Titulo:

Alternativas de reutilización y valorización de residuos cerámicos: una revisión
.

Sumario:

Los materiales cerámicos contribuyen con el mayor porcentaje de desechos dentro de los residuos generados en la construcción y demolición de estructuras de concreto. Actualmente estos desechos cerámicos se eliminan directamente en vertederos, debido a la falta de alternativas de disposición y al desconocimiento de opciones de aprovechamiento de estos materiales. El objetivo de este estudio es identificar las alternativas actuales y establecer las perspectivas de aprovechamiento y valorización de los residuos cerámicos. Este análisis de alternativas de aprovechamiento y valorización de los residuos cerámicos se lleva a cabo mediante una revisión bibliográfica, la cual está enfocada a identificar las opciones existentes en el aprovechamiento... Ver más

Guardado en:

1794-1237

2463-0950

20

2023-12-19

4018 pp. 1

19

Revista EIA - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1680
record_format ojs
spelling Alternativas de reutilización y valorización de residuos cerámicos: una revisión
Ceramic waste reuse and valorization alternatives: A review
Los materiales cerámicos contribuyen con el mayor porcentaje de desechos dentro de los residuos generados en la construcción y demolición de estructuras de concreto. Actualmente estos desechos cerámicos se eliminan directamente en vertederos, debido a la falta de alternativas de disposición y al desconocimiento de opciones de aprovechamiento de estos materiales. El objetivo de este estudio es identificar las alternativas actuales y establecer las perspectivas de aprovechamiento y valorización de los residuos cerámicos. Este análisis de alternativas de aprovechamiento y valorización de los residuos cerámicos se lleva a cabo mediante una revisión bibliográfica, la cual está enfocada a identificar las opciones existentes en el aprovechamiento y valorización de los residuos de cerámico. Para cada alternativa existente se realiza una breve descripción de la metodología empleada y se destacan los principales resultados obtenidos en cada estudio. A partir de la revisión bibliográfica se plantean algunas perspectivas de aprovechamiento de materiales cerámicos. Se encontró que actualmente los residuos cerámicos se aprovechan principalmente en la formulación de concretos, fabricación de aislantes eléctricos, extracción de alúmina y como barrera geológica para contener residuos nucleares. Además, a partir de las propiedades de los materiales cerámicos, se establecieron como perspectivas de aprovechamiento la obtención de aislantes térmicos, materiales abrasivos, recuperación de arrecifes de coral y elaboración de estructuras a partir de técnicas de fabricación aditiva. Se concluye que la opción económicamente más rentable para el aprovechamiento y valorización de los residuos cerámicos es la formulación de concretos, mientras que la perspectiva más viable es la fabricación de materiales abrasivos.
Ceramic materials account for the largest percentage of waste generated in the construction and demolition of concrete structures. Currently, this ceramic waste is disposed of in landfills, due to the lack of alternative disposal options and the lack of awareness of options for the reuse of these materials. This study aims to identify the existing alternatives and establish the potential for the reuse and valorization of ceramic waste. This analysis of alternatives for the reuse and valorization of ceramic waste is carried out through a bibliographic review focused on identifying the existing options for the reuse and valorization of ceramic waste. For each existing alternative, a brief description of the methodology used is made and the main results achieved in each study are highlighted. Based on the bibliographic review, some alternatives for the reuse of ceramic materials are presented. It was established that ceramic waste is currently used mainly in the formulation of concrete, manufacture of electrical insulators, extraction of alumina, and as a geological barrier to contain nuclear waste. In addition, based on the properties of ceramic materials, it was concluded that the potential applications for reuse include obtaining thermal insulators, abrasive materials, coral reef regeneration, and the elaboration of structures using additive manufacturing techniques. It was found that the most economically profitable option for the reuse and valorization of ceramic waste is the manufacture of concrete, while the most viable option is the manufacture of abrasive materials.
