Titulo:

Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
.

Sumario:

The growing processes of urban expansion have led to changes in the biochemical and physical properties of the hydrological systems in watersheds, not only by altering the hydrological conditions of the territory, but also by introducing pollutants into water bodies. Thus, diffuse pollution from stormwater runoff is considered one of the main causes of water quality degradation in receiving waters in urban areas, especially in rainy regions such as the South American tropics, where urban development and management processes are generally poorly planned. This article presents the results of an evaluation of the relationship between land use and runoff water quality, taking into account different rainfall characteristics. Sampling was carried... Ver más

Guardado en:

1794-1237

2463-0950

21

2024-07-01

4218 pp. 1

21

Revista EIA - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1749
record_format ojs
spelling Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
Impacto del uso del suelo urbano en la calidad fisicoquímica del agua de escorrentía superficial en una cuenca urbana
The growing processes of urban expansion have led to changes in the biochemical and physical properties of the hydrological systems in watersheds, not only by altering the hydrological conditions of the territory, but also by introducing pollutants into water bodies. Thus, diffuse pollution from stormwater runoff is considered one of the main causes of water quality degradation in receiving waters in urban areas, especially in rainy regions such as the South American tropics, where urban development and management processes are generally poorly planned. This article presents the results of an evaluation of the relationship between land use and runoff water quality, taking into account different rainfall characteristics. Sampling was carried out in Medellín, Colombia, in areas with different land uses. Basic water quality parameters and some sources of urban pollution were studied. The results showed that parameters such as total suspended solids have a high variability, especially in the residential area, which makes it difficult to control the activities carried out there. The highest levels of pollution were found in the industrial area, where the presence of covers with very low or no permeability and the increase in anthropic activity cause a strong alteration in the quality of runoff water. These results open the door to question the impact of land use on the chemical composition of rainwater and promote a better understanding of surface runoff water pollution processes, thus providing a complete vision of the interactions in an urban ecosystem, establishing a key tool for water management in urban watersheds.
Los crecientes procesos de expansión urbana han generado diversas alteraciones en las propiedades bioquímicas y físicas de los sistemas hidrológicos en las cuencas, puesto que además de modificar las condiciones hidrológicas del territorio, incorporan múltiples contaminantes a los cuerpos de agua. De esta manera, la contaminación difusa resultante de la escorrentía de aguas pluviales, es considerada como una de las principales causas de la degradación de la calidad del agua en las fuentes receptoras en zonas urbanas, lo cual es particularmente relevante en regiones lluviosas como el trópico suramericano donde los procesos de desarrollo y gestión urbana son poco planificados. Este artículo presenta los resultados de la evaluación de la relación entre el uso del suelo y la calidad de las aguas de escorrentía, considerando además diferentes características de la lluvia. Los muestreos se realizaron en la ciudad de Medellín, Colombia en zonas con diferente uso del suelo. Se estudiaron parámetros básicos de calidad del agua, además de algunas fuentes de contaminación urbana. Los resultados mostraron que parámetros como los sólidos suspendidos totales presentaron alta variabilidad, especialmente en la zona residencial, ocasionando así una complejidad en el control de las actividades que allí se desarrollan. Por otra parte, los mayores niveles de contaminación observados se encontraron en la zona industrial, donde la presencia de coberturas con muy baja o nula permeabilidad y el aumento de la actividad antrópica generan una fuerte alteración en la calidad de las aguas de escorrentía. Estos resultados abren la puerta a cuestionamientos en cuanto al impacto del uso del suelo en la composición química de las aguas pluviales y promueven una mejor comprensión de los procesos de contaminación del agua de escorrentía superficial y por ende una visión más completa de las interacciones que se presentan en un ecosistema urbano, estableciendo una herramienta clave para la gestión hídrica en las cuencas urbanas.
