Titulo:

Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
.

Sumario:

Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) duri... Ver más

Guardado en:

1794-1237

2463-0950

21

2024-07-01

4229 pp. 1

14

Revista EIA - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1764
record_format ojs
spelling Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
Navegación autónoma reactiva de un robot móvil basada en aprendizaje profundo y comportamientos difusos
Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi's limited computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the study demonstrated the effectiveness of the control architecture in enhancing the robot's autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic provided adaptability and responsiveness to dynamic traffic scenarios. Future research could focus on optimizing system parameters and exploring applications in more complex environments to further advance autonomous robotics and artificial intelligence technologies.
Objetivo: este estudio tuvo como objetivo desarrollar una arquitectura de control para la navegación autónoma reactiva de un robot móvil mediante la integración de técnicas de Deep Learning y comportamientos difusos basados en el reconocimiento de señales de tráfico. Materiales: la investigación utilizó transfer learning con la red Inception V3 como base para entrenar una red neuronal en la identificación de señales de tráfico. Los experimentos se llevaron a cabo utilizando un Donkey-Car, un robot móvil de código abierto tipo Ackermann, con limitaciones computacionales inherentes. Resultados: la implementación de la técnica de transfer learning arrojó un resultado satisfactorio, logrando una alta precisión del 96.2% en la identificación de señales de tráfico. No obstante, se encontraron desafíos debido a retrasos en los cuadros por segundo (FPS) durante las pruebas, atribuidos a la capacidad computacional limitada de la Raspberry Pi. Conclusiones: al combinar Deep Learning y comportamientos difusos, el estudio demostró la efectividad de la arquitectura de control en mejorar las capacidades de navegación autónoma del robot. La integración de modelos pre-entrenados y lógica difusa proporcionó adaptabilidad y capacidad de respuesta a escenarios de tráfico dinámicos. Investigaciones futuras podrían centrarse en optimizar los parámetros del sistema y explorar aplicaciones en entornos más complejos para avanzar aún más en las tecnologías de robótica autónoma e inteligencia artificial.
López-Velásquez, Julián
Acosta-Amaya, Gustavo Alonso
Jimenez-Builes, Jovani Alberto
navegación autónoma
aprendizaje profundo
comportamientos difusos
arquitectura de control
redes neuronales
inteligencia artificial
Autonomous Navigation
Deep Learning
Fuzzy Behaviors
Control Architecture
Neural Networks
Artificial Intelligence
21
42
Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42
Artículo de revista
Journal article
2024-07-01 00:00:00
2024-07-01 00:00:00
2024-07-01
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1764
10.24050/reia.v21i42.1764
https://doi.org/10.24050/reia.v21i42.1764
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4229 pp. 1
14
Afif, M., Ayachi, R., Said, Y., Pissaloux, E., & Atri, M. (2020). Indoor image recognition and classification via deep convolutional neural network. In Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), vol. 1, pp. 364-371. Cham, Switzerland: Springer International Publishing.
Bachute, M., & Subhedar, J. (2021). Autonomous driving architectures: Insights of machine learning and deep learning algorithms. Machine Learning with Applications, vol. 6, 100164. Available at: https://doi.org/10.1016/j.mlwa.2021.100164.
Bengio, Y. (2016). Machines who learn. Scientific American Magazine, vol. 314(6), pp. 46–51. Available at: https://doi.org/10.1038/scientificamerican0616-46.
Bjelonic, M. (2024). Yolo v2 for ROS: Real-time object detection for ROS. Available online: https://github.com/leggedrobotics/darknet_ros/tree/feature/ros_separation (accessed on 17 May 2024).
Blacklock, P. (1986). Standards for programming practices: An alvey project investigates quality certification. Data Processing, vol. 28(10), pp. 522–528. Available at: https://doi.org/10.1016/0011-684X(86)90069-9.
Dahirou, Z., & Zheng, M. (2021). Motion detection and object detection: Yolo (You Only Look Once). In 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), pp. 250-257. New York, USA: IEEE.
