Titulo:

Influencia de la escoria de cobre como material cementicio suplementario en morteros
.

Sumario:

La demanda de cemento Portland (OPC) impacta de gran manera el medio ambiente, debido a la generación de gases de efecto invernadero y el consumo de materias primas no renovables durante su fabricación. Por tal razón, la búsqueda de materiales alternativos para disminuir el consumo de cemento es vital en la búsqueda de la sustentabilidad. Por esta razón, la escoria de cobre (EC) como materia cementicio suplementario (SCM) en la elaboración de morteros con menor contenido de OPC es una opción para generar un ambiente sostenible. Este estudio, investigo la influencia de la EC frente a la trabajabilidad, resistencia a la compresión y resistencia a la flexión a diferentes edades de curado. Morteros con 0%, 10%, 20%, 30%, 40% y 50% de EC como re... Ver más

Guardado en:

1794-1237

2463-0950

20

2023-12-19

4022 pp. 1

24

Revista EIA - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1709
record_format ojs
spelling Influencia de la escoria de cobre como material cementicio suplementario en morteros
Influence of copper slag as supplementary cementitious material in mortar
La demanda de cemento Portland (OPC) impacta de gran manera el medio ambiente, debido a la generación de gases de efecto invernadero y el consumo de materias primas no renovables durante su fabricación. Por tal razón, la búsqueda de materiales alternativos para disminuir el consumo de cemento es vital en la búsqueda de la sustentabilidad. Por esta razón, la escoria de cobre (EC) como materia cementicio suplementario (SCM) en la elaboración de morteros con menor contenido de OPC es una opción para generar un ambiente sostenible. Este estudio, investigo la influencia de la EC frente a la trabajabilidad, resistencia a la compresión y resistencia a la flexión a diferentes edades de curado. Morteros con 0%, 10%, 20%, 30%, 40% y 50% de EC como reemplazo parcial de OPC se elaboraron, donde se evidencio una mayor fluidez en los morteros con EC. Las propiedades mecánicas, se vieron afectas de manera monotónica en las primeras edades evaluadas (7, 28 y 90 días), donde los morteros con mayor contenido de EC presentaron la mayor perdida de resistencia. Sin embargo, a los 150 días de curado, la mezcla 10% EC presento una resistencia a la compresión de 43,6 MPa, 7,6% mayor que la mezcla de referencia.
The high consumption of Portland cement (OPC) has a significant impact on the environment due to the generation of greenhouse gases and the use of non-renewable raw materials during its manufacturing. Therefore, the search for alternative materials to reduce cement consumption is crucial in the pursuit of sustainability. For this reason, copper slag (CS) as a supplementary cementitious material (SCM) in the production of mortars with lower OPC content is an option to create a sustainable environment. This study investigated the influence of CS on workability, compressive strength, and flexural strength at different curing ages. Mortars were prepared with 0%, 10%, 20%, 30%, 40%, and 50% CS as partial replacement for OPC, where mortars with CS demonstrated increased flowability. The mechanical properties were monotonically affected during the initial evaluated ages (7, 28, and 90 days), with mortars containing higher CS content showing the greatest loss of strength. However, at 150 days of curing, the 10% CS mixture exhibited a compressive strength of 43.6 MPa, which was 7.6% higher than the reference mixture.
