Titulo:

Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
.

Sumario:

Los materiales compuestos de polímero reforzado con fibra de vidrio (GFRP) se utilizan ampliamente y cada vez más en las principales industrias, incluidas la aeroespacial, marina, de construcción, eléctrica y automotriz. Este tipo de materiales presentan ventajas como bajas densidades, altas propiedades mecánicas en determinadas direcciones, facilidad de producción y durabilidad. Sin embargo, su fabricación genera residuos y al final de su ciclo de vida tanto la fibra como la resina no pueden descomponerse ni reciclarse fácilmente. Este artículo exploró la influencia de los PRFV reciclados como refuerzo en mezclas de mortero de cemento de arcilla calcinada con proporciones de 2%, 4%, 6%, 8% y 10% reemplazando el peso del agregado fino en la... Ver más

Guardado en:

1794-1237

2463-0950

21

2024-01-01

4106 pp. 1

19

Revista EIA - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1720
record_format ojs
spelling Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
Mechanical properties of recycled Glass Fiber Reinforced Polymers (rGFRP) in limestone calcined clay cement mortars
Los materiales compuestos de polímero reforzado con fibra de vidrio (GFRP) se utilizan ampliamente y cada vez más en las principales industrias, incluidas la aeroespacial, marina, de construcción, eléctrica y automotriz. Este tipo de materiales presentan ventajas como bajas densidades, altas propiedades mecánicas en determinadas direcciones, facilidad de producción y durabilidad. Sin embargo, su fabricación genera residuos y al final de su ciclo de vida tanto la fibra como la resina no pueden descomponerse ni reciclarse fácilmente. Este artículo exploró la influencia de los PRFV reciclados como refuerzo en mezclas de mortero de cemento de arcilla calcinada con proporciones de 2%, 4%, 6%, 8% y 10% reemplazando el peso del agregado fino en la resistencia a la flexión, la resistencia a la compresión y la densidad. Los resultados demostraron resistencias a la flexión y a la compresión en el rango de 2,5 MPa-7 MPa y 12-28 MPa respectivamente a las edades de 28 y 56 días.
Glass fiber-reinforced polymer (GFRP) composite materials are used extensively and increasingly in major industries including aerospace, marine, construction, electrical and automotive. These types of materials have advantages such as low densities, high mechanical properties in certain directions, ease of production and durability. However, its manufacture generates residues and at the end of its life cycle both the fiber and the resin cannot be easily decomposed or recycled. This article explored the infiluence of recycled GFRPs as reinforcement in limestone calcined clay cements mortar mixes with ratios of 2%,4%,6%, 8% and 10% replacing the fine aggregate weight in the flexural strength, compressive strength, and density. Results demonstrated flexural and compressive strengths in the range of 2.5 MPa-7MPa and 12-28 MPa respectively at the ages of 28 and 56 days.
Garcia Suarez, Brayan Leon
Rico Perez, Maria Alejandra
Zelaya Maradiaga, Jose Reynaldo
Vanegas Vanegas, Angy Daniela
Limestone calcined clay cement
Recycled glass fiber reinforced polymer
Mortar
Mechanical properties
Cemento de arcilla calcinada con piedra caliza
Polímero reforzado con fibra de vidrio reciclado
Mortero
Propiedades mecánicas
21
41
Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41
Artículo de revista
Journal article
2024-01-01 00:00:00
2024-01-01 00:00:00
2024-01-01
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1720
