Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter
.
Una parte importante en el proceso de diseño estructural es disminuir el efectode vibración en edificios, particularmente en aquellos que pueden estar sujetos aexcitación sísmica. Aunque investigaciones en el campo del control estructural sehan venido desarrollando desde principios de 1900, la complejidad y dimensionesde las estructuras civiles hacen que este problema sea particularmente difícilde resolver debido a la gran demanda de esfuerzo de control y muchas otraslimitaciones asociadas. Este artículo analiza el rendimiento de un sistema decontrol pasivo novedoso que puede ser utilizado para el control de vibraciones enestructuras civiles sometidas a excitaciones en la base. Este dispositivo de controles denominado amortiguador sintoniza... Ver más
1794-1237
2463-0950
21
2024-01-01
4110 pp. 1
25
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1685 |
---|---|
record_format |
ojs |
spelling |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter Vibration control of seismicly excited structures using a device with inerter system Una parte importante en el proceso de diseño estructural es disminuir el efectode vibración en edificios, particularmente en aquellos que pueden estar sujetos aexcitación sísmica. Aunque investigaciones en el campo del control estructural sehan venido desarrollando desde principios de 1900, la complejidad y dimensionesde las estructuras civiles hacen que este problema sea particularmente difícilde resolver debido a la gran demanda de esfuerzo de control y muchas otraslimitaciones asociadas. Este artículo analiza el rendimiento de un sistema decontrol pasivo novedoso que puede ser utilizado para el control de vibraciones enestructuras civiles sometidas a excitaciones en la base. Este dispositivo de controles denominado amortiguador sintonizado inerter (Tuned Inerter Damper, TID)el cual supera la limitación de los dispositivos pasivos clásicos que son eficientesen una banda de frecuencia estrecha para la cual están sintonizados, situaciónque resulta inconveniente debido a que los terremotos muestran un contenidofrecuencial diverso en la mayoría de ocasiones. Este estudio emplea, además,un enfoque de optimización metaheurística basado en el método de evolucióndiferencial (ED), combinado con un análisis dinámico tiempo-historia elástico,a través del cual el control de vibración se enfoca en dos objetivos individuales:primero, minimizar el desplazamiento máximo horizontal; y segundo, minimizar lamedia cuadrática de desplazamiento (Root Mean Square, RMS). Se estudia el casode un edificio de 12 pisos equipado con una ubicación novedosa del TID sometidoa múltiples excitaciones sísmicas para verificar la efectividad del dispositivo ydiferente a la presentada en la literatura. Los resultados muestran una mejorasignificativa en la respuesta dinámica cuando se emplea la disposición presentadaen este trabajo y considerablemente mejor que un TMD equivalente. Por lo tanto, el TID representa una alternativa potencialmente atractiva de las técnicas tradicionales de control pasivo. An important part of the structural design process is to decrease the effect ofvibration in buildings, particularly those that may be subject to seismic excitation.Although research in the field of structural control has been made since the early1900s, the complexity and dimensions of civil structures make this problemparticularly difficult to solve due to the high demand for control effort and manyother associated limitations. This paper analyzes the performance of a novelpassive control system that can be used for vibration control in civil structuressubjected to base excitation. This control device is called Tuned Inerter Damper(TID), which overcomes the limitation of classic passive devices that are efficient ina narrow frequency band for which they are tuned, a situation that is inconvenientsince earthquakes exhibit a very diverse frequency content on most occasions.Besides, this study employs a metaheuristic optimization approach based on thedifferential evolution method (DE) combined with an elastic time-history dynamicanalysis, through which the vibration control focuses on two individual objectives:first, minimizing the maximum horizontal displacement; and second, minimizingthe root mean square (RMS) response of displacements. A 12-story buildingequipped with a novel arrangement of the TID, and subjected to multiple seismicexcitations is studied to verify the effectiveness of the device. The results show asignificant enhancement in the dynamic response when the arrangement presentedin this work is used, and considerably better than an equivalent TMD. Therefore,TID represents a potentially attractive alternative to traditional passive controltechniques. Blandón Valencia, John Jairo