Silva Urrego, Yimmy Fernando
Vizcaíno Méndez, Gabriel Antonio
mortero
escoria de cobre
resistencia a la compresión
material cementicio suplementario
20
40
Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40
Artículo de revista
Journal article
2023-12-19 00:00:00
2023-12-19 00:00:00
2023-12-19
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1709
10.24050/reia.v20i40.1709
https://doi.org/10.24050/reia.v20i40.1709
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4022 pp. 1
24
Al Biajawi, M. I., Embong, R., Muthusamy, K., Ismail, N., & Obianyo, I. I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials, 338(May). https://doi.org/10.1016/j.conbuildmat.2022.127624
ASTM C150. (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA. 1–9. https://doi.org/10.1520/C0150
ASTM C230. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. 1–7. https://doi.org/10.1520/C0230
Ayati, B., Newport, D., Wong, H., & Cheeseman, C. (2022). Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Cleaner Materials, 5, 100099. https://doi.org/10.1016/j.clema.2022.100099
Bahurudeen, A., Wani, K., Basit, M. A., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. Journal of Materials in Civil Engineering, 28(2), 1–11. https://doi.org/10.1061/(asce)mt.1943-5533.0001361
Bheel, N., Ali, M. O. A., Shafiq, N., Almujibah, H. R., Awoyera, P., Benjeddou, O., Shittu, A., & Olalusi, O. B. (2023). Utilization of millet husk ash as a supplementary cementitious material in eco-friendly concrete: RSM modelling and optimization. Structures, 49(February), 826–841. https://doi.org/10.1016/j.istruc.2023.02.015
Çelik, D. N., Demircan, R. K., Shi, J., Kaplan, G., & Durmuş, G. (2023). The engineering properties of high strength mortars incorporating juniper seed ash calcined at different temperatures: Comparison with other SCMs. Powder Technology, 422(March). https://doi.org/10.1016/j.powtec.2023.118474
Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Chemical effect of sewage sludge ash on early-age hydration of cement used as supplementary cementitious material. Construction and Building Materials, 322(January). https://doi.org/10.1016/j.conbuildmat.2021.126116
Cruz Juarez, R. I., & Finnegan, S. (2021). The environmental impact of cement production in Europe: A holistic review of existing EPDs. Cleaner Environmental Systems, 3(August). https://doi.org/10.1016/j.cesys.2021.100053
Edwin, R. S., De Schepper, M., Gruyaert, E., & De Belie, N. (2016). Effect of secondary copper slag as cementitious material in ultra-high performance mortar. Construction and Building Materials, 119, 31–44. https://doi.org/10.1016/j.conbuildmat.2016.05.007
Fernando, Y., Urrego, S., Rojas, J. E., & Gamboa, J. A. (2019). diseño de mezcla de vértices extremos , en concretos y cal hidratada Artículo en prensa / Article in press Optimization of Compressive Strength Using Design of Extreme Vertices Mixing , in Ternary Concretes Based desenho de mescla de vértices estremos , e. Revista EIA, 57(2), 99–113.
Galusnyak, S. C., Petrescu, L., & Cormos, C. C. (2022). Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. Journal of Environmental Management, 320(July). https://doi.org/10.1016/j.jenvman.2022.115908
Gopalakrishnan, R., & Nithiyanantham, S. (2020). Microstructural, mechanical, and electrical properties of copper slag admixtured cement mortar. Journal of Building Engineering, 31(March). https://doi.org/10.1016/j.jobe.2020.101375
Hafez, H., Teirelbar, A., Tošić, N., Ikumi, T., & de la Fuente, A. (2023). Data-driven optimization tool for the functional, economic, and environmental properties of blended cement concrete using supplementary cementitious materials. Journal of Building Engineering, 67(January). https://doi.org/10.1016/j.jobe.2023.106022
Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. Journal of Cleaner Production, 324(September). https://doi.org/10.1016/j.jclepro.2021.129213
Jin, L., Chen, M., Wang, Y., Peng, Y., Yao, Q., Ding, J., Ma, B., & Lu, S. (2023). Utilization of mechanochemically pretreated municipal solid waste incineration fly ash for supplementary cementitious material. Journal of Environmental Chemical Engineering, 11(1). https://doi.org/10.1016/j.jece.2022.109112
Jones, C., Ramanathan, S., Suraneni, P., & Hale, M. (2023). Mitigating calcium oxychloride formation in cementitious paste using alternative supplementary cementitious materials. Construction and Building Materials, 377(May 2022).