10.24050/reia.v21i41.1720
https://doi.org/10.24050/reia.v21i41.1720
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4106 pp. 1
19
Amer, Omar Alsanusi, Prasad Rangaraju, and Hassan Rashidian-Dezfouli. 2021. ‘Effectiveness of Binary and Ternary Blended Cements of Class C Fly Ash and Ground Glass Fibers in Improving the Durability of Concrete’. Journal of Sustainable Cement-Based Materials 0(0):1–16. doi: 10.1080/21650373.2021.1899085.
Asokan, P., M. Osmani, and A. D. F. Price. 2009. ‘Assessing the Recycling Potential of Glass Fibre Reinforced Plastic Waste in Concrete and Cement Composites’. Journal of Cleaner Production 17(9):821–29. doi: 10.1016/j.jclepro.2008.12.004.
Asokan, P., Mohamed Osmani, and ADF Price. 2010. ‘Improvement of the Mechanical Properties of Glass Fibre Reinforced Plastic Waste Powder Filled Concrete’. Construction and Building Materials 24(4):448–60. doi: 10.1016/j.conbuildmat.2009.10.017.
Avet, François, and Karen Scrivener. 2020. ‘Influence of PH on the Chloride Binding Capacity of Limestone Calcined Clay Cements (LC3)’. Cement and Concrete Research 131(March):106031. doi: 10.1016/j.cemconres.2020.106031.
Baghban, Mohammad Hajmohammadian, and Reza Mahjoub. 2020. ‘Natural Kenaf Fiber and LC3 Binder for Sustainable Fiber-Reinforced Cementitious Composite: A Review’. Applied Sciences (Switzerland) 10(1). doi: 10.3390/app10010357.
Cihan, Mehmet Timur, and Yunus Emre Avşar. 2022. ‘Predictability of the Mechanical Properties of Glass Fibrous Mortar’. Arabian Journal for Science and Engineering. doi: 10.1007/s13369-022-07018-7.
Clark, Edward, Monika Bleszynski, Frank Valdez, and Maciej Kumosa. 2020. ‘Recycling Carbon and Glass Fiber Polymer Matrix Composite Waste into Cementitious Materials’. Resources, Conservation and Recycling 155(December 2019):104659. doi: 10.1016/j.resconrec.2019.104659.
Criado, M., I. García-Díaz, J. M. Bastidas, F. J. Alguacil, F. A. López, and C. Monticelli. 2014. ‘Effect of Recycled Glass Fiber on the Corrosion Behavior of Reinforced Mortar’. Construction and Building Materials 64(2014):261–69. doi: 10.1016/j.conbuildmat.2014.04.049.
Dehghan, Alireza, Karl Peterson, and Asia Shvarzman. 2017. ‘Recycled Glass Fiber Reinforced Polymer Additions to Portland Cement Concrete’. Construction and Building Materials 146:238–50. doi: 10.1016/j.conbuildmat.2017.04.011.
García, D., I. Vegas, and I. Cacho. 2014. ‘Mechanical Recycling of GFRP Waste as Short-Fiber Reinforcements in Microconcrete’. Construction and Building Materials 64:293–300. doi: 10.1016/j.conbuildmat.2014.02.068.
Kazmi, Danish, David J. Williams, and Mehdi Serati. 2020. ‘Waste Glass in Civil Engineering Applications—A Review’. International Journal of Applied Ceramic Technology 17(2):529–54. doi: 10.1111/ijac.13434.
Khan, Muhammad Imran, Muhammad Umair, Khubab Shaker, Abdul Basit, Yasir Nawab, and Muhammad Kashif. 2020. ‘Impact of Waste Fibers on the Mechanical Performance of Concrete Composites’. Journal of the Textile Institute 111(11):1632–40. doi: 10.1080/00405000.2020.1736423.
Mastali, Mohammad, Ahmad Dalvand, Alireza R. Sattarifard, and Zahra Abdollahnejad. 2018. ‘Effect of Different Lengths and Dosages of Recycled Glass Fibres on the Fresh and Hardened Properties of SCC’. Magazine of Concrete Research 70(22):1175–88. doi: 10.1680/jmacr.17.00180.
Odera, R. S., O. D. Onukwuli, and V. S. Aigbodion. 2018. ‘Experimental Correlation between Varying Processing Parameter and Compressive Strength of Polymer-Modified Cement Mortar Composites’. International Journal of Advanced Manufacturing Technology 98(9–12):2591–99. doi: 10.1007/s00170-018-2405-z.
