Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG
.
El electrocardiograma (ECG) es una herramienta esencial en el diagnóstico de enfermedades cardiovasculares, proporcionando información valiosa sobre el ritmo y la función del corazón. Tradicionalmente, los médicos se basaban en características heurísticas identificadas manualmente para detectar anomalías en el ECG. Sin embargo, esta metodología presentaba limitaciones en términos de precisión y fiabilidad. Con el objetivo de mejorar la precisión en la identificación de arritmias cardiacas, esta investigación se enfocó en el desarrollo de modelos basados en redes neuronales convolucionales. Se utilizaron dos conjuntos de datos: el dataset PhysioNet MIT-BIH, ampliamente utilizado en la comunidad científica, y datos adquiridos por el simulador... Ver más
1794-1237
2463-0950
21
2024-01-01
4105 pp. 1
22
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1719 |
---|---|
record_format |
ojs |
spelling |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG Classification of cardiac arrhythmias using convolutional neural networks in ECG samples El electrocardiograma (ECG) es una herramienta esencial en el diagnóstico de enfermedades cardiovasculares, proporcionando información valiosa sobre el ritmo y la función del corazón. Tradicionalmente, los médicos se basaban en características heurísticas identificadas manualmente para detectar anomalías en el ECG. Sin embargo, esta metodología presentaba limitaciones en términos de precisión y fiabilidad. Con el objetivo de mejorar la precisión en la identificación de arritmias cardiacas, esta investigación se enfocó en el desarrollo de modelos basados en redes neuronales convolucionales. Se utilizaron dos conjuntos de datos: el dataset PhysioNet MIT-BIH, ampliamente utilizado en la comunidad científica, y datos adquiridos por el simulador de arritmias Bio-Tek BP Pump NIBP. Se entrenaron cinco modelos con diferentes arquitecturas, incluyendo modelos convencionales como VGG16, ResNet-50 y AlexNet, así como dos arquitecturas propuestas por los autores. Todos los modelos se entrenaron con el mismo número de muestras y configuración de hiperparámetros. La evaluación del desempeño se realizó utilizando métricas comunes como exactitud, recall, F1-score y exactitud —accuracy—. Los resultados demostraron que la arquitectura VGG16 fue la más eficaz en la clasificación de arritmias cardiacas, alcanzando una exactitud del 98,8% en el conjunto de datos MIT-BIH. Además, al evaluar los datos de prueba del simulador Bio-Tek BP Pump NIBP, el modelo customize-2 demostró el mejor rendimiento con una exactitud del 96,3%. Estos resultados son prometedores, ya que demuestran el potencial de las redes neuronales convolucionales para mejorar la precisión en el diagnóstico de arritmias cardiacas. Los modelos desarrollados en esta investigación podrían ser una herramienta útil para los médicos en la detección temprana y el tratamiento adecuado de estas afecciones cardiovasculares. The electrocardiogram (ECG) is an essential tool in the diagnosis of cardiovascular disease, providing valuable information about heart rhythm and function. Traditionally, physicians relied on manually identified heuristic features to detect ECG abnormalities. However, this methodology had limitations in terms of accuracy and reliability. With the aim of improving accuracy in the identification of cardiac arrhythmias, this research focused on the development of models based on convolutional neural networks. Two data sets were used: the PhysioNet MIT-BIH dataset, widely used in the scientific community, and data acquired by the Bio-Tek BP Pump NIBP arrhythmia simulator. Five models were trained with different architectures, including conventional models such as (VGG16, ResNet-50 and AlexNet), as well as two architectures proposed by the authors. All models were trained with the same number of samples and hyperparameter settings. Performance evaluation was performed using common metrics such as precision, recall, F1-score and accuracy. The results showed that the VGG16 architecture was the most effective in classifying cardiac arrhythmias, achieving an