Kumar, A., & Tejaswini, M. L. (2022). Studies on hardened properties of concrete incorporated with copper slag. Materials Today: Proceedings, 60, 646–657. https://doi.org/10.1016/j.matpr.2022.02.264
Leong, G. W., Pahdili, E. H. H., Mo, K. H., & Ibrahim, Z. (2022). Impacts of polyvinyl alcohol and basalt fibres on green fly ash cenosphere lightweight cementitious composite. Materials Today: Proceedings, 61, 512–516. https://doi.org/10.1016/j.matpr.2021.12.519
Liang, X., Dang, W., Yang, G., & Zhang, Y. (2023). Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective. Journal of Environmental Management, 326(November 2022). https://doi.org/10.1016/j.jenvman.2022.116726
Li, W., Hua, L., Shi, Y., Wang, P., Liu, Z., Cui, D., & Sun, X. (2022). Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Applied Clay Science, 229(July). https://doi.org/10.1016/j.clay.2022.106674
Li, Z., Gao, X., Lu, D., & Dong, J. (2022). Early hydration properties and reaction kinetics of multi-composite cement pastes with supplementary cementitious materials (SCMs). Thermochimica Acta, 709(September 2021). https://doi.org/10.1016/j.tca.2022.179157
Mirnezami, S. M., Hassani, A., & Bayat, A. (2023). Evaluation of the effect of metallurgical aggregates (steel and copper slag) on the thermal conductivity and mechanical properties of concrete in jointed plain concrete pavements (JPCP). Construction and Building Materials, 367(January). https://doi.org/10.1016/j.conbuildmat.2022.129532
Navarrete, I., Kurama, Y., Escalona, N., Brevis, W., & Lopez, M. (2022). Effect of supplementary cementitious materials on viscosity of cement-based pastes. Cement and Concrete Research, 151(February 2021). https://doi.org/10.1016/j.cemconres.2021.106635
Ndahirwa, D., Zmamou, H., Lenormand, H., & Leblanc, N. (2022). The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review. Cleaner Materials, 5(July). https://doi.org/10.1016/j.clema.2022.100123
Panda, S., & Sarkar, P. (2022). Abrasion resistance of copper slag aggregate concrete designed by Taguchi method. Materials Today: Proceedings, 65, 434–441. https://doi.org/10.1016/j.matpr.2022.02.545
Pang, L., Liu, Z., Wang, D., & An, M. (2022). Review on the Application of Supplementary Cementitious Materials in Self-Compacting Concrete. Crystals, 12(2). https://doi.org/10.3390/cryst12020180
Rohith, N., & Ravikumar, M. S. (2022). Strength characteristics of concrete made with copper slag and fly-ash. Materials Today: Proceedings, 60, 738–745. https://doi.org/10.1016/j.matpr.2022.02.337
Santos, T. A., Cilla, M. S., & Ribeiro, e D. V. (2022). Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption. Journal of Cleaner Production, 335(May 2021), 130061. https://doi.org/10.1016/j.jclepro.2021.130061
Shahas, S., Girija, K., & Nazeer, M. (2022). Evaluation of pozzolanic activity of ternary blended supplementary cementitious material with rice husk ash and GGBS. Materials Today: Proceedings, xxxx, 2–7. https://doi.org/10.1016/j.matpr.2023.01.073
Sharma, P., Sharma, N., & Kumar Parashar, A. (2022). Scientific investigation of metakaolin-based cement concrete with rock sand infill. Materials Today: Proceedings, 62, 4147–4150. https://doi.org/10.1016/j.matpr.2022.04.674
Sharma, R., & Khan, R. A. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031
Sheikh, E., Mousavi, S. R., & Afshoon, I. (2022). Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. Journal of Cleaner Production, 368(December 2021). https://doi.org/10.1016/j.jclepro.2022.133005
Silva, Y. F., Izquierdo, S. R., & Delvasto, S. (2019). Effect of masonry residue on the hydration of portland cement paste. DYNA (Colombia), 86(209), 367–377. https://doi.org/10.15446/dyna.v86n209.77286
Silva, Y. F., Lange, D. A., & Delvasto, S. (2019). Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196. https://doi.org/10.1016/j.conbuildmat.2018.11.132
Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127277
Sridharan, M., & Madhavi, T. C. (2020). Investigating the influence of copper slag on the mechanical behaviour of concrete. Materials Today: Proceedings, 46, 3225–3232. https://doi.org/10.1016/j.matpr.2020.11.195
Teymouri, M., & Shakouri, M. (2023). Optimum pretreatment of corn stover ash as an alternative supplementary cementitious material. 12(March).