DonkeyCar. (2024). How to build a Donkey. Available online: http://docs.donkeycar.com/guide/build_hardware/ (accessed on 17 May 2024).
Itsuka, T., Song, M., & Kawamura, A. (2022). Development of ROS2-TMS: New software platform for informationally structured environment. Robomech J., vol. 9(1). Available at: https://doi.org/10.1186/s40648-021-00216-2.
Kahraman, C., Deveci, M., Boltürk, E., & Türk, S. (2020). Fuzzy controlled humanoid robots: A literature review. Robotics and Autonomous Systems, vol. 134, p. 103643. Available at: https://doi.org/10.1016/j.robot.2020.103643.
Lighthill, J. (1973). Artificial intelligence: A general survey. The Lighthill Report. Available at: http://dx.doi.org/10.1016/0004-3702(74)90016-2.
Lin, H., Han, Y., Cai, W., & Jin, B. (2022). Traffic signal optimization based on fuzzy control and differential evolution algorithm. IEEE Transactions on Intelligent Transportation Systems, vol. 1(4). Available at: https://doi.org/10.59890/ijetr.v1i4.1138.
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, vol. 27(4), p. 12. Available at: https://doi.org/10.1609/aimag.v27i4.1904.
Mengoli, D., Tazzari, R., & Marconi, L. (2020). Autonomous robotic platform for precision orchard management: Architecture and software perspective. In 2020 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor, pp. 303-308. New York, USA: IEEE.
Newell, A., Simon, H. A., & Shaw, J. C. (1958). Report on a general problem-solving program. Pittsburgh, Pennsylvania: Carnegie Institute of Technology, pp. 1-27. Available at: http://dx.doi.org/10.1016/0004-3702(74)90016-2.
OTL. (2024). ROS inception v3. GitHub, Inc. Available online: https://github.com/OTL/rostensorflow (accessed on 17 May 2024).
Qian, J., Zhang, L., Huang, Q., Liu, X., Xing, X., & Li, X. (2024). A self-driving solution for resource-constrained autonomous vehicles in parked areas. High-Confidence Computing, vol. 4(1), 100182. Available at: https://doi.org/10.1016/j.hcc.2023.100182.
Redmon, J., Santosh, D., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788. Available at: https://doi.org/10.1109/CVPR.2016.91.
ROS. (2024). Ros rqt_graph. Open Robotics. Available online: http://wiki.ros.org/rqt_graph (accessed on 17 May 2024).
Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, vol. 10(07), pp. 3897-3904. Available at: https://doi.org/10.4028/www.scientific.net/JERA.24.124.
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, vol. 3, pp. 54-70. Available at: https://doi.org/10.1016/j.cogr.2023.04.001.
Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, vol. 32, pp. 323-332. Available at: https://doi.org/10.1016/j.neunet.2012.02.016.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 2818–2826. Available at: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.308.
Transfer learning. (2024). Transfer learning. Available online: https://paperswithcode.com/task/transfer-learning (accessed on 17 May 2024).
Treleaven, P., & Lima, I. (1982). Japan’s fifth generation computer systems. Computer, vol. 15(08), pp. 79–88. Available at: https://doi.org/10.1109/MC.1982.1654113.
Vinolia, A., Kanya, N., & Rajavarman, V. N. (2023). Machine learning and deep learning based intrusion detection in cloud environment: A review. In 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, pp. 952-960. Available at: 10.1109/ICSSIT55814.2023.10060868.
https://revistas.eia.edu.co/index.php/reveia/article/download/1764/1628
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
spellingShingle Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
López-Velásquez, Julián
Acosta-Amaya, Gustavo Alonso
Jimenez-Builes, Jovani Alberto
navegación autónoma
aprendizaje profundo
comportamientos difusos
arquitectura de control
redes neuronales
inteligencia artificial
Autonomous Navigation
Deep Learning
Fuzzy Behaviors
Control Architecture
Neural Networks
Artificial Intelligence
title_short Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
title_full Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
title_fullStr Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
title_full_unstemmed Enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
title_sort enhancing mobile robot navigation: integrating reactive autonomy through deep learning and fuzzy behavior
title_eng Navegación autónoma reactiva de un robot móvil basada en aprendizaje profundo y comportamientos difusos
