Influencia de la escoria de cobre como material cementicio suplementario en morteros
.
La demanda de cemento Portland (OPC) impacta de gran manera el medio ambiente, debido a la generación de gases de efecto invernadero y el consumo de materias primas no renovables durante su fabricación. Por tal razón, la búsqueda de materiales alternativos para disminuir el consumo de cemento es vital en la búsqueda de la sustentabilidad. Por esta razón, la escoria de cobre (EC) como materia cementicio suplementario (SCM) en la elaboración de morteros con menor contenido de OPC es una opción para generar un ambiente sostenible. Este estudio, investigo la influencia de la EC frente a la trabajabilidad, resistencia a la compresión y resistencia a la flexión a diferentes edades de curado. Morteros con 0%, 10%, 20%, 30%, 40% y 50% de EC como re... Ver más
1794-1237
2463-0950
20
2023-12-19
4022 pp. 1
24
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1709 |
---|---|
record_format |
ojs |
spelling |
Influencia de la escoria de cobre como material cementicio suplementario en morteros Influence of copper slag as supplementary cementitious material in mortar La demanda de cemento Portland (OPC) impacta de gran manera el medio ambiente, debido a la generación de gases de efecto invernadero y el consumo de materias primas no renovables durante su fabricación. Por tal razón, la búsqueda de materiales alternativos para disminuir el consumo de cemento es vital en la búsqueda de la sustentabilidad. Por esta razón, la escoria de cobre (EC) como materia cementicio suplementario (SCM) en la elaboración de morteros con menor contenido de OPC es una opción para generar un ambiente sostenible. Este estudio, investigo la influencia de la EC frente a la trabajabilidad, resistencia a la compresión y resistencia a la flexión a diferentes edades de curado. Morteros con 0%, 10%, 20%, 30%, 40% y 50% de EC como reemplazo parcial de OPC se elaboraron, donde se evidencio una mayor fluidez en los morteros con EC. Las propiedades mecánicas, se vieron afectas de manera monotónica en las primeras edades evaluadas (7, 28 y 90 días), donde los morteros con mayor contenido de EC presentaron la mayor perdida de resistencia. Sin embargo, a los 150 días de curado, la mezcla 10% EC presento una resistencia a la compresión de 43,6 MPa, 7,6% mayor que la mezcla de referencia. The high consumption of Portland cement (OPC) has a significant impact on the environment due to the generation of greenhouse gases and the use of non-renewable raw materials during its manufacturing. Therefore, the search for alternative materials to reduce cement consumption is crucial in the pursuit of sustainability. For this reason, copper slag (CS) as a supplementary cementitious material (SCM) in the production of mortars with lower OPC content is an option to create a sustainable environment. This study investigated the influence of CS on workability, compressive strength, and flexural strength at different curing ages. Mortars were prepared with 0%, 10%, 20%, 30%, 40%, and 50% CS as partial replacement for OPC, where mortars with CS demonstrated increased flowability. The mechanical properties were monotonically affected during the initial evaluated ages (7, 28, and 90 days), with mortars containing higher CS content showing the greatest loss of strength. However, at 150 days of curing, the 10% CS mixture exhibited a compressive strength of 43.6 MPa, which was 7.6% higher than the reference mixture. Silva Urrego, Yimmy Fernando Vizcaíno Méndez, Gabriel Antonio mortero escoria de cobre resistencia a la compresión material cementicio suplementario 20 40 Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40 Artículo de revista Journal article 2023-12-19 00:00:00 2023-12-19 00:00:00 2023-12-19 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1709 10.24050/reia.v20i40.1709 https://doi.org/10.24050/reia.v20i40.1709 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 4022 pp. 1 24 Al Biajawi, M. I., Embong, R., Muthusamy, K., Ismail, N., & Obianyo, I. I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials, 338(May). https://doi.org/10.1016/j.conbuildmat.2022.127624 ASTM C150. (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA. 1–9. https://doi.org/10.1520/C0150 ASTM C230. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. 