/s11356-019-07441-8.
Ali Abd, A. & Roslee Othman, M. (2022) 'Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale', Fuel, 308, p. 121986. doi: 10.1016/j.fuel.2021.121986.
Almazán-Ruiz, F. J., Caballero, F., Cruz-Díaz, M. R., Rivero, E. P., Vazquez-Arenas, J. & González, I. (2015) 'Nickel recovery from an electroplating rinsing effluent using RCE bench scale and RCE pilot plant reactors: The influence of pH control', Chemical Engineering Research and Design, 97, pp. 18–27. doi: 10.1016/j.cherd.2015.02.022.
Benyahia, F. & O’Neill, K. E. (2005) 'Enhanced voidage correlations for packed beds of various particle shapes and sizes', Particulate Science and Technology, 23(2), pp. 169–177. doi: 10.1080/02726350590922242.
Biswal, B. K. & Balasubramanian, R. (2023) 'Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review', Journal of Environmental Chemical Engineering, 11(5), p. 110986. doi: 10.1016/j.jece.2023.110986.
Chen, X., Hossain, M. F., Duan, C., Lu, J., Tsang, Y. F., Islam, M. S. & Zhou, Y. (2022) 'Isotherm models for adsorption of heavy metals from water - A review', Chemosphere, 307, p. 135545. doi: 10.1016/J.CHEMOSPHERE.2022.135545.
Dixon, A. G. (1988) 'Correlations for wall and particle shape effects on fixed bed bulk voidage', The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. doi: 10.1002/cjce.5450660501.
Fang, Y., Liu, L., Xiang, H., Wang, Y. & Sun, X. (2022) 'Biomass-based carbon microspheres for removing heavy metals from the environment: a review', Materials Today Sustainability, 18, p. 100136. doi: 10.1016/J.MTSUST.2022.100136.
González-Delgado, Á. D., Moreno-Sader, K. A. & Martínez-Consuegra, J. D. (2022) Biorrefinación sostenible del camarón: desarrollos desde la ingeniería de procesos asistida por computador. UNIMINUTO. doi: 10.26620/uniminuto/978-958-763-558-4.
González-Delgado, Á. D., Tejada-Tovar, C. & Villabona-Ortíz, A. (2022) 'Parametric Sensitivity Analysis of Chromium (Vi) Adsorption using Theobroma Cacao L Biomass via Process Simulation', Chemical Engineering Transactions, 92, pp. 535–540. doi: 10.3303/CET2292090.
Guan, W., Tian, S., Cao, D., Chen, Y. & Zhao, X. (2017) 'Electrooxidation of nickel-ammonia complexes and simultaneous electrodeposition recovery of nickel from practical nickel-electroplating rinse wastewater', Electrochimica Acta, 246, pp. 1230–1236. doi: 10.1016/j.electacta.2017.06.121.
Guan, Z., Guo, Y., Huang, Z., Liao, X., Chen, S., Ou, X., Sun, S., Liang, J., Cai, Y., Xie, W. & Xian, J. (2022) 'Simultaneous and efficient removal of organic Ni and Cu complexes from electroless plating effluent using integrated catalytic ozonation and chelating precipitation process in a continuous pilot-scale system', Chemical Engineering Journal, 428, p. 131250. doi: 10.1016/J.CEJ.2021.131250.
Hardyianto Vai Bahrun, M., Kamin, Z., Anisuzzaman, S. M., Bono, A. & Bahrun, M. H. V. (2021) 'Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column', Journal of Engineering Science and Technology, 16(2), pp. 1213–1231.
Jmiai, A., El Hayaoui, W., El-Asri, A., Skotta, A., Elhayaoui, W., Tamimi, M., Assabbane, A. & El Issami, S. (2023) 'Suspended matter and heavy metals (Cu and Zn) removal from water by coagulation/flocculation process using a new Bio-flocculant: Lepidium sativum', Journal of the Taiwan Institute of Chemical Engineers, 145, pp. 1876–1070. doi: 10.21203/rs.3.rs-1792666/v1.
Juela, D., Vera, M., Cruzat, C., Astudillo, A. & Vanegas, E. (2022) 'A new approach for scaling up fixed-bed adsorption columns for aqueous systems: A case of antibiotic removal on natural adsorbent', Process Safety and Environmental Protection, 159, pp. 953–963. doi: 10.1016/j.psep.2022.01.046.
Júnior, C. J. C. & Pessoa Filho, P. de A. (2023) 'Modeling and simulation of an industrial adsorption process of dehydration of natural gas in 4A molecular sieves: Effect of adsorbent aging', Results in Engineering, 18, p. 101144. doi: 10.1016/j.rineng.2023.101144.
Koua, B. K., Koffi, P. M. E. & Gbaha, P. (2019) 'Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans', Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. doi: 10.1016/j.jssas.2017.01.002.
Kumar, A., Kumar, V., Thakur, M., Bakshi, P., Koul, A., Javaid, A., Radziemska, M. & Pandey, V. C. (2023) 'Comprehensive review of nickel biogeochemistry, bioavailability, and health risks in the environment', Land Degradation and Development, 34(14), pp. 4141–4156. doi: 10.1002/ldr.4775.
Kumar, V. & Kumar, M. (2022) Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development. ELSEVIER. doi: 10.1016/C2020-0-04469-5.
Lara, J., Tejada, C., Villabona, Á., Arrieta, A. & Granados Conde, C. (2016) 'Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao', Revista ION, 29(2), pp. 113–124. doi: 10.18273/REVION.V29N2-2016009.
Marcantonio, V., Bocci, E., Ouweltjes, J. P., Del Zotto, L. & Monarca, D. (2020) 'Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus', International Journal of Hydrogen Energy, 45(11), pp. 6651–6662. doi: 10.1016/j.ijhydene.2019.12.142.