Wang, D., Wang, Q., & Huang, Z. (2020). Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources, Conservation and Recycling, 162(April). https://doi.org/10.1016/j.resconrec.2020.105037
WBCSD. (2018). Cement technology roadmap shows how the path to achieve CO2 reductions up to 24% by 2050. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/Cement-technology-roadmap-shows-how-the-path-to-achieve-CO2-reductions-up-to-24-by-2050
Zajac, M., Bolte, G., Skocek, J., & Ben Haha, M. (2021). Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Construction and Building Materials, 276. https://doi.org/10.1016/j.conbuildmat.2020.122108
https://revistas.eia.edu.co/index.php/reveia/article/download/1709/1574
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Influencia de la escoria de cobre como material cementicio suplementario en morteros
spellingShingle Influencia de la escoria de cobre como material cementicio suplementario en morteros
Silva Urrego, Yimmy Fernando
Vizcaíno Méndez, Gabriel Antonio
mortero
escoria de cobre
resistencia a la compresión
material cementicio suplementario
title_short Influencia de la escoria de cobre como material cementicio suplementario en morteros
title_full Influencia de la escoria de cobre como material cementicio suplementario en morteros
title_fullStr Influencia de la escoria de cobre como material cementicio suplementario en morteros
title_full_unstemmed Influencia de la escoria de cobre como material cementicio suplementario en morteros
title_sort influencia de la escoria de cobre como material cementicio suplementario en morteros
title_eng Influence of copper slag as supplementary cementitious material in mortar
description La demanda de cemento Portland (OPC) impacta de gran manera el medio ambiente, debido a la generación de gases de efecto invernadero y el consumo de materias primas no renovables durante su fabricación. Por tal razón, la búsqueda de materiales alternativos para disminuir el consumo de cemento es vital en la búsqueda de la sustentabilidad. Por esta razón, la escoria de cobre (EC) como materia cementicio suplementario (SCM) en la elaboración de morteros con menor contenido de OPC es una opción para generar un ambiente sostenible. Este estudio, investigo la influencia de la EC frente a la trabajabilidad, resistencia a la compresión y resistencia a la flexión a diferentes edades de curado. Morteros con 0%, 10%, 20%, 30%, 40% y 50% de EC como reemplazo parcial de OPC se elaboraron, donde se evidencio una mayor fluidez en los morteros con EC. Las propiedades mecánicas, se vieron afectas de manera monotónica en las primeras edades evaluadas (7, 28 y 90 días), donde los morteros con mayor contenido de EC presentaron la mayor perdida de resistencia. Sin embargo, a los 150 días de curado, la mezcla 10% EC presento una resistencia a la compresión de 43,6 MPa, 7,6% mayor que la mezcla de referencia.