Caicedo, Daniel Alejandro Lara Valencia, Luis Augusto Inerter vibration control differential evolution earthquake loads passive control optimization Inerter control de vibraciones evolución diferencial cargas sísmicas control pasivo optimización 21 41 Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41 Artículo de revista Journal article 2024-01-01 00:00:00 2024-01-01 00:00:00 2024-01-01 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1685 10.24050/reia.v21i41.1685 https://doi.org/10.24050/reia.v21i41.1685 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 4110 pp. 1 25 Pan, C., & Zhang, R. (2018). Design of structure with inerter system based on stochastic response mitigation ratio. Structural Control and Health Monitoring, 25(6). doi:https://doi.org/10.1002/stc.2169 Bekdaş, G., & Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9), 2716-2723. doi:http://dx.doi.org/10.1016/j.engstruct.2011.05.024 BekdaşG, Nigdeli, S. M., & Yang, X. S. (2018). A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 159, 89-98. doi:http://dx.doi.org/10.1016/j.engstruct.2017.12.037 Biswas Raha, S., & Chakraborty, N. (2012). Tuned reactive power dispatch through modified differential evolution technique. Frontiers in Energy, 6, 138-147. doi:http://dx.doi.org/10.1007/s11708-012-0188-8 Buckle, G. (2000). Passive control of structures for seismic loads. Bull. N.Z. Natl. Soc. Earthq. Eng, 33(3), 209-221. doi:https://doi.org/10.5459/bnzsee.33.3.209-221. Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection. Computational Science and Its Applications–ICCSA 2017: 17th International Conference, 71-86. doi:http://dx.doi.org/10.1007/978-3-319-62392-4_6 Chen, Y. C., Tu, J. Y., & Wang, F. V. (2015). Earthquake vibration control for buildings with inerter networks. 2015 European Control Conference (ECC), 3137-3142. doi:http://dx.doi.org/10.1109/ECC.2015.7331016 Den Hartog, J. P. (1985). Mechanical vibrations. New York: Courier Corporation. Farshidianfar, A., & Soheili, S. (2013). Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Iran University of Science & Technology, 3(3), 409-429. Frahm, H. (1911). Device for damping vibrations of bodies. U.S. Pat. No 989,958, 1911. doi:https://doi.org/10.1016/j.tree.2005.10.010 Hu, Y., & Chen, M. Z. (2015). Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci, 99, 297-307. doi:https://doi.org/10.1016/j.ijmecsci.2015.06.003 Inc, T. M. (2019). MATLAB R2019a. MA, USA: Natick. Kelly, J. M. (1998). Base isolation: Origins and development. EERC News, 12(1). Kelly, J. M., & Beucke, K. E. (1983). A frictional damped base isolation system with fail-safe characteristics. Earthq. Eng. Struct. Dynam, 11, 33-56. Kelly, J. M., & Hodder, S. B. (1982). Experimental study of lead and elastomeric dampers for base isolation system in laminated neoprene bearings. Bull. N.Z. Nat. Soc. Earthq. Eng, 15, 53-67. Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Design and performance analysis of inerter-based vibration control systems. Dynamics of Civil Structures, 4, 493-500. doi:http://dx.doi.org/10.1007/978-3-319-04546-7_53 Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Using an inerter‐based device for structural vibration suppression. Earthq. Eng. Struct. Dyn, 43(8), 1129-1147. doi:https://doi.org/10.1002/eqe.2390 Lazar, I. F., Wagg, D. J., & Neild, S. A. (2013). An inerter vibration isolation system for the control of seismically excited structures. 10th International Conference on Urban Earthquake Engineering. Lazar, I., Neild, S., & Wagg, D. (2014). Inerter-based Vibration Suppression Systems for Laterally and Base-Excited Structures. (E. C. A. Cunha, Ed.) Proceedings of the 9th International Conference on Structural Dynamics. Leung, A. Y., & Zhang, H. (2009). Particle swarm optimization of tuned mass dampers. Engineering Structures, 31(3), 715-728. doi:http://dx.doi.org/10.1016/j.engstruct.2008.11.017 Ministerio de Vivienda, C. y. (2010). Reglamento Colombiano de Construcción Sismo Resistente NSR-10. Bogotá: AIS. Nigdeli, S. M., Bekdas, G., & Yang, X. S. (2016). Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech, 1, 264-268. Ormondroyd, J., & Den Hartong, J. P. (1928). The theory of the dynamic vibration absorber. Transaction of the ASME, 50, 9-22. Papageorgiou, C., & Smith, M. (2005). Laboratory experimental testing of inerters. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. doi:https://doi.org/10.1109/CDC.2005.1582679 Said, E. (2018). Seismic Energy Assessment of Buildings with Tuned Vibration Absorbers. Shock and Vibration, 2018, 1-10. doi:https://doi.org/10.1155/2018/2051687 Seyedpoor, S. M., Shahbandeh, S., & Yazdanpanah, O. (2015). An efficient method for structural damage detection using a differential evolution algorithm-based optimisation approach. Civil Engineering and Environmental Systems, 32(3), 230-250. doi:http://dx.doi.org/10.1080/10286608.2015.1046051 Shen, W., Niyitangamahoro, A., Feng, Z., & Zhu, H. (2019). Tuned Inerter Dampers for Civil Structures Subjected to Earthquake Ground Motions: optimum design and seismic performance. Engineering Structures, 198. doi:https://doi.org/10.1016/j.engstruct.2019.109470 Shen, Y., Chen, L., Yang, X., Shi, D., & Yang, J. (2016). Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. Journal of Sound and Vibration(361), 148-158. doi:http://dx.doi.org/10.1016/j.jsv.2015.06.045 Smith, M. (2002). Synthesis of mechanical networks: The inerter. IEEE Transactions on automatic control, 47(10), 1648-1662. doi:https://doi.org/10.1109/TAC.2002.803532 Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Optim, 11(4), 341-359. doi:https://doi.org/10.1023/A:1008202821328. Vo-Duy, T., Ho-Huu, V., Dang-Trung, H., & Nguyen-Thoi, T. (2016). A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm. Composite Structures, 147, 42-53. doi:http://dx.doi.org/10.1016/j.compstruct.2016.03.027 Wang, F. C., Chen, C. W., Liao, M. K., & Hong, M. F. (2007). Performance analyses of building suspension control with inerters. 46th IEEE Conference on Decision and Control, 3786-3791. Wang, F. C., Hong, M. F., & Chen, C. W. (2010). Building suspensions with inerters. Proceedings of the Institution of Mechanical Engineers, Part C. J. Mech. Eng. Sci, 224(8), 1605-1616. doi:https://doi.org/10.1243/09544062JMES1909. Wen, Y., Chen, Z., & Hua, X. (2017). Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures. Journal of Structural Engineering, 143(4). doi:http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001680 Yucel, M., Bekdaş, G., Nigdeli, S. M., & Sevgen, S. (2019). Estimation of optimum tuned mass damper parameters via machine learning. Journal of Building Engineering, 26. https://revistas.eia.edu.co/index.php/reveia/article/download/1685/1584 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter |
spellingShingle |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter Blandón Valencia, John Jairo Caicedo, Daniel Alejandro Lara Valencia, Luis Augusto Inerter vibration control differential evolution earthquake loads passive control optimization Inerter control de vibraciones evolución diferencial cargas sísmicas control pasivo optimización |
title_short |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter |
title_full |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter |
title_fullStr |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter |
title_full_unstemmed |
Control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter |
title_sort |
control de vibración de estructuras excitadas sísmicamente usando un dispositivo con sistema inerter |
title_eng |
Vibration control of seismicly excited structures using a device with inerter system |
description |
Una parte importante en el proceso de diseño estructural es disminuir el efectode vibración en edificios, particularmente en aquellos que pueden estar sujetos aexcitación sísmica. Aunque investigaciones en el campo del control estructural sehan venido desarrollando desde principios de 1900, la complejidad y dimensionesde las estructuras civiles hacen que este problema sea particularmente difícilde resolver debido a la gran demanda de esfuerzo de control y muchas otraslimitaciones asociadas. Este artículo analiza el rendimiento de un sistema decontrol pasivo novedoso que puede ser utilizado para el control de vibraciones enestructuras civiles sometidas a excitaciones en la base. Este dispositivo de controles denominado amortiguador sintonizado inerter (Tuned Inerter Damper, TID)el cual supera la limitación de los dispositivos pasivos clásicos que son eficientesen una banda de frecuencia estrecha para la cual están sintonizados, situaciónque resulta inconveniente debido a que los terremotos muestran un contenidofrecuencial diverso en la mayoría de ocasiones. Este estudio emplea, además,un enfoque de optimización metaheurística basado en el método de evolucióndiferencial (ED), combinado con un análisis dinámico tiempo-historia elástico,a través del cual el control de vibración se enfoca en dos objetivos individuales:primero, minimizar el desplazamiento máximo horizontal; y segundo, minimizar lamedia cuadrática de desplazamiento (Root Mean Square, RMS). Se estudia el casode un edificio de 12 pisos equipado con una ubicación novedosa del TID sometidoa múltiples excitaciones sísmicas para verificar la efectividad del dispositivo ydiferente a la presentada en la literatura. Los resultados muestran una mejorasignificativa en la respuesta dinámica cuando se emplea la disposición presentadaen este trabajo y considerablemente mejor que un TMD equivalente. Por lo tanto, el TID representa una alternativa potencialmente atractiva de las técnicas tradicionales de control pasivo.