Patel, Kishan, Rishi Gupta, Mohit Garg, Boyu Wang, and Urmil Dave. 2019. ‘Development of FRC Materials with Recycled Glass Fibers Recovered from Industrial GFRP-Acrylic Waste’. Advances in Materials Science and Engineering 2019. doi: 10.1155/2019/4149708.
Rodin, Harry, Somayeh Nassiri, Karl Englund, Osama Fakron, and Hui Li. 2018. ‘Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance’. Construction and Building Materials 187:738–51. doi: 10.1016/j.conbuildmat.2018.07.169. Scrivener, Karen, François Avet, Hamed Maraghechi, Franco Zunino, Julien Ston, Wilasinee Hanpongpun, and Aurélie Favier. 2018. ‘Impacting Factors and Properties of Limestone Calcined Clay Cements (LC3)’. Green Materials 7(1):3–14. doi: 10.1680/jgrma.18.00029.
Scrivener, Karen, Fernando Martirena, Shashank Bishnoi, and Soumen Maity. 2018. ‘Calcined Clay Limestone Cements (LC3)’. Cement and Concrete Research 114(March 2017):49–56. doi: 10.1016/j.cemconres.2017.08.017.
Shafei, Behrouz, Maziar Kazemian, Michael Dopko, and Meysam Najimi. 2021. ‘State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete’. Materials 14(2):409. doi: 10.3390/ma14020409.
Singh, Avishreshth, Akhil Charak, Krishna Prapoorna Biligiri, and Venkataraman Pandurangan. 2022. ‘Glass and Carbon Fiber Reinforced Polymer Composite Wastes in Pervious Concrete: Material Characterization and Lifecycle Assessment’. Resources, Conservation and Recycling 182(March):106304. doi: 10.1016/j.resconrec.2022.106304.
Song, Meimei, Phil Purnell, and Ian Richardson. 2015. ‘Microstructure of Interface between Fibre and Matrix in 10-Year Aged GRC Modified by Calcium Sulfoaluminate Cement’. Cement and Concrete Research 76:20–26. doi: 10.1016/j.cemconres.2015.05.011.
Vali, K. Shaiksha, B. S. Murugan, S. K. Reddy, and E. Noroozinejad Farsangi. 2020. ‘Eco-Friendly Hybrid Concrete Using Pozzolanic Binder and Glass Fibers’. International Journal of Engineering, Transactions A: Basics 33(7):1183–91. doi: 10.5829/ije.2020.33.07a.03.
Walpole, Ronalde E., Raymond H. Myers, Sharon L. Myers, and Keying Ye. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias.
Xiong, Guangjing, Baiyun Luo, Xiang Wu, Gengying Li, and Liqiang Chen. 2006. ‘Influence of Silane Coupling Agent on Quality of Interfacial Transition Zone between Concrete Substrate and Repair Materials’. Cement and Concrete Composites 28(1):97–101. doi: 10.1016/j.cemconcomp.2005.09.004.
Yazdanbakhsh, Ardavan, and Lawrence C. Bank. 2014. ‘A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction’. Polymers 6(6):1810–26. doi: 10.3390/polym6061810.
Zaid, Osama, Jawad Ahmad, Muhammad Shahid Siddique, Fahid Aslam, Hisham Alabduljabbar, and Khaled Mohamed Khedher. 2021. ‘A Step towards Sustainable Glass Fiber Reinforced Concrete Utilizing Silica Fume and Waste Coconut Shell Aggregate’. Scientific Reports 11(1):1–14. doi: 10.1038/s41598-021-92228-6.
Zhou, Boyu, Mo Zhang, Li Wang, and Guowei Ma. 2021. ‘Experimental Study on Mechanical Property and Microstructure of Cement Mortar Reinforced with Elaborately Recycled GFRP Fiber’. Cement and Concrete Composites 117(December 2020):103908. doi: 10.1016/j.cemconcomp.2020.103908.
https://revistas.eia.edu.co/index.php/reveia/article/download/1720/1580
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
spellingShingle Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
Garcia Suarez, Brayan Leon
Rico Perez, Maria Alejandra
Zelaya Maradiaga, Jose Reynaldo
Vanegas Vanegas, Angy Daniela
Limestone calcined clay cement
Recycled glass fiber reinforced polymer