description Objective: This study aimed to develop a control architecture for reactive autonomous navigation of a mobile robot by integrating Deep Learning techniques and fuzzy behaviors based on traffic signal recognition. Materials: The research utilized transfer learning with the Inception V3 network as a base for training a neural network to identify traffic signals. The experiments were conducted using a Donkey-Car, an Ackermann-steering-type open-source mobile robot, with inherent computational limitations. Results: The implementation of the transfer learning technique yielded a satisfactory result, achieving a high accuracy of 96.2% in identifying traffic signals. However, challenges were encountered due to delays in frames per second (FPS) during testing tracks, attributed to the Raspberry Pi's limited computational capacity. Conclusions: By combining Deep Learning and fuzzy behaviors, the study demonstrated the effectiveness of the control architecture in enhancing the robot's autonomous navigation capabilities. The integration of pre-trained models and fuzzy logic provided adaptability and responsiveness to dynamic traffic scenarios. Future research could focus on optimizing system parameters and exploring applications in more complex environments to further advance autonomous robotics and artificial intelligence technologies.
description_eng Objetivo: este estudio tuvo como objetivo desarrollar una arquitectura de control para la navegación autónoma reactiva de un robot móvil mediante la integración de técnicas de Deep Learning y comportamientos difusos basados en el reconocimiento de señales de tráfico. Materiales: la investigación utilizó transfer learning con la red Inception V3 como base para entrenar una red neuronal en la identificación de señales de tráfico. Los experimentos se llevaron a cabo utilizando un Donkey-Car, un robot móvil de código abierto tipo Ackermann, con limitaciones computacionales inherentes. Resultados: la implementación de la técnica de transfer learning arrojó un resultado satisfactorio, logrando una alta precisión del 96.2% en la identificación de señales de tráfico. No obstante, se encontraron desafíos debido a retrasos en los cuadros por segundo (FPS) durante las pruebas, atribuidos a la capacidad computacional limitada de la Raspberry Pi. Conclusiones: al combinar Deep Learning y comportamientos difusos, el estudio demostró la efectividad de la arquitectura de control en mejorar las capacidades de navegación autónoma del robot. La integración de modelos pre-entrenados y lógica difusa proporcionó adaptabilidad y capacidad de respuesta a escenarios de tráfico dinámicos. Investigaciones futuras podrían centrarse en optimizar los parámetros del sistema y explorar aplicaciones en entornos más complejos para avanzar aún más en las tecnologías de robótica autónoma e inteligencia artificial.
author López-Velásquez, Julián
Acosta-Amaya, Gustavo Alonso
Jimenez-Builes, Jovani Alberto
author_facet López-Velásquez, Julián
Acosta-Amaya, Gustavo Alonso
Jimenez-Builes, Jovani Alberto
topic navegación autónoma
aprendizaje profundo
comportamientos difusos
arquitectura de control
redes neuronales
inteligencia artificial
Autonomous Navigation
Deep Learning
Fuzzy Behaviors
Control Architecture
Neural Networks
Artificial Intelligence
topic_facet navegación autónoma
aprendizaje profundo
comportamientos difusos
arquitectura de control
redes neuronales
inteligencia artificial
Autonomous Navigation
Deep Learning
Fuzzy Behaviors
Control Architecture
Neural Networks
Artificial Intelligence
topicspa_str_mv Autonomous Navigation
Deep Learning
Fuzzy Behaviors
Control Architecture
Neural Networks
Artificial Intelligence
citationvolume 21
citationissue 42
citationedition Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1764
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Afif, M., Ayachi, R., Said, Y., Pissaloux, E., & Atri, M. (2020). Indoor image recognition and classification via deep convolutional neural network. In Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), vol. 1, pp. 364-371. Cham, Switzerland: Springer International Publishing.
Bachute, M., & Subhedar, J. (2021). Autonomous driving architectures: Insights of machine learning and deep learning algorithms. Machine Learning with Applications, vol. 6, 100164. Available at: https://doi.org/10.1016/j.mlwa.2021.100164.
Bengio, Y. (2016). Machines who learn. Scientific American Magazine, vol. 314(6), pp. 46–51. Available at: https://doi.org/10.1038/scientificamerican0616-46.