accuracy of 98.8% on the MIT-BIH dataset. Furthermore, when evaluating test data from the Bio-Tek BP Pump NIBP simulator, the customize-2 model demonstrated the best performance with an accuracy of 96.3%. These results are promising, as they demonstrate the potential of convolutional neural networks to improve accuracy in the diagnosis of cardiac arrhythmias. The models developed in this research could be a useful tool for clinicians in the early detection and appropriate treatment of these cardiovascular conditions. astudillo Delgado, Victor manuel Revelo Luna, David Muñoz Chaves, Javier Andres Beat segmentation Electrocardiogram (ECG) Cardiac arrhythmias PhysioNet MIT-BIH Dataset ECG classification confusion matrix data Augmentation Hyperparameters convolutional neural networks arrhythmia simulator Segmentación de latidos Electrocardiograma (ECG) Arritmias cardiacas Dataset PhysioNet MIT-BIH clasificación de ECG matriz de confusion data Augmentation Hiperparámetros redes neuronales convolucionales simulador de arritmias 21 41 Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41 Artículo de revista Journal article 2024-01-01 00:00:00 2024-01-01 00:00:00 2024-01-01 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1719 10.24050/reia.v21i41.1719 https://doi.org/10.24050/reia.v21i41.1719 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 4105 pp. 1 22 Chazal, P.; O'Dwyer, M. and Reilly, R. (2004). Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 51(7), 1196-1206. doi:10.1109/TBME.2004.827359 Goldberger, A.L; Amaral, L.A.; Glass, L; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K and Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), 215–220. doi:https://doi.org/10.1161/01.CIR.101.23.e215 Gómez Herrero, G.; Gotchev, A.; Christov, I. and Egiazarian, K. (2005). Feature extraction for heartbeat classification using independent component analysis and matching pursuits. Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Philadelphia, PA, USA 4, pp.725-728. doi:10.1109/ICASSP.2005.1416111 Huang, J.; Chen, B.; Yao, B. and He, W. (2019). ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network. IEEE Access, 7, 92871-92880. doi:https://doi.org/10.1109/ACCESS.2019.2928017 Kachuee, M.; Fazeli, S., and Sarrafzadeh, M. (2018). ECG Heartbeat Classification: A Deep Transferable Representation. IEEE International Conference on Healthcare Informatics, 2018 IEEE International Conference on Healthcare Informatics. (ICHI). New York City, NY, USA pp. 443-444 doi:10.1109/ICHI.2018.00092 Khorrami, H. and Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37(8), 5751-5757. doi:https://doi.org/10.1016/j.eswa.2010.02.033 Kojuri, J.; Boostani, R.; Dehghani, P.; Nowroozipour, F. and Saki, N. (2015). Prediction of acute myocardial infarction with artificial neural networks in patients with nondiagnostic electrocardiogram. Journal of Cardiovascular Disease Research, 6(2), 51-59. doi:10.5530/jcdr.2015.2.2 Laguna, P.; Jane, R.; Olmos, S.; Thakor, N.; Rix, H. and Caminal, P. (1996). Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model. Medical & biological engineering & computing, 34(1), 58-88. doi:https://doi.org/10.1007/BF02637023 Lanatá, A.; Valenza, G.; Mancuso, C. and Scilingo, E. (2011). Robust multiple cardiac arrhythmia detection through bispectrum analysis. Expert Systems with Applications, 38(6), 6798-6804. doi:https://doi.org/10.1016/j.eswa.2010.12.066 Li, T. and Zhou, M. (2016). ECG Classification UsingWavelet Packet Entropy and Random Forests. Entropy, 18(8), 285. doi:10.3390/e18080285 Lin, S.W.; Ying, K.C.; Chen, S.C. and Lee, Z. J. (2008). Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 32(4), 1817-1824. doi:https://doi.org/10.1016/j.eswa.2007.08.088 Liu, B.; Liu, J.; Wang, G.; Huang, K.; Li, F.; Zheng, Y.; Luo, Y. and Zhou, F. (2015). A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Computers in Biology and Medicine, 61, 178-184. doi:https://doi.org/10.1016/j.compbiomed.2014.08.010 Luz, E.; Nunes, T.; de Albuquerque, V.; Papa, J. and Menotti, D. (2013). ECG arrhythmia classification based on optimum-path forest. Expert Systems with Applications, 40(9), 3561-3573. doi:https://doi.org/10.1016/j.eswa.2012.12.063 Moavenian, M. and Khorrami, H. (2010). A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification. Expert Systems with Applications, 37(4), 3088-3093. doi:https://doi.org/10.1016/j.eswa.2009.09.021 Moody, G. and Mark, R. (2001). The Impact of the MIT-BIH Arrhythmia Database. IEEE engineering in medicine and biology, 20(3), 45-50. doi:https://doi.org/10.13026/C2F305 Moody, G. and Mark, R. (1989). QRS morphology representation and noise estimation using the Karhunen-Loeve transform. Proceedings. Computers in Cardiology, 269-272. doi:10.1109/CIC.1989.130540 National Library of Medicine. (10 de 12 de 2020). MedlinePlus. Recuperado el 24 de 02 de 2022, de MedlinePlus: https://medlineplus.gov/lab-tests/electrocardiogram/ Pal, S. (2019). ECG Monitoring: Present Status and Future Trend. En Encyclopedia of Biomedical Engineering. University of Calcutta, Kolkata, India. pp. 363-379. doi:https://doi.org/10.1016/B978-0-12-801238-3.10892-X Pyakillya, B.; Kazachenko, N. and Mikhailovsky, N. (2017). Deep Learning for {ECG} Classification. Journal of Physics: Conference Series, IOP Publishing. 913, 012004. doi:https://doi.org/10.1088/1742-6596/913/1/012004 Revelo Luna, D. A.; Mejía Manzano, J. E. and Munoz Chaves, J. A. (2021). Effect of Pre-processing of CT Images on the Performance of Deep Neural Networks Based Diagnosis of COVID-19. Journal of Scientific & Industrial Research, 80(11), 992-1000 Safdarian, N.; Jafarnia D.N., and Attarodi, G. (2014). A New Pattern Recognition Method for Detection and Localization of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of ECG Signal. Journal of Biomedical Science and Engineering, 07, 818-824. doi:10.4236/jbise.2014.710081 Song, M.H.; Lee, J.; Cho, S.P.; Lee, K.J. and Yoo, S.K. (2005). Support vector machine based arrhythmia classification using reduced features. International journal of control automation and systems, 3(4), 571-579. doi:http://dx.doi.org/OAK-2005-06773 Verma, K. K. (2021). Deep Learning Approach to Recognize COVID-19, SARS and Streptococcus. Journal of Scientific & Industrial Research, 80(01), 51-59. Wiggins, M.; Saad, A.; Litt, B. and Vachtsevanos, G. (2008). Evolving a Bayesian classifier for ECG-based age classification in medical applications. Applied Soft Computing, 8(1), 599-608. doi:https://doi.org/10.1016/j.asoc.2007.03.009 World Heath Organization. (11 de 06 de 2021). World Heath Organization. Obtenido de https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) Ye, C.; Coimbra, M. T.; and Kumar, V. (2010). Arrhythmia detection and classification using morphological and dynamic features of ECG signals. Annual International Conference of the IEEE Engineering in Medicine and Biology 2010, Buenos Aires, Argentina, pp.1918-1921. doi:10.1109/IEMBS.2010.5627645 Yu, S. N. and Chen, Y. H. (2007). Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recognition Letters, 28(10), 1142-1150. doi:https://doi.org/10.1016/j.patrec.2007.01.017 Yu, S. N. and Chou, K.T. (2009). Selection of significant independent components for ECG beat classification. Expert Systems with Applications, 36(2), 2088-2096. doi:https://doi.org/10.1016/j.eswa.2007.12.016 Zhang, L.; Karimzadeh, M.; Welch, M.; McIntosh, C. and Wang, B. (2021). Chapter 7 - Analytics methods and tools for integration of biomedical data in medicine. Xing, L.; Giger, M.L., and Min, J.K. Artificial Intelligence in Medicine. Academic Press, pp. 113-129. doi:https://doi.org/10.1016/B978-0-12-821259-2.00007-7 https://revistas.eia.edu.co/index.php/reveia/article/download/1719/1579 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG |
spellingShingle |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG astudillo Delgado, Victor manuel Revelo Luna, David Muñoz Chaves, Javier Andres Beat segmentation Electrocardiogram (ECG) Cardiac arrhythmias PhysioNet MIT-BIH Dataset ECG classification confusion matrix data Augmentation Hyperparameters convolutional neural networks arrhythmia simulator Segmentación de latidos Electrocardiograma (ECG) Arritmias cardiacas Dataset PhysioNet MIT-BIH clasificación de ECG matriz de confusion data Augmentation Hiperparámetros redes neuronales convolucionales simulador de arritmias |