Mortar
Mechanical properties
Cemento de arcilla calcinada con piedra caliza
Polímero reforzado con fibra de vidrio reciclado
Mortero
Propiedades mecánicas
title_short Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
title_full Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
title_fullStr Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
title_full_unstemmed Propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rGFRP) en morteros de cemento de arcilla calcinada
title_sort propiedades mecánicas de polímeros reforzados con fibra de vidrio reciclado (rgfrp) en morteros de cemento de arcilla calcinada
title_eng Mechanical properties of recycled Glass Fiber Reinforced Polymers (rGFRP) in limestone calcined clay cement mortars
description Los materiales compuestos de polímero reforzado con fibra de vidrio (GFRP) se utilizan ampliamente y cada vez más en las principales industrias, incluidas la aeroespacial, marina, de construcción, eléctrica y automotriz. Este tipo de materiales presentan ventajas como bajas densidades, altas propiedades mecánicas en determinadas direcciones, facilidad de producción y durabilidad. Sin embargo, su fabricación genera residuos y al final de su ciclo de vida tanto la fibra como la resina no pueden descomponerse ni reciclarse fácilmente. Este artículo exploró la influencia de los PRFV reciclados como refuerzo en mezclas de mortero de cemento de arcilla calcinada con proporciones de 2%, 4%, 6%, 8% y 10% reemplazando el peso del agregado fino en la resistencia a la flexión, la resistencia a la compresión y la densidad. Los resultados demostraron resistencias a la flexión y a la compresión en el rango de 2,5 MPa-7 MPa y 12-28 MPa respectivamente a las edades de 28 y 56 días.
description_eng Glass fiber-reinforced polymer (GFRP) composite materials are used extensively and increasingly in major industries including aerospace, marine, construction, electrical and automotive. These types of materials have advantages such as low densities, high mechanical properties in certain directions, ease of production and durability. However, its manufacture generates residues and at the end of its life cycle both the fiber and the resin cannot be easily decomposed or recycled. This article explored the infiluence of recycled GFRPs as reinforcement in limestone calcined clay cements mortar mixes with ratios of 2%,4%,6%, 8% and 10% replacing the fine aggregate weight in the flexural strength, compressive strength, and density. Results demonstrated flexural and compressive strengths in the range of 2.5 MPa-7MPa and 12-28 MPa respectively at the ages of 28 and 56 days.
author Garcia Suarez, Brayan Leon
Rico Perez, Maria Alejandra
Zelaya Maradiaga, Jose Reynaldo
Vanegas Vanegas, Angy Daniela
author_facet Garcia Suarez, Brayan Leon
Rico Perez, Maria Alejandra
Zelaya Maradiaga, Jose Reynaldo
Vanegas Vanegas, Angy Daniela
topic Limestone calcined clay cement
Recycled glass fiber reinforced polymer
Mortar
Mechanical properties
Cemento de arcilla calcinada con piedra caliza
Polímero reforzado con fibra de vidrio reciclado
Mortero
Propiedades mecánicas
topic_facet Limestone calcined clay cement
Recycled glass fiber reinforced polymer
Mortar
Mechanical properties
Cemento de arcilla calcinada con piedra caliza
Polímero reforzado con fibra de vidrio reciclado
Mortero
Propiedades mecánicas
topicspa_str_mv Cemento de arcilla calcinada con piedra caliza
Polímero reforzado con fibra de vidrio reciclado
Mortero
Propiedades mecánicas
citationvolume 21
citationissue 41
citationedition Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1720
