Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
.
The growing processes of urban expansion have led to changes in the biochemical and physical properties of the hydrological systems in watersheds, not only by altering the hydrological conditions of the territory, but also by introducing pollutants into water bodies. Thus, diffuse pollution from stormwater runoff is considered one of the main causes of water quality degradation in receiving waters in urban areas, especially in rainy regions such as the South American tropics, where urban development and management processes are generally poorly planned. This article presents the results of an evaluation of the relationship between land use and runoff water quality, taking into account different rainfall characteristics. Sampling was carried... Ver más
1794-1237
2463-0950
21
2024-07-01
4218 pp. 1
21
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1749 |
---|---|
record_format |
ojs |
spelling |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed Impacto del uso del suelo urbano en la calidad fisicoquímica del agua de escorrentía superficial en una cuenca urbana The growing processes of urban expansion have led to changes in the biochemical and physical properties of the hydrological systems in watersheds, not only by altering the hydrological conditions of the territory, but also by introducing pollutants into water bodies. Thus, diffuse pollution from stormwater runoff is considered one of the main causes of water quality degradation in receiving waters in urban areas, especially in rainy regions such as the South American tropics, where urban development and management processes are generally poorly planned. This article presents the results of an evaluation of the relationship between land use and runoff water quality, taking into account different rainfall characteristics. Sampling was carried out in Medellín, Colombia, in areas with different land uses. Basic water quality parameters and some sources of urban pollution were studied. The results showed that parameters such as total suspended solids have a high variability, especially in the residential area, which makes it difficult to control the activities carried out there. The highest levels of pollution were found in the industrial area, where the presence of covers with very low or no permeability and the increase in anthropic activity cause a strong alteration in the quality of runoff water. These results open the door to question the impact of land use on the chemical composition of rainwater and promote a better understanding of surface runoff water pollution processes, thus providing a complete vision of the interactions in an urban ecosystem, establishing a key tool for water management in urban watersheds. Los crecientes procesos de expansión urbana han generado diversas alteraciones en las propiedades bioquímicas y físicas de los sistemas hidrológicos en las cuencas, puesto que además de modificar las condiciones hidrológicas del territorio, incorporan múltiples contaminantes a los cuerpos de agua. De esta manera, la contaminación difusa resultante de la escorrentía de aguas pluviales, es considerada como una de las principales causas de la degradación de la calidad del agua en las fuentes receptoras en zonas urbanas, lo cual es particularmente relevante en regiones lluviosas como el trópico suramericano donde los procesos de desarrollo y gestión urbana son poco planificados. Este artículo presenta los resultados de la evaluación de la relación entre el uso del suelo y la calidad de las aguas de escorrentía, considerando además diferentes características de la lluvia. Los muestreos se realizaron en la ciudad de Medellín, Colombia en zonas con diferente uso del suelo. Se estudiaron parámetros básicos de calidad del agua, además de algunas fuentes de contaminación urbana. Los resultados mostraron que parámetros como los sólidos suspendidos totales presentaron alta variabilidad, especialmente en la zona residencial, ocasionando así una complejidad en el control de las actividades que allí se desarrollan. Por otra parte, los mayores niveles de contaminación observados se encontraron en la zona industrial, donde la presencia de coberturas con muy baja o nula permeabilidad y el aumento de la actividad antrópica generan una fuerte alteración en la calidad de las aguas de escorrentía. Estos resultados abren la puerta a cuestionamientos en cuanto al impacto del uso del suelo en la composición química de las