title_short |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG |
title_full |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG |
title_fullStr |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG |
title_full_unstemmed |
Clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ECG |
title_sort |
clasificación de arritmias cardiacas usando redes neuronales convolucionales en muestras de ecg |
title_eng |
Classification of cardiac arrhythmias using convolutional neural networks in ECG samples |
description |
El electrocardiograma (ECG) es una herramienta esencial en el diagnóstico de enfermedades cardiovasculares, proporcionando información valiosa sobre el ritmo y la función del corazón. Tradicionalmente, los médicos se basaban en características heurísticas identificadas manualmente para detectar anomalías en el ECG. Sin embargo, esta metodología presentaba limitaciones en términos de precisión y fiabilidad. Con el objetivo de mejorar la precisión en la identificación de arritmias cardiacas, esta investigación se enfocó en el desarrollo de modelos basados en redes neuronales convolucionales. Se utilizaron dos conjuntos de datos: el dataset PhysioNet MIT-BIH, ampliamente utilizado en la comunidad científica, y datos adquiridos por el simulador de arritmias Bio-Tek BP Pump NIBP. Se entrenaron cinco modelos con diferentes arquitecturas, incluyendo modelos convencionales como VGG16, ResNet-50 y AlexNet, así como dos arquitecturas propuestas por los autores. Todos los modelos se entrenaron con el mismo número de muestras y configuración de hiperparámetros. La evaluación del desempeño se realizó utilizando métricas comunes como exactitud, recall, F1-score y exactitud —accuracy—. Los resultados demostraron que la arquitectura VGG16 fue la más eficaz en la clasificación de arritmias cardiacas, alcanzando una exactitud del 98,8% en el conjunto de datos MIT-BIH. Además, al evaluar los datos de prueba del simulador Bio-Tek BP Pump NIBP, el modelo customize-2 demostró el mejor rendimiento con una exactitud del 96,3%. Estos resultados son prometedores, ya que demuestran el potencial de las redes neuronales convolucionales para mejorar la precisión en el diagnóstico de arritmias cardiacas. Los modelos desarrollados en esta investigación podrían ser una herramienta útil para los médicos en la detección temprana y el tratamiento adecuado de estas afecciones cardiovasculares.
|
description_eng |
The electrocardiogram (ECG) is an essential tool in the diagnosis of cardiovascular disease, providing valuable information about heart rhythm and function. Traditionally, physicians relied on manually identified heuristic features to detect ECG abnormalities. However, this methodology had limitations in terms of accuracy and reliability. With the aim of improving accuracy in the identification of cardiac arrhythmias, this research focused on the development of models based on convolutional neural networks. Two data sets were used: the PhysioNet MIT-BIH dataset, widely used in the scientific community, and data acquired by the Bio-Tek BP Pump NIBP arrhythmia simulator. Five models were trained with different architectures, including conventional models such as (VGG16, ResNet-50 and AlexNet), as well as two architectures proposed by the authors. All models were trained with the same number of samples and hyperparameter settings. Performance evaluation was performed using common metrics such as precision, recall, F1-score and accuracy. The results showed that the VGG16 architecture was the most effective in classifying cardiac arrhythmias, achieving an accuracy of 98.8% on the MIT-BIH dataset. Furthermore, when evaluating test data from the Bio-Tek BP Pump NIBP simulator, the customize-2 model demonstrated the best performance with an accuracy of 96.3%. These results are promising, as they demonstrate the potential of convolutional neural networks to improve accuracy in the diagnosis of cardiac arrhythmias. The models developed in this research could be a useful tool for clinicians in the early detection and appropriate treatment of these cardiovascular conditions.