Arias Ocampo, Mayra Alejandra
Rojas González, Andrés Felipe
Ceramic materials
porcelain wastes
reuse and valorization of waste
concrete formulation
manufacture of electrical insulators
alumina extraction
thermal insulators
abrasive materials
coral reef regeneration
ceramic additive manufacturing
Materiales cerámicos
residuos de porcelana
reutilización y valorización de residuos
hormigón formulación
fabricación de aisladores eléctricos
extracción de alúmina
aisladores térmicos
regeneración de arrecifes de coral
fabricación aditiva cerámica
20
40
Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40
Artículo de revista
Journal article
2023-12-19 00:00:00
2023-12-19 00:00:00
2023-12-19
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1680
10.24050/reia.v20i40.1680
https://doi.org/10.24050/reia.v20i40.1680
eng
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4018 pp. 1
19
Alhabeeb, B. A., Mohammed, H. N., & Alhabeeb, S. A. (2021). Thermal insulators based on abundant waste materials. IOP Conference Series: Materials Science and Engineering, 1067(1), 012097. https://doi.org/10.1088/1757-899x/1067/1/012097
Awoyera, P. O., Ndambuki, J. M., Akinmusuru, J. O., & Omole, D. O. (2018). Characterization of ceramic waste aggregate concrete. HBRC Journal, 14(3), 282–287. https://doi.org/10.1016/j.hbrcj.2016.11.003
Blackett, G., Savory, E., Toy, N., Parke, G. A. R., Clark, M., & Rabjohns, B. (2008). An evaluation of the environmental burdens of present and alternative materials used for electricity transmission. Building and Environment, 43(7), 1326–1338. https://doi.org/10.1016/j.buildenv.2006.08.032
Belhouchet, K., Bayadi, A., Belhouchet, H., & Romero, M. (2019). Improvement of mechanical and dielectric properties of porcelain insulators using economic raw materials. Boletín De La Sociedad Española De Cerámica y Vidrio, 58(1), 28–37. https://doi.org/10.1016/j.bsecv.2018.05.004
Bhattacharyya, S., Das, S. K., & Mitra, N. K. (2005). Effect of titania on fired characteristics of triaxial porcelain. Bulletin of Materials Science, 28(5), 445–452. https://doi.org/10.1007/bf02711234
Bhogilal, V. R., & Tejas, M. (2018). Pertinence of Ceramic Waste in Self Compacted Concrete as Partial Equivalent of Cement. International Research Journal of Engineering and Technology, 5(11), 344–349. ISSN: 2395-0056
Bommisetty, J., Keertan, T. S., Ravitheja, A., & Mahendra, K. (2019). Effect of waste ceramic tiles as a partial replacement of aggregates in concrete. Materials Today: Proceedings, 19, 875–877. https://doi.org/10.1016/j.matpr.2019.08.230
Burger, W., & Kiefer, G. (2021). Alumina, zirconia, and their composite ceramics with properties tailored for medical applications. Journal of Composites Science, 5(11), 306. https://doi.org/10.3390/jcs5110306
Caligaris, R., Quaranta, N., Caligaris, M., & Benavidez, E. (2000). Materias Primas no tradicionales en la Industria Cerámica. Boletín De La Sociedad Española De Cerámica y Vidrio, 39(5), 623–626. https://doi.org/10.3989/cyv.2000.v39.i5.779
Cicek, B., Karadagli, E., & Duman, F. (2018). Valorisation of boron mining wastes in the production of wall and floor tiles. Construction and Building Materials, 179, 232–244. https://doi.org/10.1016/j.conbuildmat.2018.05.182
Contreras, J. (2014). Influencia de la inserción de nano-óxidos cerámicos sobre la microestructura y propiedades de una porcelana triaxial [Tesis de Doctorado, Universidad Autónoma de Nuevo León]. Repositorio institucional http://eprints.uanl.mx/11384/1/1080215587.pdf
Cozzarini, L., Marsich, L., Ferluga, A., & Schmid, C. (2020). Life Cycle Analysis of a novel thermal insulator obtained from recycled glass waste. Developments in the Built Environment, 3, 100014. https://doi.org/10.1016/j.dibe.2020.100014
Devanathan, R., Gao, F., & Sun, X. (2011). Challenges in modeling the degradation of ceramic waste forms, 1, 2–28. https://doi.org/10.2172/1043140
El-Dieb, A. S., & Kanaan, D. M. (2018). Ceramic waste powder an alternative cement replacement – characterization and evaluation. Sustainable Materials and Technologies, 17, 1–11. https://doi.org/10.1016/j.susmat.2018.e00063
El País. (2019, April 24). Ice proyecta instalación de megaestructura de arrecife artificial en Costa del Pacífico. Diario Digital Nuestro País. Retrieved December 1, 2022, from https://www.elpais.cr/2019/04/23/ice-proyecta-instalacion-de-megaestructura-de-arrecife-artificial-en-costa-del-pacifico/
European Commission. (2018). Energy Performance of Buildings directive. Energy performance of buildings directive. Retrieved December 1, 2022, from https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