aguas pluviales y promueven una mejor comprensión de los procesos de contaminación del agua de escorrentía superficial y por ende una visión más completa de las interacciones que se presentan en un ecosistema urbano, estableciendo una herramienta clave para la gestión hídrica en las cuencas urbanas. Atehortúa, Diana Giraldo Buitrago, Lina Claudia Villegas Palacio, Juan Camilo Heavy metals Land use Pollutant washing Rainfall characteristics Runoff Stormwater management Urban catchment Urban stormwater Water quality Water resources aguas pluviales urbanas calidad del agua características de la lluvia cuenca urbana escorrentía gestión de aguas pluviales lavado de contaminantes metales pesados recursos hídricos uso del suelo 21 42 Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42 Artículo de revista Journal article 2024-07-01 00:00:00 2024-07-01 00:00:00 2024-07-01 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1749 10.24050/reia.v21i42.1749 https://doi.org/10.24050/reia.v21i42.1749 eng https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 4218 pp. 1 21 Alcaldía de Medellín & Corporación Autónoma Regional del Centro de Antioquia, 2007. Formulación del plan integral de ordenamiento y manejo de la microcuenca Altavista. Available at: https://n9.cl/8twee [Accessed 23 August 2019]. Área Metropolitana del Valle de Aburrá, 2018a. Plan de Ordenación y Manejo de la Cuenca Hidrográfica - Río Aburrá. Medellín, Colombia. Available at: https://n9.cl/eqys8 [Accessed 5 September 2019]. Braud, I., Breil, P., Thollet, F., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S. & Michel, K., 2013. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. Journal of Hydrology, 485, pp.5-23. https://doi.org/10.1016/j.jhydrol.2012.04.049. Choe, J. S., Bang, K. W. & Lee, J. H., 2002. Characterization of surface runoff in urban areas. Water Science and Technology, 45(9), pp.249-254. https://doi.org/10.2166/wst.2002.0251. Du, Y., Song, K., Wang, Q., Li, S., Wen, Z., Liu, G., Tao, H., Shang, Y., Hou, J., Lyu, L. & Zhang, B., 2022. Total suspended solids characterization and management implications for lakes in East China. Science of The Total Environment, 806(4), p.151374. https://doi.org/10.1016/j.scitotenv.2021.151374. Gromaire, M., Garnaud, S., Saad, M. & Chebbo, G., 2001. Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Research, 35(2), pp.521-533. https://doi.org/10.1016/S0043-1354(00)00261-X. Hobbie, S., Finlay, J., Janke, B. & Baker, L., 2017. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences of the United States of America, 114(16), pp.4177-4182. https://doi.org/10.1073/pnas.1618536114. Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, 2018. Estudio Nacional del Agua. Available at: https://n9.cl/jtozxg [Accessed 12 April 2022]. Jacobson, C., 2011. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92(6), pp.1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018. Mallin, M., Johnson, V. & Ensign, S., 2009. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environmental Monitoring and Assessment, 159(1-4), pp.475-491. https://doi.org/10.1007/s10661-008-0644-4. Maniquiz, M., Robles, M., Cruz, G., Reyes, N. & Kim, L., 2022. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology, 9(4), p.63. https://doi.org/10.3390/hydrology9040063. McGrane, S., 2016. Impacts of urbanization on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), pp.2295-2311. https://doi.org/10.1080/02626667.2015.1128084. Müller, A., Österlund, H., Marsalek, J. & Viklander, M., 2019. The pollution conveyed by urban runoff: A review of sources. Science of The Total Environment, 709, p.136125. https://doi.org/10.1016/j.scitotenv.2019.136125. Pandey, R. & Raghubanshi, A., 2022. Impact of throughfall deposition and its runoff through different land use surfaces on the chemistry of Ganga water, Varanasi. Limnology, 23, pp.111-125. https://doi.org/10.1007/s10201-021-00672-0. Price, G., Stauber, J., Holland, A., Koppel, D., Van, E., Ryan, A. & Jolley, D., 2021. The Influence of pH on Zinc Lability and Toxicity to a Tropical Freshwater Microalga. Environmental Toxicology and Chemistry, 40(10), pp.2836-2845. https://doi.org/10.1002/etc.5177. Revitt, D., Ellis, J., Gilbert, N., Bryden, J. & Lundy, L., 2022. Development and application of an innovative approach to predicting pollutant concentrations in highway runoff. Science of the Total Environment, 825, p.153815. https://doi.org/10.1016/j.scitotenv.2022.153815. Rogora, M., Steingruber, S., Marchetto, A., Mosello, R., Giacomotti, P., Orru, A., Tartari, G. & Tiberti, R., 2022. Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area. Environmental Science and Pollution Research, 29(41), pp.62312-62329. https://doi.org/10.1007/s11356-022-20080-w. Sierra, C., 2011. Calidad del agua - Evaluación y diagnóstico. Universidad de Medellín, Medellín, Colombia. Torres, A., 2004. Apuntes de clase sobre hidrología urbana. Pontificia Universidad Javeriana, Bogotá DC, Colombia. Trujillo, J., Torres, M., Keesstra, S., Brevik, E. & Jiménez, R., 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of The Total Environment, 553, pp.636-642. https://doi.org/10.1016/j.scitotenv.2016.02.101. Zeng, J., Han, G., Zhang, S. & Qu, R., 2023. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Science of The Total Environment, 856, p.159234. https://doi.org/10.1016/j.scitotenv.2022.159234. Zgheib, S., Moilleron, R. & Chebbo, G., 2008. Screening of priority pollutants in urban stormwater: Innovative methodology. WIT Transactions on Ecology and the Environment, 111, pp.235-244. https://doi.org/10.2495/WP080231. Zgheib, S., Moilleron, R. & Chebbo, G., 2012. Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Water Research, 46(20), pp.6683-6692. https://doi.org/10.1016/j.watres.2011.12.012. Zhang, J., Li, S. & Jiang, C., 2020. Effects of land use on water quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian zone. Ecological Indicators, 113, p.106226. https://doi.org/10.1016/j.ecolind.2020.106226. Zhang, W., Li, T. & Dai, M., 2015. Influence of rainfall characteristics on pollutant wash-off for road catchments in urban Shanghai. Ecological Engineering, 81, pp.102-106. https://doi.org/10.1016/j.ecoleng.2015.04.016. https://revistas.eia.edu.co/index.php/reveia/article/download/1749/1606 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed |
spellingShingle |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed Atehortúa, Diana Giraldo Buitrago, Lina Claudia Villegas Palacio, Juan Camilo Heavy metals Land use Pollutant washing Rainfall characteristics Runoff Stormwater management Urban catchment Urban stormwater Water quality Water resources aguas pluviales urbanas calidad del agua características de la lluvia cuenca urbana escorrentía gestión de aguas pluviales lavado de contaminantes metales pesados recursos hídricos uso del suelo |
title_short |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed |
title_full |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed |
title_fullStr |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed |
title_full_unstemmed |
Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed |
title_sort |
impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed |
title_eng |
Impacto del uso del suelo urbano en la calidad fisicoquímica del agua de escorrentía superficial en una cuenca urbana |
description |
The growing processes of urban expansion have led to changes in the biochemical and physical properties of the hydrological systems in watersheds, not only by altering the hydrological conditions of the territory, but also by introducing pollutants into water bodies. Thus, diffuse pollution from stormwater runoff is considered one of the main causes of water quality degradation in receiving waters in urban areas, especially in rainy regions such as the South American tropics, where urban development and management processes are generally poorly planned. This article presents the results of an evaluation of the relationship between land use and runoff water quality, taking into account different rainfall characteristics. Sampling was carried out in Medellín, Colombia, in areas with different land uses. Basic water quality parameters and some sources of urban pollution were studied. The results showed that parameters such as total suspended solids have a high variability, especially in the residential area, which makes it difficult to control the activities carried out there. The highest levels of pollution were found in the industrial area, where the presence of covers with very low or no permeability and the increase in anthropic activity cause a strong alteration in the quality of runoff water. These results open the door to question the impact of land use on the chemical composition of rainwater and promote a better understanding of surface runoff water pollution processes, thus providing a complete vision of the interactions in an urban ecosystem, establishing a key tool for water management in urban watersheds.