description_eng The high consumption of Portland cement (OPC) has a significant impact on the environment due to the generation of greenhouse gases and the use of non-renewable raw materials during its manufacturing. Therefore, the search for alternative materials to reduce cement consumption is crucial in the pursuit of sustainability. For this reason, copper slag (CS) as a supplementary cementitious material (SCM) in the production of mortars with lower OPC content is an option to create a sustainable environment. This study investigated the influence of CS on workability, compressive strength, and flexural strength at different curing ages. Mortars were prepared with 0%, 10%, 20%, 30%, 40%, and 50% CS as partial replacement for OPC, where mortars with CS demonstrated increased flowability. The mechanical properties were monotonically affected during the initial evaluated ages (7, 28, and 90 days), with mortars containing higher CS content showing the greatest loss of strength. However, at 150 days of curing, the 10% CS mixture exhibited a compressive strength of 43.6 MPa, which was 7.6% higher than the reference mixture.
author Silva Urrego, Yimmy Fernando
Vizcaíno Méndez, Gabriel Antonio
author_facet Silva Urrego, Yimmy Fernando
Vizcaíno Méndez, Gabriel Antonio
topicspa_str_mv mortero
escoria de cobre
resistencia a la compresión
material cementicio suplementario
topic mortero
escoria de cobre
resistencia a la compresión
material cementicio suplementario
topic_facet mortero
escoria de cobre
resistencia a la compresión
material cementicio suplementario
citationvolume 20
citationissue 40
citationedition Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1709
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Al Biajawi, M. I., Embong, R., Muthusamy, K., Ismail, N., & Obianyo, I. I. (2022). Recycled coal bottom ash as sustainable materials for cement replacement in cementitious Composites: A review. Construction and Building Materials, 338(May). https://doi.org/10.1016/j.conbuildmat.2022.127624
ASTM C150. (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA. 1–9. https://doi.org/10.1520/C0150
ASTM C230. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. 1–7. https://doi.org/10.1520/C0230
Ayati, B., Newport, D., Wong, H., & Cheeseman, C. (2022). Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Cleaner Materials, 5, 100099. https://doi.org/10.1016/j.clema.2022.100099
Bahurudeen, A., Wani, K., Basit, M. A., & Santhanam, M. (2016). Assesment of Pozzolanic Performance of Sugarcane Bagasse Ash. Journal of Materials in Civil Engineering, 28(2), 1–11. https://doi.org/10.1061/(asce)mt.1943-5533.0001361
Bheel, N., Ali, M. O. A., Shafiq, N., Almujibah, H. R., Awoyera, P., Benjeddou, O., Shittu, A., & Olalusi, O. B. (2023). Utilization of millet husk ash as a supplementary cementitious material in eco-friendly concrete: RSM modelling and optimization. Structures, 49(February), 826–841. https://doi.org/10.1016/j.istruc.2023.02.015
Çelik, D. N., Demircan, R. K., Shi, J., Kaplan, G., & Durmuş, G. (2023). The engineering properties of high strength mortars incorporating juniper seed ash calcined at different temperatures: Comparison with other SCMs. Powder Technology, 422(March). https://doi.org/10.1016/j.powtec.2023.118474
Chang, Z., Long, G., Xie, Y., & Zhou, J. L. (2022). Chemical effect of sewage sludge ash on early-age hydration of cement used as supplementary cementitious material. Construction and Building Materials, 322(January). https://doi.org/10.1016/j.conbuildmat.2021.126116
Cruz Juarez, R. I., & Finnegan, S. (2021). The environmental impact of cement production in Europe: A holistic review of existing EPDs. Cleaner Environmental Systems, 3(August). https://doi.org/10.1016/j.cesys.2021.100053
Edwin, R. S., De Schepper, M., Gruyaert, E., & De Belie, N. (2016). Effect of secondary copper slag as cementitious material in ultra-high performance mortar. Construction and Building Materials, 119, 31–44. https://doi.org/10.1016/j.conbuildmat.2016.05.007
Fernando, Y., Urrego, S., Rojas, J. E., & Gamboa, J. A. (2019). diseño de mezcla de vértices extremos , en concretos y cal hidratada Artículo en prensa / Article in press Optimization of Compressive Strength Using Design of Extreme Vertices Mixing , in Ternary Concretes Based desenho de mescla de vértices estremos , e. Revista EIA, 57(2), 99–113.