Atehortúa, Diana
Giraldo Buitrago, Lina Claudia
Villegas Palacio, Juan Camilo
Heavy metals
Land use
Pollutant washing
Rainfall characteristics
Runoff
Stormwater management
Urban catchment
Urban stormwater
Water quality
Water resources
aguas pluviales urbanas
calidad del agua
características de la lluvia
cuenca urbana
escorrentía
gestión de aguas pluviales
lavado de contaminantes
metales pesados
recursos hídricos
uso del suelo
21
42
Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42
Artículo de revista
Journal article
2024-07-01 00:00:00
2024-07-01 00:00:00
2024-07-01
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1749
10.24050/reia.v21i42.1749
https://doi.org/10.24050/reia.v21i42.1749
eng
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4218 pp. 1
21
Alcaldía de Medellín & Corporación Autónoma Regional del Centro de Antioquia, 2007. Formulación del plan integral de ordenamiento y manejo de la microcuenca Altavista. Available at: https://n9.cl/8twee [Accessed 23 August 2019].
Área Metropolitana del Valle de Aburrá, 2018a. Plan de Ordenación y Manejo de la Cuenca Hidrográfica - Río Aburrá. Medellín, Colombia. Available at: https://n9.cl/eqys8 [Accessed 5 September 2019].
Braud, I., Breil, P., Thollet, F., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S. & Michel, K., 2013. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. Journal of Hydrology, 485, pp.5-23. https://doi.org/10.1016/j.jhydrol.2012.04.049.
Choe, J. S., Bang, K. W. & Lee, J. H., 2002. Characterization of surface runoff in urban areas. Water Science and Technology, 45(9), pp.249-254. https://doi.org/10.2166/wst.2002.0251.
Du, Y., Song, K., Wang, Q., Li, S., Wen, Z., Liu, G., Tao, H., Shang, Y., Hou, J., Lyu, L. & Zhang, B., 2022. Total suspended solids characterization and management implications for lakes in East China. Science of The Total Environment, 806(4), p.151374. https://doi.org/10.1016/j.scitotenv.2021.151374.
Gromaire, M., Garnaud, S., Saad, M. & Chebbo, G., 2001. Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Research, 35(2), pp.521-533. https://doi.org/10.1016/S0043-1354(00)00261-X.
Hobbie, S., Finlay, J., Janke, B. & Baker, L., 2017. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences of the United States of America, 114(16), pp.4177-4182. https://doi.org/10.1073/pnas.1618536114.
Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, 2018. Estudio Nacional del Agua. Available at: https://n9.cl/jtozxg [Accessed 12 April 2022].
Jacobson, C., 2011. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92(6), pp.1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018.
Mallin, M., Johnson, V. & Ensign, S., 2009. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environmental Monitoring and Assessment, 159(1-4), pp.475-491. https://doi.org/10.1007/s10661-008-0644-4.
Maniquiz, M., Robles, M., Cruz, G., Reyes, N. & Kim, L., 2022. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology, 9(4), p.63. https://doi.org/10.3390/hydrology9040063.
McGrane, S., 2016. Impacts of urbanization on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), pp.2295-2311. https://doi.org/10.1080/02626667.2015.1128084.
Müller, A., Österlund, H., Marsalek, J. & Viklander, M., 2019. The pollution conveyed by urban runoff: A review of sources. Science of The Total Environment, 709, p.136125. https://doi.org/10.1016/j.scitotenv.2019.136125.
Pandey, R. & Raghubanshi, A., 2022. Impact of throughfall deposition and its runoff through different land use surfaces on the chemistry of Ganga water, Varanasi. Limnology, 23, pp.111-125. https://doi.org/10.1007/s10201-021-00672-0.
Price, G., Stauber, J., Holland, A., Koppel, D., Van, E., Ryan, A. & Jolley, D., 2021. The Influence of pH on Zinc Lability and Toxicity to a Tropical Freshwater Microalga. Environmental Toxicology and Chemistry, 40(10), pp.2836-2845. https://doi.org/10.1002/etc.5177.
Revitt, D., Ellis, J., Gilbert, N., Bryden, J. & Lundy, L., 2022. Development and application of an innovative approach to predicting pollutant concentrations in highway runoff. Science of the Total Environment, 825, p.153815. https://doi.org/10.1016/j.scitotenv.2022.153815.