Fassbinder, G. (2002). A New Ceramic Body Concept for High Strength High Voltage Insulators. CFI Ceramic Forum International, 79, E17-E19. Disponible en: https://www.researchgate.net/publication/287903598_A_new_ceramic_body_concept_for_high_strength_high_voltage_insulators
Garza, J. (2019, April 25). Gobierno propone Construcción de Mega Arrecife artificial en el Pacífico. Periódico La República. Retrieved December 1, 2022, from https://www.larepublica.net/noticia/gobierno-propone-construccion-de-mega-arrecife-artificial-en-el-pacifico
Gress, R. I., & Leshchenko, N. P. (1969). Increasing the porcelain pitchers content in high-voltage porcelain bodies. Glass and Ceramics, 26(4), 249–252. https://doi.org/10.1007/bf00676453
Henao, L. F., & López, M. E. (2017). Caracterización y aprovechamiento de residuos sólidos de la industria electrocerámica, como fuente de extracción de alúmina. Revista Colombiana De Materiales, (10), 43–55. Recuperado de: https://revistas.udea.edu.co/index.php/materiales/article/view/328003
Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer Process Solids: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359–374. https://doi.org/10.1016/s0927-7757(98)00798-5
Huang, B., Li, C., Zhang, Y., Ding, W., Yang, M., Yang, Y., Zhai, H., Xu, X., Wang, D., Debnath, S., Jamil, M., Li, H. N., Ali, H. M., Gupta, M. K., & Said, Z. (2021). Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chinese Journal of Aeronautics, 34(6), 1–17. https://doi.org/10.1016/j.cja.2020.07.004
Hur, H., Jin Park, Y., Kim, D.-H., & Wan Ko, J. (2022). Material extrusion for ceramic additive manufacturing with polymer-free ceramic precursor binder. Materials & Design, 221, 110930. https://doi.org/10.1016/j.matdes.2022.110930
Huseien, G. F., Sam, A. R., Shah, K. W., & Mirza, J. (2020). Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Construction and Building Materials, 236, 117-574. https://doi.org/10.1016/j.conbuildmat.2019.117574
INMR. (2021). Testing ageing of porcelain insulators. Retrieved November 16, 2022, from https://www.inmr.com/testing-ageing-of-porcelain-insulators/
Jain, P., Gupta, R., & Chaudhary, S. (2022). A literature review on the effect of using ceramic waste as supplementary cementitious material in cement composites on workability and compressive strength. Materials Today: Proceedings, 65, 871–876. https://doi.org/10.1016/j.matpr.2022.03.453
Jerônimo, V. L., Meira, G. R., & da Silva, L. C. (2018). Performance of self-compacting concretes with wastes from heavy ceramic industry against corrosion by chlorides. Construction and Building Materials, 169, 900–910. https://doi.org/10.1016/j.conbuildmat.2018.03.034
Juan, A., Medina, C., Guerra, I., Morán, J., Aguado, P., Sánchez, M., Frias, M., & Rodríguez, O. (2010). Re-use of ceramic wastes in construction, 1, 197–214. Ceramic Materials. IntechOpen. https://doi.org/10.5772/intechopen.83933
Kannan, D. M., Aboubakr, S. H., EL-Dieb, A. S., & Reda Taha, M. M. (2017). High performance concrete incorporating ceramic waste powder as large partial replacement of Portland Cement. Construction and Building Materials, 144, 35–41. https://doi.org/10.1016/j.conbuildmat.2017.03.115
Keleştemur, O., Yildiz, S., Gökçer, B., & Arici, E. (2014). Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber. Materials & Design, 60, 548–555. https://doi.org/10.1016/j.matdes.2014.04.013
Keshavarz, Z., & Mostofinejad, D. (2019). Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Construction and Building Materials, 195, 218–230. https://doi.org/10.1016/j.conbuildmat.2018.11.033
Khalil, N. M. (2014). Exploitation of the ceramic wastes for the extraction of Nano Aluminum Oxide Powder. Journal of Industrial and Engineering Chemistry, 20(5), 3663–3666. https://doi.org/10.1016/j.jiec.2013.12.063
Khattab, R. M., Wahsh, M. M. S., & Khalil, N. M. (2012). Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceramics International, 38(6), 4723–4728. https://doi.org/10.1016/j.ceramint.2012.02.057
Kostadinović, D., Jovanović, M., Bakić, V., Stepanić, N., & Todorović, M. (2022). Experimental investigation of summer thermal performance of the green roof system with mineral wool substrate. Building and Environment, 217, 109061. https://doi.org/10.1016/j.buildenv.2022.109061
Lassinantti, M., Mugoni, C., Guandalini, S., Cattini, A., Mazzini, D., Alboni, C., & Siligardi, C. (2018). Glass recycling in the production of low-temperature stoneware tiles. Journal of Cleaner Production, 197, 1531–1539. https://doi.org/10.1016/j.jclepro.2018.06.264