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Amer, Omar Alsanusi, Prasad Rangaraju, and Hassan Rashidian-Dezfouli. 2021. ‘Effectiveness of Binary and Ternary Blended Cements of Class C Fly Ash and Ground Glass Fibers in Improving the Durability of Concrete’. Journal of Sustainable Cement-Based Materials 0(0):1–16. doi: 10.1080/21650373.2021.1899085.
Asokan, P., M. Osmani, and A. D. F. Price. 2009. ‘Assessing the Recycling Potential of Glass Fibre Reinforced Plastic Waste in Concrete and Cement Composites’. Journal of Cleaner Production 17(9):821–29. doi: 10.1016/j.jclepro.2008.12.004.
Asokan, P., Mohamed Osmani, and ADF Price. 2010. ‘Improvement of the Mechanical Properties of Glass Fibre Reinforced Plastic Waste Powder Filled Concrete’. Construction and Building Materials 24(4):448–60. doi: 10.1016/j.conbuildmat.2009.10.017.
Avet, François, and Karen Scrivener. 2020. ‘Influence of PH on the Chloride Binding Capacity of Limestone Calcined Clay Cements (LC3)’. Cement and Concrete Research 131(March):106031. doi: 10.1016/j.cemconres.2020.106031.
Baghban, Mohammad Hajmohammadian, and Reza Mahjoub. 2020. ‘Natural Kenaf Fiber and LC3 Binder for Sustainable Fiber-Reinforced Cementitious Composite: A Review’. Applied Sciences (Switzerland) 10(1). doi: 10.3390/app10010357.
Cihan, Mehmet Timur, and Yunus Emre Avşar. 2022. ‘Predictability of the Mechanical Properties of Glass Fibrous Mortar’. Arabian Journal for Science and Engineering. doi: 10.1007/s13369-022-07018-7.
Clark, Edward, Monika Bleszynski, Frank Valdez, and Maciej Kumosa. 2020. ‘Recycling Carbon and Glass Fiber Polymer Matrix Composite Waste into Cementitious Materials’. Resources, Conservation and Recycling 155(December 2019):104659. doi: 10.1016/j.resconrec.2019.104659.
Criado, M., I. García-Díaz, J. M. Bastidas, F. J. Alguacil, F. A. López, and C. Monticelli. 2014. ‘Effect of Recycled Glass Fiber on the Corrosion Behavior of Reinforced Mortar’. Construction and Building Materials 64(2014):261–69. doi: 10.1016/j.conbuildmat.2014.04.049.
Dehghan, Alireza, Karl Peterson, and Asia Shvarzman. 2017. ‘Recycled Glass Fiber Reinforced Polymer Additions to Portland Cement Concrete’. Construction and Building Materials 146:238–50. doi: 10.1016/j.conbuildmat.2017.04.011.
García, D., I. Vegas, and I. Cacho. 2014. ‘Mechanical Recycling of GFRP Waste as Short-Fiber Reinforcements in Microconcrete’. Construction and Building Materials 64:293–300. doi: 10.1016/j.conbuildmat.2014.02.068.
Kazmi, Danish, David J. Williams, and Mehdi Serati. 2020. ‘Waste Glass in Civil Engineering Applications—A Review’. International Journal of Applied Ceramic Technology 17(2):529–54. doi: 10.1111/ijac.13434.
Khan, Muhammad Imran, Muhammad Umair, Khubab Shaker, Abdul Basit, Yasir Nawab, and Muhammad Kashif. 2020. ‘Impact of Waste Fibers on the Mechanical Performance of Concrete Composites’. Journal of the Textile Institute 111(11):1632–40. doi: 10.1080/00405000.2020.1736423.
Mastali, Mohammad, Ahmad Dalvand, Alireza R. Sattarifard, and Zahra Abdollahnejad. 2018. ‘Effect of Different Lengths and Dosages of Recycled Glass Fibres on the Fresh and Hardened Properties of SCC’. Magazine of Concrete Research 70(22):1175–88. doi: 10.1680/jmacr.17.00180.
Odera, R. S., O. D. Onukwuli, and V. S. Aigbodion. 2018. ‘Experimental Correlation between Varying Processing Parameter and Compressive Strength of Polymer-Modified Cement Mortar Composites’. International Journal of Advanced Manufacturing Technology 98(9–12):2591–99. doi: 10.1007/s00170-018-2405-z.