Musah, M., Azeh, Y., Mathew, J., Umar, M., Abdulhamid, Z. & Muhammad, A. (2022) 'Adsorption Kinetics and Isotherm Models: A Review', Caliphate Journal of Science and Technology, 4(2), pp. 230–243.
Naiya, T. K., Bhattacharya, A. K. & Das, S. K. (2009) 'Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina', Journal of Colloid and Interface Science, 333(1), pp. 14–26. doi: 10.1016/j.jcis.2009.01.011.
Qin, L., Xia, T., Li, X., Wu, X., Xie, W., Li, L., Zou, B., Guo, S. & He, T. (2023) 'Ni2+ adsorption on a new biochar from rice husk hydrochar and its excellent reuse in different simulated nickel plating wastewater', Journal of Environmental Management, 325, p. 116493. doi: 10.1016/j.jenvman.2022.116493.
Rehman, A., Ihsanullah, I. & Atieh, M. A. (2021) 'A novel magnetic carbon composite derived from lignocellulosic biomass as a potential adsorbent for the removal of ciprofloxacin', Environmental Science and Pollution Research, 28(30), pp. 40206–40218. doi: 10.1007/s11356-021-13373-6.
Saif, M. S., Abdulkareem, M. S., Jawad, A. H., Ajeel, M. A., Nomanbhay, S. & Ghaffar, S. H. A. (2022) 'Development of biomass-based activated carbon as an adsorbent from sago palm bark waste for Ni(II) adsorption', International Journal of Environmental Science and Technology, 19(10), pp. 10043–10058. doi: 10.1007/s13762-021-03738-w.
Tejada-Tovar, C., González-Delgado, Á. D., Olmos-Roldán, G. & Sarmiento-Suárez, J. A. (2021) 'Comparison of adsorption kinetic models for heavy metals (Cr(VI), Hg(II) and Pb(II)) on agro-industrial biomass from Theobroma cacao and Bactris guineensis', Contemporary Engineering Sciences, 14(1), pp. 19–29. doi: 10.12988/ces.2021.91405.
Tejada-Tovar, C., Olmos-Roldán, G., Villabona-Ortíz, Á. & González-Delgado, Á. D. (2019) 'Optimization of continuous adsorption of lead and chromium on biomass from avocado shell and seed', Ingeniería y Competitividad, 21(1), pp. 121–130. doi: 10.25100/iyc.v21i1.6852.
Tejada-Tovar, C., Rojas, J. L., Villabona-Ortíz, Á. & González-Delgado, Á. D. (2020) 'Experimental and theoretical investigation on kinetic adsorption models for lead and cadmium removal onto rice husk biomass', Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(4), pp. 135–148. doi: 10.30492/ijcce.2020.117062.3295.
Tejada-Tovar, C., Villabona-Ortíz, Á., Jaimes, J. A. & González-Delgado, Á. D. (2022) 'Cu(II) adsorption via agroindustrial bioadsorbents: Isotherm, thermodynamic and dynamic modeling', Contemporary Engineering Sciences, 15(1), pp. 19–34. doi: 10.12988/ces.2022.91902.
Tejada-Tovar, C., Villabona-Ortíz, Á., Rojas, J. L. & González-Delgado, Á. D. (2022) 'Adsorption isotherm and dynamic behavior of lead(II) onto avocado peel and seed', International Journal of Environmental Science and Technology, 19(6), pp. 5101–5116. doi: 10.1007/s13762-021-03558-y.
Tong, X., Liu, W., Jin, X., Li, C., Yang, Q., Zeng, G., Hu, J., Chen, J., Hu, J., Chen, J., Deng, C. & Li, X. (2019) 'Activated biochar derived from iron-impregnated distillers grain for methylene blue removal: Adsorption performance and mechanism studies', Bioresource Technology, 274, pp. 1–9. doi: 10.1016/j.biortech.2018.11.091.
Tran, T. K. N., Bui, T. T. & Vu, M. T. (2018) 'Studies on the adsorption of Pb2+ by an industrial by-product using response surface methodology', Journal of Environmental Chemical Engineering, 6(4), pp. 5089–5097. doi: 10.1016/j.jece.2018.07.013.
Treviño-Cordero, H., Juárez-Aguilar, L. G., Mendoza-Castillo, D. I., Hernández-Montoya, V., Montes-Morán, M. A. & Bonilla-Petriciolet, A. (2013) 'Synthesis and characterization of activated carbons from coconut shell impregnated with FeCl3', Comptes Rendus Chimie, 16(2), pp. 173–182. doi: 10.1016/j.crci.2012.09.010.
Zhu, X., Wang, Y., Zhu, D., Wei, Q., Wang, Y. & Yang, J. (2022) 'Enhancing nickel adsorption capacity of biochar derived from herbal medicine residue by magnetic modification', Journal of Environmental Management, 324, p. 116365. doi: 10.1016/j.jenvman.2022.116365.
Zulfikar, M. A. & Setiyanto, H. (2013) 'Comparison of adsorption equilibrium, kinetics and thermodynamics of Pb(II) and Cr(III) on chitosan and modified chitosan', Carbohydrate Polymers, 97(2), pp. 425–432. doi: 10.1016/j.carbpol.2013.05.015.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-07-01
date_accessioned 2024-07-01 00:00:00
date_available 2024-07-01 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1778
url_doi https://doi.org/10.24050/reia.v21i42.1778
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v21i42.1778
citationstartpage 4226 pp. 1
citationendpage 18
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1778/1625
_version_ 1811200535797170176