|
author |
astudillo Delgado, Victor manuel Revelo Luna, David Muñoz Chaves, Javier Andres |
author_facet |
astudillo Delgado, Victor manuel Revelo Luna, David Muñoz Chaves, Javier Andres |
topic |
Beat segmentation Electrocardiogram (ECG) Cardiac arrhythmias PhysioNet MIT-BIH Dataset ECG classification confusion matrix data Augmentation Hyperparameters convolutional neural networks arrhythmia simulator Segmentación de latidos Electrocardiograma (ECG) Arritmias cardiacas Dataset PhysioNet MIT-BIH clasificación de ECG matriz de confusion data Augmentation Hiperparámetros redes neuronales convolucionales simulador de arritmias |
topic_facet |
Beat segmentation Electrocardiogram (ECG) Cardiac arrhythmias PhysioNet MIT-BIH Dataset ECG classification confusion matrix data Augmentation Hyperparameters convolutional neural networks arrhythmia simulator Segmentación de latidos Electrocardiograma (ECG) Arritmias cardiacas Dataset PhysioNet MIT-BIH clasificación de ECG matriz de confusion data Augmentation Hiperparámetros redes neuronales convolucionales simulador de arritmias |
topicspa_str_mv |
Segmentación de latidos Electrocardiograma (ECG) Arritmias cardiacas Dataset PhysioNet MIT-BIH clasificación de ECG matriz de confusion data Augmentation Hiperparámetros redes neuronales convolucionales simulador de arritmias |
citationvolume |
21 |
citationissue |
41 |
citationedition |
Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1719 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Chazal, P.; O'Dwyer, M. and Reilly, R. (2004). Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 51(7), 1196-1206. doi:10.1109/TBME.2004.827359 Goldberger, A.L; Amaral, L.A.; Glass, L; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K and Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), 215–220. doi:https://doi.org/10.1161/01.CIR.101.23.e215 Gómez Herrero, G.; Gotchev, A.; Christov, I. and Egiazarian, K. (2005). Feature extraction for heartbeat classification using independent component analysis and matching pursuits. Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Philadelphia, PA, USA 4, pp.725-728. doi:10.1109/ICASSP.2005.1416111 Huang, J.; Chen, B.; Yao, B. and He, W. (2019). ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network. IEEE Access, 7, 92871-92880. doi:https://doi.org/10.1109/ACCESS.2019.2928017 Kachuee, M.; Fazeli, S., and Sarrafzadeh, M. (2018). ECG Heartbeat Classification: A Deep Transferable Representation. IEEE International Conference on Healthcare Informatics, 2018 IEEE International Conference on Healthcare Informatics. (ICHI). New York City, NY, USA pp. 443-444 doi:10.1109/ICHI.2018.00092 Khorrami, H. and Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37(8), 5751-5757. doi:https://doi.org/10.1016/j.eswa.2010.02.033 Kojuri, J.; Boostani, R.; Dehghani, P.; Nowroozipour, F. and Saki, N. (2015). Prediction of acute myocardial infarction with artificial neural networks in patients with nondiagnostic electrocardiogram. Journal of Cardiovascular Disease Research, 6(2), 51-59. doi:10.5530/jcdr.2015.2.2 Laguna, P.; Jane, R.; Olmos, S.; Thakor, N.; Rix, H. and Caminal, P. (1996). Adaptive estimation of QRS complex wave features of ECG signal by the Hermite model. Medical & biological engineering & computing, 34(1), 58-88. doi:https://doi.org/10.1007/BF02637023 Lanatá, A.; Valenza, G.; Mancuso, C. and Scilingo, E. (2011). Robust multiple cardiac arrhythmia detection through bispectrum analysis. Expert Systems with Applications, 38(6), 6798-6804. doi:https://doi.org/10.1016/j.eswa.2010.12.066 Li, T. and Zhou, M. (2016). ECG Classification UsingWavelet Packet Entropy and Random Forests. Entropy, 18(8), 285. doi:10.3390/e18080285 Lin, S.W.; Ying, K.C.; Chen, S.C. and Lee, Z. J. (2008). Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 32(4), 1817-1824. doi:https://doi.org/10.1016/j.eswa.2007.08.088 Liu, B.; Liu, J.; Wang, G.; Huang, K.; Li, F.; Zheng, Y.; Luo, Y. and Zhou, F. (2015). A novel electrocardiogram parameterization algorithm and its application in myocardial infarction detection. Computers in Biology and Medicine, 61, 178-184. doi:https://doi.org/10.1016/j.compbiomed.2014.08.010 Luz, E.; Nunes, T.; de Albuquerque, V.; Papa, J. and Menotti, D. (2013). ECG arrhythmia classification based on optimum-path forest. Expert Systems with Applications, 40(9), 3561-3573. doi:https://doi.org/10.1016/j.eswa.2012.12.063 Moavenian, M. and Khorrami, H. (2010). A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification. Expert Systems with Applications, 37(4), 3088-3093. doi:https://doi.org/10.1016/j.eswa.2009.09.021 Moody, G. and Mark, R. (2001). The Impact of the MIT-BIH Arrhythmia Database. IEEE engineering in medicine and biology, 20(3), 45-50. doi:https://doi.org/10.13026/C2F305 Moody, G. and Mark, R. (1989). QRS morphology representation and noise estimation using the Karhunen-Loeve transform. Proceedings. Computers in Cardiology, 269-272. doi:10.1109/CIC.1989.130540 National Library of Medicine. (10 de 12 de 2020). MedlinePlus. Recuperado el 24 de 02 de 2022, de MedlinePlus: https://medlineplus.gov/lab-tests/electrocardiogram/ Pal, S. (2019). ECG Monitoring: Present Status and Future Trend. En Encyclopedia of Biomedical Engineering. University of Calcutta, Kolkata, India. pp. 363-379. doi:https://doi.org/10.1016/B978-0-12-801238-3.10892-X Pyakillya, B.; Kazachenko, N. and Mikhailovsky, N. (2017). Deep Learning for {ECG} Classification. Journal of Physics: Conference Series, IOP Publishing. 913, 012004. doi:https://doi.org/10.1088/1742-6596/913/1/012004 Revelo Luna, D. A.; Mejía Manzano, J. E. and Munoz Chaves, J. A. (2021). Effect of Pre-processing of CT Images on the Performance of Deep Neural Networks Based Diagnosis of COVID-19. Journal of Scientific & Industrial Research, 80(11), 992-1000 Safdarian, N.; Jafarnia D.N., and Attarodi, G. (2014). A New Pattern Recognition Method for Detection and Localization of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of ECG Signal. Journal of Biomedical Science and Engineering, 07, 818-824. doi:10.4236/jbise.2014.710081 Song, M.H.; Lee, J.; Cho, S.P.; Lee, K.J. and Yoo, S.K. (2005). Support vector machine based arrhythmia classification using reduced features. International journal of control automation and systems, 3(4), 571-579. doi:http://dx.doi.org/OAK-2005-06773 Verma, K. K. (2021). Deep Learning Approach to Recognize COVID-19, SARS and Streptococcus. Journal of Scientific & Industrial Research, 80(01), 51-59. Wiggins, M.; Saad, A.; Litt, B. and Vachtsevanos, G. (2008). Evolving a Bayesian classifier for ECG-based age classification in medical applications. Applied Soft Computing, 8(1), 599-608. doi:https://doi.org/10.1016/j.asoc.2007.03.009 World Heath Organization. (11 de 06 de 2021). World Heath Organization. Obtenido de https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) Ye, C.; Coimbra, M. T.; and Kumar, V. (2010). Arrhythmia detection and classification using morphological and dynamic features of ECG signals. Annual International Conference of the IEEE Engineering in Medicine and Biology 2010, Buenos Aires, Argentina, pp.1918-1921. doi:10.1109/IEMBS.2010.5627645 Yu, S. N. and Chen, Y. H. (2007). Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recognition Letters, 28(10), 1142-1150. doi:https://doi.org/10.1016/j.patrec.2007.01.017 Yu, S. N. and Chou, K.T. (2009). Selection of significant independent components for ECG beat classification. Expert Systems with Applications, 36(2), 2088-2096. doi:https://doi.org/10.1016/j.eswa.2007.12.016 Zhang, L.; Karimzadeh, M.; Welch, M.; McIntosh, C. and Wang, B. (2021). Chapter 7 - Analytics methods and tools for integration of biomedical data in medicine. Xing, L.; Giger, M.L., and Min, J.K. Artificial Intelligence in Medicine. Academic Press, pp. 113-129. doi:https://doi.org/10.1016/B978-0-12-821259-2.00007-7 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-01-01 |
date_accessioned |
2024-01-01 00:00:00 |
date_available |
2024-01-01 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1719 |
url_doi |
https://doi.org/10.24050/reia.v21i41.1719 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v21i41.1719 |
citationstartpage |
4105 pp. 1 |
citationendpage |
22 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1719/1579 |
_version_ |
1811200532812922880 |