Patel, Kishan, Rishi Gupta, Mohit Garg, Boyu Wang, and Urmil Dave. 2019. ‘Development of FRC Materials with Recycled Glass Fibers Recovered from Industrial GFRP-Acrylic Waste’. Advances in Materials Science and Engineering 2019. doi: 10.1155/2019/4149708.
Rodin, Harry, Somayeh Nassiri, Karl Englund, Osama Fakron, and Hui Li. 2018. ‘Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance’. Construction and Building Materials 187:738–51. doi: 10.1016/j.conbuildmat.2018.07.169. Scrivener, Karen, François Avet, Hamed Maraghechi, Franco Zunino, Julien Ston, Wilasinee Hanpongpun, and Aurélie Favier. 2018. ‘Impacting Factors and Properties of Limestone Calcined Clay Cements (LC3)’. Green Materials 7(1):3–14. doi: 10.1680/jgrma.18.00029.
Scrivener, Karen, Fernando Martirena, Shashank Bishnoi, and Soumen Maity. 2018. ‘Calcined Clay Limestone Cements (LC3)’. Cement and Concrete Research 114(March 2017):49–56. doi: 10.1016/j.cemconres.2017.08.017.
Shafei, Behrouz, Maziar Kazemian, Michael Dopko, and Meysam Najimi. 2021. ‘State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete’. Materials 14(2):409. doi: 10.3390/ma14020409.
Singh, Avishreshth, Akhil Charak, Krishna Prapoorna Biligiri, and Venkataraman Pandurangan. 2022. ‘Glass and Carbon Fiber Reinforced Polymer Composite Wastes in Pervious Concrete: Material Characterization and Lifecycle Assessment’. Resources, Conservation and Recycling 182(March):106304. doi: 10.1016/j.resconrec.2022.106304.
Song, Meimei, Phil Purnell, and Ian Richardson. 2015. ‘Microstructure of Interface between Fibre and Matrix in 10-Year Aged GRC Modified by Calcium Sulfoaluminate Cement’. Cement and Concrete Research 76:20–26. doi: 10.1016/j.cemconres.2015.05.011.
Vali, K. Shaiksha, B. S. Murugan, S. K. Reddy, and E. Noroozinejad Farsangi. 2020. ‘Eco-Friendly Hybrid Concrete Using Pozzolanic Binder and Glass Fibers’. International Journal of Engineering, Transactions A: Basics 33(7):1183–91. doi: 10.5829/ije.2020.33.07a.03.
Walpole, Ronalde E., Raymond H. Myers, Sharon L. Myers, and Keying Ye. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias.
Xiong, Guangjing, Baiyun Luo, Xiang Wu, Gengying Li, and Liqiang Chen. 2006. ‘Influence of Silane Coupling Agent on Quality of Interfacial Transition Zone between Concrete Substrate and Repair Materials’. Cement and Concrete Composites 28(1):97–101. doi: 10.1016/j.cemconcomp.2005.09.004.
Yazdanbakhsh, Ardavan, and Lawrence C. Bank. 2014. ‘A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction’. Polymers 6(6):1810–26. doi: 10.3390/polym6061810.
Zaid, Osama, Jawad Ahmad, Muhammad Shahid Siddique, Fahid Aslam, Hisham Alabduljabbar, and Khaled Mohamed Khedher. 2021. ‘A Step towards Sustainable Glass Fiber Reinforced Concrete Utilizing Silica Fume and Waste Coconut Shell Aggregate’. Scientific Reports 11(1):1–14. doi: 10.1038/s41598-021-92228-6.
Zhou, Boyu, Mo Zhang, Li Wang, and Guowei Ma. 2021. ‘Experimental Study on Mechanical Property and Microstructure of Cement Mortar Reinforced with Elaborately Recycled GFRP Fiber’. Cement and Concrete Composites 117(December 2020):103908. doi: 10.1016/j.cemconcomp.2020.103908.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-01-01
date_accessioned 2024-01-01 00:00:00
date_available 2024-01-01 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1720
url_doi https://doi.org/10.24050/reia.v21i41.1720
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v21i41.1720
citationstartpage 4106 pp. 1
citationendpage 19
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1720/1580
_version_ 1811200532910440448