Rogora, M., Steingruber, S., Marchetto, A., Mosello, R., Giacomotti, P., Orru, A., Tartari, G. & Tiberti, R., 2022. Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area. Environmental Science and Pollution Research, 29(41), pp.62312-62329. https://doi.org/10.1007/s11356-022-20080-w.
Sierra, C., 2011. Calidad del agua - Evaluación y diagnóstico. Universidad de Medellín, Medellín, Colombia.
Torres, A., 2004. Apuntes de clase sobre hidrología urbana. Pontificia Universidad Javeriana, Bogotá DC, Colombia.
Trujillo, J., Torres, M., Keesstra, S., Brevik, E. & Jiménez, R., 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of The Total Environment, 553, pp.636-642. https://doi.org/10.1016/j.scitotenv.2016.02.101.
Zeng, J., Han, G., Zhang, S. & Qu, R., 2023. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Science of The Total Environment, 856, p.159234. https://doi.org/10.1016/j.scitotenv.2022.159234.
Zgheib, S., Moilleron, R. & Chebbo, G., 2008. Screening of priority pollutants in urban stormwater: Innovative methodology. WIT Transactions on Ecology and the Environment, 111, pp.235-244. https://doi.org/10.2495/WP080231.
Zgheib, S., Moilleron, R. & Chebbo, G., 2012. Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Water Research, 46(20), pp.6683-6692. https://doi.org/10.1016/j.watres.2011.12.012.
Zhang, J., Li, S. & Jiang, C., 2020. Effects of land use on water quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian zone. Ecological Indicators, 113, p.106226. https://doi.org/10.1016/j.ecolind.2020.106226.
Zhang, W., Li, T. & Dai, M., 2015. Influence of rainfall characteristics on pollutant wash-off for road catchments in urban Shanghai. Ecological Engineering, 81, pp.102-106. https://doi.org/10.1016/j.ecoleng.2015.04.016.
https://revistas.eia.edu.co/index.php/reveia/article/download/1749/1606
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
spellingShingle Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
Atehortúa, Diana
Giraldo Buitrago, Lina Claudia
Villegas Palacio, Juan Camilo
Heavy metals
Land use
Pollutant washing
Rainfall characteristics
Runoff
Stormwater management
Urban catchment
Urban stormwater
Water quality
Water resources
aguas pluviales urbanas
calidad del agua
características de la lluvia
cuenca urbana
escorrentía
gestión de aguas pluviales
lavado de contaminantes
metales pesados
recursos hídricos
uso del suelo
title_short Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
title_full Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
title_fullStr Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
title_full_unstemmed Impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
title_sort impact of urban land use on the physicochemical quality of surface runoff water in an urban watershed
title_eng Impacto del uso del suelo urbano en la calidad fisicoquímica del agua de escorrentía superficial en una cuenca urbana
description The growing processes of urban expansion have led to changes in the biochemical and physical properties of the hydrological systems in watersheds, not only by altering the hydrological conditions of the territory, but also by introducing pollutants into water bodies. Thus, diffuse pollution from stormwater runoff is considered one of the main causes of water quality degradation in receiving waters in urban areas, especially in rainy regions such as the South American tropics, where urban development and management processes are generally poorly planned. This article presents the results of an evaluation of the relationship between land use and runoff water quality, taking into account different rainfall characteristics. Sampling was carried out in Medellín, Colombia, in areas with different land uses. Basic water quality parameters and some sources of urban pollution were studied. The results showed that parameters such as total suspended solids have a high variability, especially in the residential area, which makes it difficult to control the activities carried out there. The highest levels of pollution were found in the industrial area, where the presence of covers with very low or no permeability and the increase in anthropic activity cause a strong alteration in the quality of runoff water. These results open the door to question the impact of land use on the chemical composition of rainwater and promote a better understanding of surface runoff water pollution processes, thus providing a complete vision of the interactions in an urban ecosystem, establishing a key tool for water management in urban watersheds.