1–7. https://doi.org/10.1520/C0230 Ayati, B., Newport, D., Wong, H., & Cheeseman, C. (2022). Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Cleaner Materials, 5, 100099. https://doi.org/10.1016/j.clema.2022.100099 Bahurudeen, A., Wani, K., Basit, M. A., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. Journal of Materials in Civil Engineering, 28(2), 1–11. https://doi.org/10.1061/(asce)mt.1943-5533.0001361 Bheel, N., Ali, M. O. A., Shafiq, N., Almujibah, H. R., Awoyera, P., Benjeddou, O., Shittu, A., & Olalusi, O. B. (2023). Utilization of millet husk ash as a supplementary cementitious material in eco-friendly concrete: RSM modelling and optimization. Structures, 49(February), 826–841. https://doi.org/10.1016/j.istruc.2023.02.015 Çelik, D. N., Demircan, R. K., Shi, J., Kaplan, G., & Durmuş, G. (2023). The engineering properties of high strength mortars incorporating juniper seed ash calcined at different temperatures: Comparison with other SCMs. Powder Technology, 422(March). https://doi.org/10.1016/j.powtec.2023.118474 Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Chemical effect of sewage sludge ash on early-age hydration of cement used as supplementary cementitious material. Construction and Building Materials, 322(January). https://doi.org/10.1016/j.conbuildmat.2021.126116 Cruz Juarez, R. I., & Finnegan, S. (2021). The environmental impact of cement production in Europe: A holistic review of existing EPDs. Cleaner Environmental Systems, 3(August). https://doi.org/10.1016/j.cesys.2021.100053 Edwin, R. S., De Schepper, M., Gruyaert, E., & De Belie, N. (2016). Effect of secondary copper slag as cementitious material in ultra-high performance mortar. Construction and Building Materials, 119, 31–44. https://doi.org/10.1016/j.conbuildmat.2016.05.007 Fernando, Y., Urrego, S., Rojas, J. E., & Gamboa, J. A. (2019). diseño de mezcla de vértices extremos , en concretos y cal hidratada Artículo en prensa / Article in press Optimization of Compressive Strength Using Design of Extreme Vertices Mixing , in Ternary Concretes Based desenho de mescla de vértices estremos , e. Revista EIA, 57(2), 99–113. Galusnyak, S. C., Petrescu, L., & Cormos, C. C. (2022). Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. Journal of Environmental Management, 320(July). https://doi.org/10.1016/j.jenvman.2022.115908 Gopalakrishnan, R., & Nithiyanantham, S. (2020). Microstructural, mechanical, and electrical properties of copper slag admixtured cement mortar. Journal of Building Engineering, 31(March). https://doi.org/10.1016/j.jobe.2020.101375 Hafez, H., Teirelbar, A., Tošić, N., Ikumi, T., & de la Fuente, A. (2023). Data-driven optimization tool for the functional, economic, and environmental properties of blended cement concrete using supplementary cementitious materials. Journal of Building Engineering, 67(January). https://doi.org/10.1016/j.jobe.2023.106022 Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. Journal of Cleaner Production, 324(September). https://doi.org/10.1016/j.jclepro.2021.129213 Jin, L., Chen, M., Wang, Y., Peng, Y., Yao, Q., Ding, J., Ma, B., & Lu, S. (2023). Utilization of mechanochemically pretreated municipal solid waste incineration fly ash for supplementary cementitious material. Journal of Environmental Chemical Engineering, 11(1). https://doi.org/10.1016/j.jece.2022.109112 Jones, C., Ramanathan, S., Suraneni, P., & Hale, M. (2023). Mitigating calcium oxychloride formation in cementitious paste using alternative supplementary cementitious materials. Construction and Building Materials, 377(May 2022). Kumar, A., & Tejaswini, M. L. (2022). Studies on hardened properties of concrete incorporated with copper slag. Materials Today: Proceedings, 60, 646–657. https://doi.org/10.1016/j.matpr.2022.02.264 Leong, G. W., Pahdili, E. H. H., Mo, K. H., & Ibrahim, Z. (2022). Impacts of polyvinyl alcohol and basalt fibres on green fly ash cenosphere lightweight cementitious composite. Materials Today: Proceedings, 61, 512–516. https://doi.org/10.1016/j.matpr.2021.12.519 Liang, X., Dang, W., Yang, G., & Zhang, Y. (2023). Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective. Journal of Environmental Management, 326(November 2022). https://doi.org/10.1016/j.jenvman.2022.116726 Li, W., Hua, L., Shi, Y., Wang, P., Liu, Z., Cui, D., & Sun, X. (2022). Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Applied Clay Science, 229(July). https://doi.org/10.1016/j.clay.2022.106674 Li, Z., Gao, X., Lu, D., & Dong, J. (2022). Early hydration properties and reaction kinetics of multi-composite cement pastes with supplementary cementitious materials (SCMs). Thermochimica Acta, 709(September 2021). https://doi.org/10.1016/j.tca.2022.179157 Mirnezami, S. M., Hassani, A., & Bayat, A. (2023). Evaluation of the effect of metallurgical aggregates (steel and copper slag) on the thermal conductivity and mechanical properties of concrete in jointed plain concrete pavements (JPCP). Construction and Building Materials, 367(January). https://doi.org/10.1016/j.conbuildmat.2022.129532 Navarrete, I., Kurama, Y., Escalona, N., Brevis, W., & Lopez, M. (2022). Effect of supplementary cementitious materials on viscosity of cement-based pastes. Cement and Concrete Research, 151(February 2021). https://doi.org/10.1016/j.cemconres.2021.106635 Ndahirwa, D., Zmamou, H., Lenormand, H., & Leblanc, N. (2022). The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review. Cleaner Materials, 5(July). https://doi.org/10.1016/j.clema.2022.100123 Panda, S., & Sarkar, P. (2022). Abrasion resistance of copper slag aggregate concrete designed by Taguchi method. Materials Today: Proceedings, 65, 434–441. https://doi.org/10.1016/j.matpr.2022.02.545 Pang, L., Liu, Z., Wang, D., & An, M. (2022). Review on the Application of Supplementary Cementitious Materials in Self-Compacting Concrete. Crystals, 12(2). https://doi.org/10.3390/cryst12020180 Rohith, N., & Ravikumar, M. S. (2022). Strength characteristics of concrete made with copper slag and fly-ash. Materials Today: Proceedings, 60, 738–745. https://doi.org/10.1016/j.matpr.2022.02.337 Santos, T. A., Cilla, M. S., & Ribeiro, e D. V. (2022). Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption. Journal of Cleaner Production, 335(May 2021), 130061. https://doi.org/10.1016/j.jclepro.2021.130061 Shahas, S., Girija, K., & Nazeer, M. (2022). Evaluation of pozzolanic activity of ternary blended supplementary cementitious material with rice husk ash and GGBS. Materials Today: Proceedings, xxxx, 2–7. https://doi.org/10.1016/j.matpr.2023.01.073 Sharma, P., Sharma, N., & Kumar Parashar, A. (2022). Scientific investigation of metakaolin-based cement concrete with rock sand infill. Materials Today: Proceedings, 62, 4147–4150. https://doi.org/10.1016/j.matpr.2022.04.674 Sharma, R., & Khan, R. A. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031 Sheikh, E., Mousavi, S. R., & Afshoon, I. (2022). Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. Journal of Cleaner Production, 368(December 2021). https://doi.org/10.1016/j.jclepro.2022.133005 Silva, Y. F., Izquierdo, S. R., & Delvasto, S. (2019). Effect of masonry residue on the hydration of portland cement paste. DYNA (Colombia), 86(209), 367–377. https://doi.org/10.15446/dyna.v86n209.77286 Silva, Y. F., Lange, D. A., & Delvasto, S. (2019). Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196. https://doi.org/10.1016/j.conbuildmat.2018.11.132 Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127277 Sridharan, M., & Madhavi, T. C. (2020). Investigating the influence of copper slag on the mechanical behaviour of concrete. Materials Today: Proceedings, 46, 3225–3232. https://doi.org/10.1016/j.matpr.2020.11.195 Teymouri, M., & Shakouri, M. (2023). Optimum pretreatment of corn stover ash as an alternative supplementary cementitious material. 12(March). Wang, D., Wang, Q., & Huang, Z. (2020). Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources, Conservation and Recycling, 162(April). https://doi.org/10.1016/j.resconrec.2020.105037 WBCSD. (2018). Cement technology roadmap shows how the path to achieve CO2 reductions up to 24% by 2050. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/Cement-technology-roadmap-shows-how-the-path-to-achieve-CO2-reductions-up-to-24-by-2050 Zajac, M., Bolte, G., Skocek, J., & Ben Haha, M. (2021). Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Construction and Building Materials, 276. https://doi.org/10.1016/j.conbuildmat.2020.122108 https://revistas.eia.edu.co/index.php/reveia/article/download/1709/1574 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Influencia de la escoria de cobre como material cementicio suplementario en morteros |
spellingShingle |