|
description_eng |
An important part of the structural design process is to decrease the effect ofvibration in buildings, particularly those that may be subject to seismic excitation.Although research in the field of structural control has been made since the early1900s, the complexity and dimensions of civil structures make this problemparticularly difficult to solve due to the high demand for control effort and manyother associated limitations. This paper analyzes the performance of a novelpassive control system that can be used for vibration control in civil structuressubjected to base excitation. This control device is called Tuned Inerter Damper(TID), which overcomes the limitation of classic passive devices that are efficient ina narrow frequency band for which they are tuned, a situation that is inconvenientsince earthquakes exhibit a very diverse frequency content on most occasions.Besides, this study employs a metaheuristic optimization approach based on thedifferential evolution method (DE) combined with an elastic time-history dynamicanalysis, through which the vibration control focuses on two individual objectives:first, minimizing the maximum horizontal displacement; and second, minimizingthe root mean square (RMS) response of displacements. A 12-story buildingequipped with a novel arrangement of the TID, and subjected to multiple seismicexcitations is studied to verify the effectiveness of the device. The results show asignificant enhancement in the dynamic response when the arrangement presentedin this work is used, and considerably better than an equivalent TMD. Therefore,TID represents a potentially attractive alternative to traditional passive controltechniques.
|
author |
Blandón Valencia, John Jairo Caicedo, Daniel Alejandro Lara Valencia, Luis Augusto |
author_facet |
Blandón Valencia, John Jairo Caicedo, Daniel Alejandro Lara Valencia, Luis Augusto |
topic |
Inerter vibration control differential evolution earthquake loads passive control optimization Inerter control de vibraciones evolución diferencial cargas sísmicas control pasivo optimización |
topic_facet |
Inerter vibration control differential evolution earthquake loads passive control optimization Inerter control de vibraciones evolución diferencial cargas sísmicas control pasivo optimización |
topicspa_str_mv |
Inerter control de vibraciones evolución diferencial cargas sísmicas control pasivo optimización |
citationvolume |
21 |
citationissue |
41 |
citationedition |
Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1685 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Pan, C., & Zhang, R. (2018). Design of structure with inerter system based on stochastic response mitigation ratio. Structural Control and Health Monitoring, 25(6). doi:https://doi.org/10.1002/stc.2169 Bekdaş, G., & Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9), 2716-2723. doi:http://dx.doi.org/10.1016/j.engstruct.2011.05.024 BekdaşG, Nigdeli, S. M., & Yang, X. S. (2018). A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 159, 89-98. doi:http://dx.doi.org/10.1016/j.engstruct.2017.12.037 Biswas Raha, S., & Chakraborty, N. (2012). Tuned reactive power dispatch through modified differential evolution technique. Frontiers in Energy, 6, 138-147. doi:http://dx.doi.org/10.1007/s11708-012-0188-8 Buckle, G. (2000). Passive control of structures for seismic loads. Bull. N.Z. Natl. Soc. Earthq. Eng, 33(3), 209-221. doi:https://doi.org/10.5459/bnzsee.33.3.209-221. Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection. Computational Science and Its Applications–ICCSA 2017: 17th International Conference, 71-86. doi:http://dx.doi.org/10.1007/978-3-319-62392-4_6 Chen, Y. C., Tu, J. Y., & Wang, F. V. (2015). Earthquake vibration control for buildings with inerter networks. 2015 European Control Conference (ECC), 3137-3142. doi:http://dx.doi.org/10.1109/ECC.2015.7331016 Den Hartog, J. P. (1985). Mechanical vibrations. New York: Courier Corporation. Farshidianfar, A., & Soheili, S. (2013). Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Iran University of Science & Technology, 3(3), 409-429. Frahm, H. (1911). Device for damping vibrations of bodies. U.S. Pat. No 989,958, 1911. doi:https://doi.org/10.1016/j.tree.2005.10.010 Hu, Y., & Chen, M. Z. (2015). Performance evaluation for inerter-based dynamic vibration absorbers. Int. J. Mech. Sci, 99, 297-307. doi:https://doi.org/10.1016/j.ijmecsci.2015.06.003 Inc, T. M. (2019). MATLAB R2019a. MA, USA: Natick. Kelly, J. M. (1998). Base isolation: Origins and development. EERC News, 12(1). Kelly, J. M., & Beucke, K. E. (1983). A frictional damped base isolation system with fail-safe characteristics. Earthq. Eng. Struct. Dynam, 11, 33-56. Kelly, J. M., & Hodder, S. B. (1982). Experimental study of lead and elastomeric dampers for base isolation system in laminated neoprene bearings. Bull. N.Z. Nat. Soc. Earthq. Eng, 15, 53-67. Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Design and performance analysis of inerter-based vibration control systems. Dynamics of Civil Structures, 4, 493-500. doi:http://dx.doi.org/10.1007/978-3-319-04546-7_53 Lazar, I. F., Neild, S. A., & Wagg, D. J. (2014). Using an inerter‐based device for structural vibration suppression. Earthq. Eng. Struct. Dyn, 43(8), 1129-1147. doi:https://doi.org/10.1002/eqe.2390 Lazar, I. F., Wagg, D. J., & Neild, S. A. (2013). An inerter vibration isolation system for the control of seismically excited structures. 10th International Conference on Urban Earthquake Engineering. Lazar, I., Neild, S., & Wagg, D. (2014). Inerter-based Vibration Suppression Systems for Laterally and Base-Excited Structures. (E. C. A. Cunha, Ed.) Proceedings of the 9th International Conference on Structural Dynamics. Leung, A. Y., & Zhang, H. (2009). Particle swarm optimization of tuned mass dampers. Engineering Structures, 31(3), 715-728. doi:http://dx.doi.org/10.1016/j.engstruct.2008.11.017 Ministerio de Vivienda, C. y. (2010). Reglamento Colombiano de Construcción Sismo Resistente NSR-10. Bogotá: AIS. Nigdeli, S. M., Bekdas, G., & Yang, X. S. (2016). Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int. J. Theor. Appl. Mech, 1, 264-268. Ormondroyd, J., & Den Hartong, J. P. (1928). The theory of the dynamic vibration absorber. Transaction of the ASME, 50, 9-22. Papageorgiou, C., & Smith, M. (2005). Laboratory experimental testing of inerters. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. doi:https://doi.org/10.1109/CDC.2005.1582679 Said, E. (2018). Seismic Energy Assessment of Buildings with Tuned Vibration Absorbers. Shock and Vibration, 2018, 1-10. doi:https://doi.org/10.1155/2018/2051687 Seyedpoor, S. M., Shahbandeh, S., & Yazdanpanah, O. (2015). An efficient method for structural damage detection using a differential evolution algorithm-based optimisation approach. Civil Engineering and Environmental Systems, 32(3), 230-250. doi:http://dx.doi.org/10.1080/10286608.2015.1046051 Shen, W., Niyitangamahoro, A., Feng, Z., & Zhu, H. (2019). Tuned Inerter Dampers for Civil Structures Subjected to Earthquake Ground Motions: optimum design and seismic performance. Engineering Structures, 198. doi:https://doi.org/10.1016/j.engstruct.2019.109470 Shen, Y., Chen, L., Yang, X., Shi, D., & Yang, J. (2016). Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. Journal of Sound and Vibration(361), 148-158. doi:http://dx.doi.org/10.1016/j.jsv.2015.06.045 Smith, M. (2002). Synthesis of mechanical networks: The inerter. IEEE Transactions on automatic control, 47(10), 1648-1662. doi:https://doi.org/10.1109/TAC.2002.803532 Storn, R., & Price, K. (1997). Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Optim, 11(4), 341-359. doi:https://doi.org/10.1023/A:1008202821328. Vo-Duy, T., Ho-Huu, V., Dang-Trung, H., & Nguyen-Thoi, T. (2016). A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm. Composite Structures, 147, 42-53. doi:http://dx.doi.org/10.1016/j.compstruct.2016.03.027 Wang, F. C., Chen, C. W., Liao, M. K., & Hong, M. F. (2007). Performance analyses of building suspension control with inerters. 46th IEEE Conference on Decision and Control, 3786-3791. Wang, F. C., Hong, M. F., & Chen, C. W. (2010). Building suspensions with inerters. Proceedings of the Institution of Mechanical Engineers, Part C. J. Mech. Eng. Sci, 224(8), 1605-1616. doi:https://doi.org/10.1243/09544062JMES1909. Wen, Y., Chen, Z., & Hua, X. (2017). Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures. Journal of Structural Engineering, 143(4). doi:http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001680 Yucel, M., Bekdaş, G., Nigdeli, S. M., & Sevgen, S. (2019). Estimation of optimum tuned mass damper parameters via machine learning. Journal of Building Engineering, 26. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-01-01 |
date_accessioned |
2024-01-01 00:00:00 |
date_available |
2024-01-01 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1685 |
url_doi |
https://doi.org/10.24050/reia.v21i41.1685 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v21i41.1685 |
citationstartpage |
4110 pp. 1 |
citationendpage |
25 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1685/1584 |
_version_ |
1811200531068092416 |