|
description_eng |
Los crecientes procesos de expansión urbana han generado diversas alteraciones en las propiedades bioquímicas y físicas de los sistemas hidrológicos en las cuencas, puesto que además de modificar las condiciones hidrológicas del territorio, incorporan múltiples contaminantes a los cuerpos de agua. De esta manera, la contaminación difusa resultante de la escorrentía de aguas pluviales, es considerada como una de las principales causas de la degradación de la calidad del agua en las fuentes receptoras en zonas urbanas, lo cual es particularmente relevante en regiones lluviosas como el trópico suramericano donde los procesos de desarrollo y gestión urbana son poco planificados. Este artículo presenta los resultados de la evaluación de la relación entre el uso del suelo y la calidad de las aguas de escorrentía, considerando además diferentes características de la lluvia. Los muestreos se realizaron en la ciudad de Medellín, Colombia en zonas con diferente uso del suelo. Se estudiaron parámetros básicos de calidad del agua, además de algunas fuentes de contaminación urbana. Los resultados mostraron que parámetros como los sólidos suspendidos totales presentaron alta variabilidad, especialmente en la zona residencial, ocasionando así una complejidad en el control de las actividades que allí se desarrollan. Por otra parte, los mayores niveles de contaminación observados se encontraron en la zona industrial, donde la presencia de coberturas con muy baja o nula permeabilidad y el aumento de la actividad antrópica generan una fuerte alteración en la calidad de las aguas de escorrentía. Estos resultados abren la puerta a cuestionamientos en cuanto al impacto del uso del suelo en la composición química de las aguas pluviales y promueven una mejor comprensión de los procesos de contaminación del agua de escorrentía superficial y por ende una visión más completa de las interacciones que se presentan en un ecosistema urbano, estableciendo una herramienta clave para la gestión hídrica en las cuencas urbanas.
|
author |
Atehortúa, Diana Giraldo Buitrago, Lina Claudia Villegas Palacio, Juan Camilo |
author_facet |
Atehortúa, Diana Giraldo Buitrago, Lina Claudia Villegas Palacio, Juan Camilo |
topic |
Heavy metals Land use Pollutant washing Rainfall characteristics Runoff Stormwater management Urban catchment Urban stormwater Water quality Water resources aguas pluviales urbanas calidad del agua características de la lluvia cuenca urbana escorrentía gestión de aguas pluviales lavado de contaminantes metales pesados recursos hídricos uso del suelo |
topic_facet |
Heavy metals Land use Pollutant washing Rainfall characteristics Runoff Stormwater management Urban catchment Urban stormwater Water quality Water resources aguas pluviales urbanas calidad del agua características de la lluvia cuenca urbana escorrentía gestión de aguas pluviales lavado de contaminantes metales pesados recursos hídricos uso del suelo |
topicspa_str_mv |
aguas pluviales urbanas calidad del agua características de la lluvia cuenca urbana escorrentía gestión de aguas pluviales lavado de contaminantes metales pesados recursos hídricos uso del suelo |
citationvolume |
21 |
citationissue |
42 |
citationedition |
Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1749 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2024 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
Alcaldía de Medellín & Corporación Autónoma Regional del Centro de Antioquia, 2007. Formulación del plan integral de ordenamiento y manejo de la microcuenca Altavista. Available at: https://n9.cl/8twee [Accessed 23 August 2019]. Área Metropolitana del Valle de Aburrá, 2018a. Plan de Ordenación y Manejo de la Cuenca Hidrográfica - Río Aburrá. Medellín, Colombia. Available at: https://n9.cl/eqys8 [Accessed 5 September 2019]. Braud, I., Breil, P., Thollet, F., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S. & Michel, K., 2013. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. Journal of Hydrology, 485, pp.5-23. https://doi.org/10.1016/j.jhydrol.2012.04.049. Choe, J. S., Bang, K. W. & Lee, J. H., 2002. Characterization of surface runoff in urban areas. Water Science and Technology, 45(9), pp.249-254. https://doi.org/10.2166/wst.2002.0251. Du, Y., Song, K., Wang, Q., Li, S., Wen, Z., Liu, G., Tao, H., Shang, Y., Hou, J., Lyu, L. & Zhang, B., 2022. Total suspended solids characterization and management implications for lakes in East China. Science of The Total Environment, 806(4), p.151374. https://doi.org/10.1016/j.scitotenv.2021.151374. Gromaire, M., Garnaud, S., Saad, M. & Chebbo, G., 2001. Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Research, 35(2), pp.521-533. https://doi.org/10.1016/S0043-1354(00)00261-X. Hobbie, S., Finlay, J., Janke, B. & Baker, L., 2017. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences of the United States of America, 114(16), pp.4177-4182. https://doi.org/10.1073/pnas.1618536114. Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, 2018. Estudio Nacional del Agua. Available at: https://n9.cl/jtozxg [Accessed 12 April 2022]. Jacobson, C., 2011. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92(6), pp.1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018. Mallin, M., Johnson, V. & Ensign, S., 2009. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environmental Monitoring and Assessment, 159(1-4), pp.475-491. https://doi.org/10.1007/s10661-008-0644-4. Maniquiz, M., Robles, M., Cruz, G., Reyes, N. & Kim, L., 2022. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology, 9(4), p.63. https://doi.org/10.3390/hydrology9040063. McGrane, S., 2016. Impacts of urbanization on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), pp.2295-2311. https://doi.org/10.1080/02626667.2015.1128084. Müller, A., Österlund, H., Marsalek, J. & Viklander, M., 2019. The pollution conveyed by urban runoff: A review of sources. Science of The Total Environment, 709, p.136125. https://doi.org/10.1016/j.scitotenv.2019.136125. Pandey, R. & Raghubanshi, A., 2022. Impact of throughfall deposition and its runoff through different land use surfaces on the chemistry of Ganga water, Varanasi. Limnology, 23, pp.111-125. https://doi.org/10.1007/s10201-021-00672-0. Price, G., Stauber, J., Holland, A., Koppel, D., Van, E., Ryan, A. & Jolley, D., 2021. The Influence of pH on Zinc Lability and Toxicity to a Tropical Freshwater Microalga. Environmental Toxicology and Chemistry, 40(10), pp.2836-2845. https://doi.org/10.1002/etc.5177. Revitt, D., Ellis, J., Gilbert, N., Bryden, J. & Lundy, L., 2022. Development and application of an innovative approach to predicting pollutant concentrations in highway runoff. Science of the Total Environment, 825, p.153815. https://doi.org/10.1016/j.scitotenv.2022.153815. Rogora, M., Steingruber, S., Marchetto, A., Mosello, R., Giacomotti, P., Orru, A., Tartari, G. & Tiberti, R., 2022. Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area. Environmental Science and Pollution Research, 29(41), pp.62312-62329. https://doi.org/10.1007/s11356-022-20080-w. Sierra, C., 2011. Calidad del agua - Evaluación y diagnóstico. Universidad de Medellín, Medellín, Colombia. Torres, A., 2004. Apuntes de clase sobre hidrología urbana. Pontificia Universidad Javeriana, Bogotá DC, Colombia. Trujillo, J., Torres, M., Keesstra, S., Brevik, E. & Jiménez, R., 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of The Total Environment, 553, pp.636-642. https://doi.org/10.1016/j.scitotenv.2016.02.101. Zeng, J., Han, G., Zhang, S. & Qu, R., 2023. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Science of The Total Environment, 856, p.159234. https://doi.org/10.1016/j.scitotenv.2022.159234. Zgheib, S., Moilleron, R. & Chebbo, G., 2008. Screening of priority pollutants in urban stormwater: Innovative methodology. WIT Transactions on Ecology and the Environment, 111, pp.235-244. https://doi.org/10.2495/WP080231. Zgheib, S., Moilleron, R. & Chebbo, G., 2012. Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Water Research, 46(20), pp.6683-6692. https://doi.org/10.1016/j.watres.2011.12.012. Zhang, J., Li, S. & Jiang, C., 2020. Effects of land use on water quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian zone. Ecological Indicators, 113, p.106226. https://doi.org/10.1016/j.ecolind.2020.106226. Zhang, W., Li, T. & Dai, M., 2015. Influence of rainfall characteristics on pollutant wash-off for road catchments in urban Shanghai. Ecological Engineering, 81, pp.102-106. https://doi.org/10.1016/j.ecoleng.2015.04.016. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-07-01 |
date_accessioned |
2024-07-01 00:00:00 |
date_available |
2024-07-01 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1749 |
url_doi |
https://doi.org/10.24050/reia.v21i42.1749 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v21i42.1749 |
citationstartpage |
4218 pp. 1 |
citationendpage |
21 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1749/1606 |
_version_ |
1811200534451847168 |