Influencia de la escoria de cobre como material cementicio suplementario en morteros Silva Urrego, Yimmy Fernando Vizcaíno Méndez, Gabriel Antonio mortero escoria de cobre resistencia a la compresión material cementicio suplementario |
title_short |
Influencia de la escoria de cobre como material cementicio suplementario en morteros |
title_full |
Influencia de la escoria de cobre como material cementicio suplementario en morteros |
title_fullStr |
Influencia de la escoria de cobre como material cementicio suplementario en morteros |
title_full_unstemmed |
Influencia de la escoria de cobre como material cementicio suplementario en morteros |
title_sort |
influencia de la escoria de cobre como material cementicio suplementario en morteros |
title_eng |
Influence of copper slag as supplementary cementitious material in mortar |
description |
La demanda de cemento Portland (OPC) impacta de gran manera el medio ambiente, debido a la generación de gases de efecto invernadero y el consumo de materias primas no renovables durante su fabricación. Por tal razón, la búsqueda de materiales alternativos para disminuir el consumo de cemento es vital en la búsqueda de la sustentabilidad. Por esta razón, la escoria de cobre (EC) como materia cementicio suplementario (SCM) en la elaboración de morteros con menor contenido de OPC es una opción para generar un ambiente sostenible. Este estudio, investigo la influencia de la EC frente a la trabajabilidad, resistencia a la compresión y resistencia a la flexión a diferentes edades de curado. Morteros con 0%, 10%, 20%, 30%, 40% y 50% de EC como reemplazo parcial de OPC se elaboraron, donde se evidencio una mayor fluidez en los morteros con EC. Las propiedades mecánicas, se vieron afectas de manera monotónica en las primeras edades evaluadas (7, 28 y 90 días), donde los morteros con mayor contenido de EC presentaron la mayor perdida de resistencia. Sin embargo, a los 150 días de curado, la mezcla 10% EC presento una resistencia a la compresión de 43,6 MPa, 7,6% mayor que la mezcla de referencia.
|
description_eng |
The high consumption of Portland cement (OPC) has a significant impact on the environment due to the generation of greenhouse gases and the use of non-renewable raw materials during its manufacturing. Therefore, the search for alternative materials to reduce cement consumption is crucial in the pursuit of sustainability. For this reason, copper slag (CS) as a supplementary cementitious material (SCM) in the production of mortars with lower OPC content is an option to create a sustainable environment. This study investigated the influence of CS on workability, compressive strength, and flexural strength at different curing ages. Mortars were prepared with 0%, 10%, 20%, 30%, 40%, and 50% CS as partial replacement for OPC, where mortars with CS demonstrated increased flowability. The mechanical properties were monotonically affected during the initial evaluated ages (7, 28, and 90 days), with mortars containing higher CS content showing the greatest loss of strength. However, at 150 days of curing, the 10% CS mixture exhibited a compressive strength of 43.6 MPa, which was 7.6% higher than the reference mixture.
|
author |
Silva Urrego, Yimmy Fernando Vizcaíno Méndez, Gabriel Antonio |
author_facet |
Silva Urrego, Yimmy Fernando Vizcaíno Méndez, Gabriel Antonio |
topicspa_str_mv |
mortero escoria de cobre resistencia a la compresión material cementicio suplementario |
topic |
mortero escoria de cobre resistencia a la compresión material cementicio suplementario |
topic_facet |
mortero escoria de cobre resistencia a la compresión material cementicio suplementario |
citationvolume |
20 |
citationissue |
40 |
citationedition |
Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1709 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Al Biajawi, M. I., Embong, R., Muthusamy, K., Ismail, N., & Obianyo, I. I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials, 338(May). https://doi.org/10.1016/j.conbuildmat.2022.127624 ASTM C150. (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA. 1–9. https://doi.org/10.1520/C0150 ASTM C230. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. 1–7. https://doi.org/10.1520/C0230 Ayati, B., Newport, D., Wong, H., & Cheeseman, C. (2022). Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Cleaner Materials, 5, 100099. https://doi.org/10.1016/j.clema.2022.100099 Bahurudeen, A., Wani, K., Basit, M. A., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. Journal of Materials in Civil Engineering, 28(2), 1–11. https://doi.org/10.1061/(asce)mt.1943-5533.0001361 Bheel, N., Ali, M. O. A., Shafiq, N., Almujibah, H. R., Awoyera, P., Benjeddou, O., Shittu, A., & Olalusi, O. B. (2023). Utilization of millet husk ash as a supplementary cementitious material in eco-friendly concrete: RSM modelling and optimization. Structures, 49(February), 826–841. https://doi.org/10.1016/j.istruc.2023.02.015 Çelik, D. N., Demircan, R. K., Shi, J., Kaplan, G., & Durmuş, G. (2023). The engineering properties of high strength mortars incorporating juniper seed ash calcined at different temperatures: Comparison with other SCMs. Powder Technology, 422(March). https://doi.org/10.1016/j.powtec.2023.118474 Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Chemical effect of sewage sludge ash on early-age hydration of cement used as supplementary cementitious material. Construction and Building Materials, 322(January). https://doi.org/10.1016/j.conbuildmat.2021.126116 Cruz Juarez, R. I., & Finnegan, S. (2021). The environmental impact of cement production in Europe: A holistic review of existing EPDs. Cleaner Environmental Systems, 3(August). https://doi.org/10.1016/j.cesys.2021.100053 Edwin, R. S., De Schepper, M., Gruyaert, E., & De Belie, N. (2016). Effect of secondary copper slag as cementitious material in ultra-high performance mortar. Construction and Building Materials, 119, 31–44. https://doi.org/10.1016/j.conbuildmat.2016.05.007 Fernando, Y., Urrego, S., Rojas, J. E., & Gamboa, J. A. (2019). diseño de mezcla de vértices extremos , en concretos y cal hidratada Artículo en prensa / Article in press Optimization of Compressive Strength Using Design of Extreme Vertices Mixing , in Ternary Concretes Based desenho de mescla de vértices estremos , e. Revista EIA, 57(2), 99–113. Galusnyak, S. C., Petrescu, L., & Cormos, C. C. (2022). Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. Journal of Environmental Management, 320(July). https://doi.org/10.1016/j.jenvman.2022.115908 Gopalakrishnan, R., & Nithiyanantham, S. (2020). Microstructural, mechanical, and electrical properties of copper slag admixtured cement mortar. Journal of Building Engineering, 31(March). https://doi.org/10.1016/j.jobe.2020.101375 Hafez, H., Teirelbar, A., Tošić, N., Ikumi, T., & de la Fuente, A. (2023). Data-driven optimization tool for the functional, economic, and environmental properties of blended cement concrete using supplementary cementitious materials. Journal of Building Engineering, 67(January). https://doi.org/10.1016/j.jobe.2023.106022 Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. Journal of Cleaner Production, 324(September). https://doi.org/10.1016/j.jclepro.2021.129213 Jin, L., Chen, M., Wang, Y., Peng, Y., Yao, Q., Ding, J., Ma, B., & Lu, S. (2023). Utilization of mechanochemically pretreated municipal solid waste incineration fly ash for supplementary cementitious material. Journal of Environmental Chemical Engineering, 11(1). https://doi.org/10.1016/j.jece.2022.109112 Jones, C., Ramanathan, S., Suraneni, P., & Hale, M. (2023). Mitigating calcium oxychloride formation in cementitious paste using alternative supplementary cementitious materials. Construction and Building Materials, 377(May 2022). Kumar, A., & Tejaswini, M. L. (2022). Studies on hardened properties of concrete incorporated with copper slag. Materials Today: Proceedings, 60, 646–657. https://doi.org/10.1016/j.matpr.2022.02.264 Leong, G. W., Pahdili, E. H. H., Mo, K. H., & Ibrahim, Z. (2022). Impacts of polyvinyl alcohol and basalt fibres on green fly ash cenosphere lightweight cementitious composite. Materials Today: Proceedings, 61, 512–516. https://doi.org/10.1016/j.matpr.2021.12.519 Liang, X., Dang, W., Yang, G., & Zhang, Y. (2023). Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective. Journal of Environmental Management, 326(November 2022). https://doi.org/10.1016/j.jenvman.2022.116726 Li, W., Hua, L., Shi, Y., Wang, P., Liu, Z., Cui, D., & Sun, X. (2022). Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Applied Clay Science, 229(July). https://doi.org/10.1016/j.clay.2022.106674 Li, Z., Gao, X., Lu, D., & Dong, J. (2022). Early hydration properties and reaction kinetics of multi-composite cement pastes with supplementary cementitious materials (SCMs). Thermochimica Acta, 709(September 2021). https://doi.org/10.1016/j.tca.2022.179157 Mirnezami, S. M., Hassani, A., & Bayat, A. (2023). Evaluation of the effect of metallurgical aggregates (steel and copper slag) on the thermal conductivity and mechanical properties of concrete in jointed plain concrete pavements (JPCP). Construction and Building Materials, 367(January). https://doi.org/10.1016/j.conbuildmat.2022.129532 Navarrete, I., Kurama, Y., Escalona, N., Brevis, W., & Lopez, M. (2022). Effect of supplementary cementitious materials on viscosity of cement-based pastes. Cement and Concrete Research, 151(February 2021). https://doi.org/10.1016/j.cemconres.2021.106635 Ndahirwa, D., Zmamou, H., Lenormand, H., & Leblanc, N. (2022). The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review. Cleaner Materials, 5(July). https://doi.org/10.1016/j.clema.2022.100123 Panda, S., & Sarkar, P. (2022). Abrasion resistance of copper slag aggregate concrete designed by Taguchi method. Materials Today: Proceedings, 65, 434–441. https://doi.org/10.1016/j.matpr.2022.02.545 Pang, L., Liu, Z., Wang, D., & An, M. (2022). Review on the Application of Supplementary Cementitious Materials in Self-Compacting Concrete. Crystals, 12(2). https://doi.org/10.3390/cryst12020180 Rohith, N., & Ravikumar, M. S. (2022). Strength characteristics of concrete made with copper slag and fly-ash. Materials Today: Proceedings, 60, 738–745. https://doi.org/10.1016/j.matpr.2022.02.337 Santos, T. A., Cilla, M. S., & Ribeiro, e D. V. (2022). Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption. Journal of Cleaner Production, 335(May 2021), 130061. https://doi.org/10.1016/j.jclepro.2021.130061 Shahas, S., Girija, K., & Nazeer, M. (2022). Evaluation of pozzolanic activity of ternary blended supplementary cementitious material with rice husk ash and GGBS. Materials Today: Proceedings, xxxx, 2–7. https://doi.org/10.1016/j.matpr.2023.01.073 Sharma, P., Sharma, N., & Kumar Parashar, A. (2022). Scientific investigation of metakaolin-based cement concrete with rock sand infill. Materials Today: Proceedings, 62, 4147–4150. https://doi.org/10.1016/j.matpr.2022.04.674 Sharma, R., & Khan, R. A. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031 Sheikh, E., Mousavi, S. R., & Afshoon, I. (2022). Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. Journal of Cleaner Production, 368(December 2021). https://doi.org/10.1016/j.jclepro.2022.133005 Silva, Y. F., Izquierdo, S. R., & Delvasto, S. (2019). Effect of masonry residue on the hydration of portland cement paste. DYNA (Colombia), 86(209), 367–377. https://doi.org/10.15446/dyna.v86n209.77286 Silva, Y. F., Lange, D. A., & Delvasto, S. (2019). Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196. https://doi.org/10.1016/j.conbuildmat.2018.11.132 Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127277 Sridharan, M., & Madhavi, T. C. (2020). Investigating the influence of copper slag on the mechanical behaviour of concrete. Materials Today: Proceedings, 46, 3225–3232. https://doi.org/10.1016/j.matpr.2020.11.195 Teymouri, M., & Shakouri, M. (2023). Optimum pretreatment of corn stover ash as an alternative supplementary cementitious material. 12(March). Wang, D., Wang, Q., & Huang, Z. (2020). Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources, Conservation and Recycling, 162(April). https://doi.org/10.1016/j.resconrec.2020.105037 WBCSD. (2018). Cement technology roadmap shows how the path to achieve CO2 reductions up to 24% by 2050. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/Cement-technology-roadmap-shows-how-the-path-to-achieve-CO2-reductions-up-to-24-by-2050 Zajac, M., Bolte, G., Skocek, J., & Ben Haha, M. (2021). Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Construction and Building Materials, 276. https://doi.org/10.1016/j.conbuildmat.2020.122108 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2023-12-19 |
date_accessioned |
2023-12-19 00:00:00 |
date_available |
2023-12-19 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1709 |
url_doi |
https://doi.org/10.24050/reia.v20i40.1709 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v20i40.1709 |
citationstartpage |
4022 pp. 1 |
citationendpage |
24 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1709/1574 |
_version_ |
1811200532133445632 |