Bjelonic, M. (2024). Yolo v2 for ROS: Real-time object detection for ROS. Available online: https://github.com/leggedrobotics/darknet_ros/tree/feature/ros_separation (accessed on 17 May 2024).
Blacklock, P. (1986). Standards for programming practices: An alvey project investigates quality certification. Data Processing, vol. 28(10), pp. 522–528. Available at: https://doi.org/10.1016/0011-684X(86)90069-9.
Dahirou, Z., & Zheng, M. (2021). Motion detection and object detection: Yolo (You Only Look Once). In 2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), pp. 250-257. New York, USA: IEEE.
DonkeyCar. (2024). How to build a Donkey. Available online: http://docs.donkeycar.com/guide/build_hardware/ (accessed on 17 May 2024).
Itsuka, T., Song, M., & Kawamura, A. (2022). Development of ROS2-TMS: New software platform for informationally structured environment. Robomech J., vol. 9(1). Available at: https://doi.org/10.1186/s40648-021-00216-2.
Kahraman, C., Deveci, M., Boltürk, E., & Türk, S. (2020). Fuzzy controlled humanoid robots: A literature review. Robotics and Autonomous Systems, vol. 134, p. 103643. Available at: https://doi.org/10.1016/j.robot.2020.103643.
Lighthill, J. (1973). Artificial intelligence: A general survey. The Lighthill Report. Available at: http://dx.doi.org/10.1016/0004-3702(74)90016-2.
Lin, H., Han, Y., Cai, W., & Jin, B. (2022). Traffic signal optimization based on fuzzy control and differential evolution algorithm. IEEE Transactions on Intelligent Transportation Systems, vol. 1(4). Available at: https://doi.org/10.59890/ijetr.v1i4.1138.
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, vol. 27(4), p. 12. Available at: https://doi.org/10.1609/aimag.v27i4.1904.
Mengoli, D., Tazzari, R., & Marconi, L. (2020). Autonomous robotic platform for precision orchard management: Architecture and software perspective. In 2020 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor, pp. 303-308. New York, USA: IEEE.
Newell, A., Simon, H. A., & Shaw, J. C. (1958). Report on a general problem-solving program. Pittsburgh, Pennsylvania: Carnegie Institute of Technology, pp. 1-27. Available at: http://dx.doi.org/10.1016/0004-3702(74)90016-2.
OTL. (2024). ROS inception v3. GitHub, Inc. Available online: https://github.com/OTL/rostensorflow (accessed on 17 May 2024).
Qian, J., Zhang, L., Huang, Q., Liu, X., Xing, X., & Li, X. (2024). A self-driving solution for resource-constrained autonomous vehicles in parked areas. High-Confidence Computing, vol. 4(1), 100182. Available at: https://doi.org/10.1016/j.hcc.2023.100182.
Redmon, J., Santosh, D., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788. Available at: https://doi.org/10.1109/CVPR.2016.91.
ROS. (2024). Ros rqt_graph. Open Robotics. Available online: http://wiki.ros.org/rqt_graph (accessed on 17 May 2024).
Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of methods and applications. World Information Technology and Engineering Journal, vol. 10(07), pp. 3897-3904. Available at: https://doi.org/10.4028/www.scientific.net/JERA.24.124.
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, vol. 3, pp. 54-70. Available at: https://doi.org/10.1016/j.cogr.2023.04.001.
Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012). Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, vol. 32, pp. 323-332. Available at: https://doi.org/10.1016/j.neunet.2012.02.016.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 2818–2826. Available at: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.308.
Transfer learning. (2024). Transfer learning. Available online: https://paperswithcode.com/task/transfer-learning (accessed on 17 May 2024).
Treleaven, P., & Lima, I. (1982). Japan’s fifth generation computer systems. Computer, vol. 15(08), pp. 79–88. Available at: https://doi.org/10.1109/MC.1982.1654113.
Vinolia, A., Kanya, N., & Rajavarman, V. N. (2023). Machine learning and deep learning based intrusion detection in cloud environment: A review. In 2023 5th International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, pp. 952-960. Available at: 10.1109/ICSSIT55814.2023.10060868.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-07-01
date_accessioned 2024-07-01 00:00:00
date_available 2024-07-01 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1764
url_doi https://doi.org/10.24050/reia.v21i42.1764
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v21i42.1764
citationstartpage 4229 pp. 1
citationendpage 14
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1764/1628
_version_ 1811200535112450048