description_eng Los crecientes procesos de expansión urbana han generado diversas alteraciones en las propiedades bioquímicas y físicas de los sistemas hidrológicos en las cuencas, puesto que además de modificar las condiciones hidrológicas del territorio, incorporan múltiples contaminantes a los cuerpos de agua. De esta manera, la contaminación difusa resultante de la escorrentía de aguas pluviales, es considerada como una de las principales causas de la degradación de la calidad del agua en las fuentes receptoras en zonas urbanas, lo cual es particularmente relevante en regiones lluviosas como el trópico suramericano donde los procesos de desarrollo y gestión urbana son poco planificados. Este artículo presenta los resultados de la evaluación de la relación entre el uso del suelo y la calidad de las aguas de escorrentía, considerando además diferentes características de la lluvia. Los muestreos se realizaron en la ciudad de Medellín, Colombia en zonas con diferente uso del suelo. Se estudiaron parámetros básicos de calidad del agua, además de algunas fuentes de contaminación urbana. Los resultados mostraron que parámetros como los sólidos suspendidos totales presentaron alta variabilidad, especialmente en la zona residencial, ocasionando así una complejidad en el control de las actividades que allí se desarrollan. Por otra parte, los mayores niveles de contaminación observados se encontraron en la zona industrial, donde la presencia de coberturas con muy baja o nula permeabilidad y el aumento de la actividad antrópica generan una fuerte alteración en la calidad de las aguas de escorrentía. Estos resultados abren la puerta a cuestionamientos en cuanto al impacto del uso del suelo en la composición química de las aguas pluviales y promueven una mejor comprensión de los procesos de contaminación del agua de escorrentía superficial y por ende una visión más completa de las interacciones que se presentan en un ecosistema urbano, estableciendo una herramienta clave para la gestión hídrica en las cuencas urbanas.
author Atehortúa, Diana
Giraldo Buitrago, Lina Claudia
Villegas Palacio, Juan Camilo
author_facet Atehortúa, Diana
Giraldo Buitrago, Lina Claudia
Villegas Palacio, Juan Camilo
topic Heavy metals
Land use
Pollutant washing
Rainfall characteristics
Runoff
Stormwater management
Urban catchment
Urban stormwater
Water quality
Water resources
aguas pluviales urbanas
calidad del agua
características de la lluvia
cuenca urbana
escorrentía
gestión de aguas pluviales
lavado de contaminantes
metales pesados
recursos hídricos
uso del suelo
topic_facet Heavy metals
Land use
Pollutant washing
Rainfall characteristics
Runoff
Stormwater management
Urban catchment
Urban stormwater
Water quality
Water resources
aguas pluviales urbanas
calidad del agua
características de la lluvia
cuenca urbana
escorrentía
gestión de aguas pluviales
lavado de contaminantes
metales pesados
recursos hídricos
uso del suelo
topicspa_str_mv aguas pluviales urbanas
calidad del agua
características de la lluvia
cuenca urbana
escorrentía
gestión de aguas pluviales
lavado de contaminantes
metales pesados
recursos hídricos
uso del suelo
citationvolume 21
citationissue 42
citationedition Núm. 42 , Año 2024 : Tabla de contenido Revista EIA No. 42
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1749
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Alcaldía de Medellín & Corporación Autónoma Regional del Centro de Antioquia, 2007. Formulación del plan integral de ordenamiento y manejo de la microcuenca Altavista. Available at: https://n9.cl/8twee [Accessed 23 August 2019].
Área Metropolitana del Valle de Aburrá, 2018a. Plan de Ordenación y Manejo de la Cuenca Hidrográfica - Río Aburrá. Medellín, Colombia. Available at: https://n9.cl/eqys8 [Accessed 5 September 2019].
Braud, I., Breil, P., Thollet, F., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S. & Michel, K., 2013. Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. Journal of Hydrology, 485, pp.5-23. https://doi.org/10.1016/j.jhydrol.2012.04.049.
Choe, J. S., Bang, K. W. & Lee, J. H., 2002. Characterization of surface runoff in urban areas. Water Science and Technology, 45(9), pp.249-254. https://doi.org/10.2166/wst.2002.0251.
Du, Y., Song, K., Wang, Q., Li, S., Wen, Z., Liu, G., Tao, H., Shang, Y., Hou, J., Lyu, L. & Zhang, B., 2022. Total suspended solids characterization and management implications for lakes in East China. Science of The Total Environment, 806(4), p.151374. https://doi.org/10.1016/j.scitotenv.2021.151374.