Galusnyak, S. C., Petrescu, L., & Cormos, C. C. (2022). Environmental impact assessment of post-combustion CO2 capture technologies applied to cement production plants. Journal of Environmental Management, 320(July). https://doi.org/10.1016/j.jenvman.2022.115908
Gopalakrishnan, R., & Nithiyanantham, S. (2020). Microstructural, mechanical, and electrical properties of copper slag admixtured cement mortar. Journal of Building Engineering, 31(March). https://doi.org/10.1016/j.jobe.2020.101375
Hafez, H., Teirelbar, A., Tošić, N., Ikumi, T., & de la Fuente, A. (2023). Data-driven optimization tool for the functional, economic, and environmental properties of blended cement concrete using supplementary cementitious materials. Journal of Building Engineering, 67(January). https://doi.org/10.1016/j.jobe.2023.106022
Ige, O. E., Olanrewaju, O. A., Duffy, K. J., & Obiora, C. (2021). A review of the effectiveness of Life Cycle Assessment for gauging environmental impacts from cement production. Journal of Cleaner Production, 324(September). https://doi.org/10.1016/j.jclepro.2021.129213
Jin, L., Chen, M., Wang, Y., Peng, Y., Yao, Q., Ding, J., Ma, B., & Lu, S. (2023). Utilization of mechanochemically pretreated municipal solid waste incineration fly ash for supplementary cementitious material. Journal of Environmental Chemical Engineering, 11(1). https://doi.org/10.1016/j.jece.2022.109112
Jones, C., Ramanathan, S., Suraneni, P., & Hale, M. (2023). Mitigating calcium oxychloride formation in cementitious paste using alternative supplementary cementitious materials. Construction and Building Materials, 377(May 2022).
Kumar, A., & Tejaswini, M. L. (2022). Studies on hardened properties of concrete incorporated with copper slag. Materials Today: Proceedings, 60, 646–657. https://doi.org/10.1016/j.matpr.2022.02.264
Leong, G. W., Pahdili, E. H. H., Mo, K. H., & Ibrahim, Z. (2022). Impacts of polyvinyl alcohol and basalt fibres on green fly ash cenosphere lightweight cementitious composite. Materials Today: Proceedings, 61, 512–516. https://doi.org/10.1016/j.matpr.2021.12.519
Liang, X., Dang, W., Yang, G., & Zhang, Y. (2023). Environmental feasibility evaluation of cement co-production using classified domestic waste as alternative raw material and fuel: A life cycle perspective. Journal of Environmental Management, 326(November 2022). https://doi.org/10.1016/j.jenvman.2022.116726
Li, W., Hua, L., Shi, Y., Wang, P., Liu, Z., Cui, D., & Sun, X. (2022). Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Applied Clay Science, 229(July). https://doi.org/10.1016/j.clay.2022.106674
Li, Z., Gao, X., Lu, D., & Dong, J. (2022). Early hydration properties and reaction kinetics of multi-composite cement pastes with supplementary cementitious materials (SCMs). Thermochimica Acta, 709(September 2021). https://doi.org/10.1016/j.tca.2022.179157
Mirnezami, S. M., Hassani, A., & Bayat, A. (2023). Evaluation of the effect of metallurgical aggregates (steel and copper slag) on the thermal conductivity and mechanical properties of concrete in jointed plain concrete pavements (JPCP). Construction and Building Materials, 367(January). https://doi.org/10.1016/j.conbuildmat.2022.129532
Navarrete, I., Kurama, Y., Escalona, N., Brevis, W., & Lopez, M. (2022). Effect of supplementary cementitious materials on viscosity of cement-based pastes. Cement and Concrete Research, 151(February 2021). https://doi.org/10.1016/j.cemconres.2021.106635
Ndahirwa, D., Zmamou, H., Lenormand, H., & Leblanc, N. (2022). The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: A review. Cleaner Materials, 5(July). https://doi.org/10.1016/j.clema.2022.100123