Gromaire, M., Garnaud, S., Saad, M. & Chebbo, G., 2001. Contribution of different sources to the pollution of wet weather flows in combined sewers. Water Research, 35(2), pp.521-533. https://doi.org/10.1016/S0043-1354(00)00261-X.
Hobbie, S., Finlay, J., Janke, B. & Baker, L., 2017. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences of the United States of America, 114(16), pp.4177-4182. https://doi.org/10.1073/pnas.1618536114.
Instituto de Hidrología, Meteorología y Estudios Ambientales – IDEAM, 2018. Estudio Nacional del Agua. Available at: https://n9.cl/jtozxg [Accessed 12 April 2022].
Jacobson, C., 2011. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 92(6), pp.1438-1448. https://doi.org/10.1016/j.jenvman.2011.01.018.
Mallin, M., Johnson, V. & Ensign, S., 2009. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environmental Monitoring and Assessment, 159(1-4), pp.475-491. https://doi.org/10.1007/s10661-008-0644-4.
Maniquiz, M., Robles, M., Cruz, G., Reyes, N. & Kim, L., 2022. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology, 9(4), p.63. https://doi.org/10.3390/hydrology9040063.
McGrane, S., 2016. Impacts of urbanization on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), pp.2295-2311. https://doi.org/10.1080/02626667.2015.1128084.
Müller, A., Österlund, H., Marsalek, J. & Viklander, M., 2019. The pollution conveyed by urban runoff: A review of sources. Science of The Total Environment, 709, p.136125. https://doi.org/10.1016/j.scitotenv.2019.136125.
Pandey, R. & Raghubanshi, A., 2022. Impact of throughfall deposition and its runoff through different land use surfaces on the chemistry of Ganga water, Varanasi. Limnology, 23, pp.111-125. https://doi.org/10.1007/s10201-021-00672-0.
Price, G., Stauber, J., Holland, A., Koppel, D., Van, E., Ryan, A. & Jolley, D., 2021. The Influence of pH on Zinc Lability and Toxicity to a Tropical Freshwater Microalga. Environmental Toxicology and Chemistry, 40(10), pp.2836-2845. https://doi.org/10.1002/etc.5177.
Revitt, D., Ellis, J., Gilbert, N., Bryden, J. & Lundy, L., 2022. Development and application of an innovative approach to predicting pollutant concentrations in highway runoff. Science of the Total Environment, 825, p.153815. https://doi.org/10.1016/j.scitotenv.2022.153815.
Rogora, M., Steingruber, S., Marchetto, A., Mosello, R., Giacomotti, P., Orru, A., Tartari, G. & Tiberti, R., 2022. Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area. Environmental Science and Pollution Research, 29(41), pp.62312-62329. https://doi.org/10.1007/s11356-022-20080-w.
Sierra, C., 2011. Calidad del agua - Evaluación y diagnóstico. Universidad de Medellín, Medellín, Colombia.
Torres, A., 2004. Apuntes de clase sobre hidrología urbana. Pontificia Universidad Javeriana, Bogotá DC, Colombia.
Trujillo, J., Torres, M., Keesstra, S., Brevik, E. & Jiménez, R., 2016. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of The Total Environment, 553, pp.636-642. https://doi.org/10.1016/j.scitotenv.2016.02.101.
Zeng, J., Han, G., Zhang, S. & Qu, R., 2023. Nitrate dynamics and source identification of rainwater in Beijing during rainy season: Insight from dual isotopes and Bayesian model. Science of The Total Environment, 856, p.159234. https://doi.org/10.1016/j.scitotenv.2022.159234.
Zgheib, S., Moilleron, R. & Chebbo, G., 2008. Screening of priority pollutants in urban stormwater: Innovative methodology. WIT Transactions on Ecology and the Environment, 111, pp.235-244. https://doi.org/10.2495/WP080231.
Zgheib, S., Moilleron, R. & Chebbo, G., 2012. Priority pollutants in urban stormwater: Part 1 – Case of separate storm sewers. Water Research, 46(20), pp.6683-6692. https://doi.org/10.1016/j.watres.2011.12.012.
Zhang, J., Li, S. & Jiang, C., 2020. Effects of land use on water quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian zone. Ecological Indicators, 113, p.106226. https://doi.org/10.1016/j.ecolind.2020.106226.
Zhang, W., Li, T. & Dai, M., 2015. Influence of rainfall characteristics on pollutant wash-off for road catchments in urban Shanghai. Ecological Engineering, 81, pp.102-106. https://doi.org/10.1016/j.ecoleng.2015.04.016.

type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-07-01
date_accessioned 2024-07-01 00:00:00
date_available 2024-07-01 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1749
url_doi https://doi.org/10.24050/reia.v21i42.1749
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v21i42.1749
citationstartpage 4218 pp. 1
citationendpage 21
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1749/1606
_version_ 1811200534451847168