Panda, S., & Sarkar, P. (2022). Abrasion resistance of copper slag aggregate concrete designed by Taguchi method. Materials Today: Proceedings, 65, 434–441. https://doi.org/10.1016/j.matpr.2022.02.545
Pang, L., Liu, Z., Wang, D., & An, M. (2022). Review on the Application of Supplementary Cementitious Materials in Self-Compacting Concrete. Crystals, 12(2). https://doi.org/10.3390/cryst12020180
Rohith, N., & Ravikumar, M. S. (2022). Strength characteristics of concrete made with copper slag and fly-ash. Materials Today: Proceedings, 60, 738–745. https://doi.org/10.1016/j.matpr.2022.02.337
Santos, T. A., Cilla, M. S., & Ribeiro, e D. V. (2022). Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption. Journal of Cleaner Production, 335(May 2021), 130061. https://doi.org/10.1016/j.jclepro.2021.130061
Shahas, S., Girija, K., & Nazeer, M. (2022). Evaluation of pozzolanic activity of ternary blended supplementary cementitious material with rice husk ash and GGBS. Materials Today: Proceedings, xxxx, 2–7. https://doi.org/10.1016/j.matpr.2023.01.073
Sharma, P., Sharma, N., & Kumar Parashar, A. (2022). Scientific investigation of metakaolin-based cement concrete with rock sand infill. Materials Today: Proceedings, 62, 4147–4150. https://doi.org/10.1016/j.matpr.2022.04.674
Sharma, R., & Khan, R. A. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031
Sheikh, E., Mousavi, S. R., & Afshoon, I. (2022). Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. Journal of Cleaner Production, 368(December 2021). https://doi.org/10.1016/j.jclepro.2022.133005
Silva, Y. F., Izquierdo, S. R., & Delvasto, S. (2019). Effect of masonry residue on the hydration of portland cement paste. DYNA (Colombia), 86(209), 367–377. https://doi.org/10.15446/dyna.v86n209.77286
Silva, Y. F., Lange, D. A., & Delvasto, S. (2019). Effect of incorporation of masonry residue on the properties of self-compacting concretes. Construction and Building Materials, 196. https://doi.org/10.1016/j.conbuildmat.2018.11.132
Sousa, V., & Bogas, J. A. (2021). Comparison of energy consumption and carbon emissions from clinker and recycled cement production. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127277
Sridharan, M., & Madhavi, T. C. (2020). Investigating the influence of copper slag on the mechanical behaviour of concrete. Materials Today: Proceedings, 46, 3225–3232. https://doi.org/10.1016/j.matpr.2020.11.195
Teymouri, M., & Shakouri, M. (2023). Optimum pretreatment of corn stover ash as an alternative supplementary cementitious material. 12(March).
Wang, D., Wang, Q., & Huang, Z. (2020). Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources, Conservation and Recycling, 162(April). https://doi.org/10.1016/j.resconrec.2020.105037
WBCSD. (2018). Cement technology roadmap shows how the path to achieve CO2 reductions up to 24% by 2050. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/Cement-technology-roadmap-shows-how-the-path-to-achieve-CO2-reductions-up-to-24-by-2050
Zajac, M., Bolte, G., Skocek, J., & Ben Haha, M. (2021). Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Construction and Building Materials, 276. https://doi.org/10.1016/j.conbuildmat.2020.122108
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-12-19
date_accessioned 2023-12-19 00:00:00
date_available 2023-12-19 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1709
url_doi https://doi.org/10.24050/reia.v20i40.1709
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v20i40.1709
citationstartpage 4022 pp. 1
citationendpage 24
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1709/1574
_version_ 1811200532133445632