Lakhdar, Y., Tuck, C., Binner, J., Terry, A., & Goodridge, R. (2021). Additive Manufacturing of Advanced Ceramic Materials. Progress in Materials Science, 116, 100736. https://doi.org/10.1016/j.pmatsci.2020.100736
Liebermann, J. (2012). High-voltage insulators: Basics and trends for producers, users, and students (1) Fraunhofer Institute for Ceramic Technologies and Systems. ISBN: 9783877352083
Liu, T., Zhang, J., Wu, J., Liu, J., Li, C., Ning, T., Luo, Z., Zhou, X., Yang, Q., & Lu, A. (2019). The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength. Journal of Cleaner Production, 223, 790–800. https://doi.org/10.1016/j.jclepro.2019.03.162
Marciano, S., Mugnier, N., Clerin, P., Cristol, B., & Moulin, P. (2006). Nanofiltration of Bayer Process Solutions. Journal of Membrane Science, 281(1-2), 260–267. https://doi.org/10.1016/j.memsci.2006.03.040
Matjie, R. H., Bunt, J. R., & Van Heerden, J. H. P. (2005). Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal. Minerals Engineering, 18(3), 299–310. https://doi.org/10.1016/j.mineng.2004.06.013
Matteucci, F., Dondi, M., & Guarini, G. (2002). Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceramics International, 28(8), 873–880. https://doi.org/10.1016/s0272-8842(02)00067-6
Mavrič, A., Valant, M., Cui, C., & Wang, Z. M. (2019). Advanced applications of amorphous alumina: From Nano to bulk. Journal of Non-Crystalline Solids, 521, 119493. https://doi.org/10.1016/j.jnoncrysol.2019.119493
Meena, R. V., Jain, J. K., Chouhan, H. S., & Beniwal, A. S. (2022). Use of waste ceramics to produce sustainable concrete: A Review. Cleaner Materials, 4, 100085. https://doi.org/10.1016/j.clema.2022.100085
Meng, Y., Gong, G., Wei, D., & Xie, Y. (2016). In situ high temperature X-ray diffraction study on high strength aluminous porcelain insulator with the AL2O3-SiO2-K2O-NA2O system. Applied Clay Science, 132-133, 760–767. https://doi.org/10.1016/j.clay.2016.07.014
Meng, Y., Gong, G., Wu, Z., Yin, Z., Xie, Y., & Liu, S. (2012). Fabrication and microstructure investigation of ultra-high-strength porcelain insulator. Journal of the European Ceramic Society, 32(12), 3043–3049. https://doi.org/10.1016/j.jeurceramsoc.2012.04.015
Merga, A., Murthy, H. C. A., Amare, E., Ahmed, K., & Bekele, E. (2019). Fabrication of electrical porcelain insulator from ceramic raw materials of Oromia Region, Ethiopia. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02327
Mert, H. H., & Mert, M. S. (2021). Design of N-octadecane-based form-stable composite phase change materials embedded in porous nano alumina for thermal energy storage applications. Journal of Thermal Analysis and Calorimetry, 147(8), 4925–4934. https://doi.org/10.1007/s10973-021-10886-0
Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. (2018). Additive Manufacturing - a review of 4D printing and future applications. Additive Manufacturing, 24, 606–626. https://doi.org/10.1016/j.addma.2018.10.038
Moraes, E., Sangiacomo, L., P. Stochero, N., Arcaro, S., R. Barbosa, L., Lenzi, A., Siligardi, C., & Novaes de Oliveira, A. P. (2019). Innovative thermal and acoustic insulation foam by using recycled ceramic shell and expandable styrofoam (EPS) wastes. Waste Management, 89, 336–344. https://doi.org/10.1016/j.wasman.2019.04.019
Morocutti, T., Berg, T., Muhr, M., & Godel, G. (2012). Developments of high voltage porcelain post-insulators. 2012 IEEE International Symposium on Electrical Insulation. https://doi.org/10.1109/elinsl.2012.6251497
Nepomuceno, M. C. S., Isidoro, R. A. S., & Catarino, J. P. G. (2018). Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Construction and Building Materials, 165, 284–294. https://doi.org/10.1016/j.conbuildmat.2018.01.052
Owoeye, S. S., Toludare, T. S., Isinkaye, O. E., & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of Porcelain Ceramics. Boletín De La Sociedad Española De Cerámica y Vidrio, 58(2), 77–84. https://doi.org/10.1016/j.bsecv.2018.07.002
Palaniyappan, S., Veiravan, A., Kaliyamoorthy, R., & Kumar, V. (2021). Sustainable solution to low-cost alternative abrasive from electric ceramic insulator waste for use in abrasive water jet machining. https://doi.org/10.21203/rs.3.rs-606563/v1
Papailiou, K. O., & Schmuck, F. (2013). Silicone composite insulators. Power Systems, 1, 197-283. doi:10.1007/978-3-642-15320-4
Piyaphanuwat, R., & Asavapisit, S. (2017). Utilization ceramic wastes from porcelain ceramic industry in lightweight aggregate concrete. International Journal of Environmental Science and Development, 8(5), 342–346. https://doi.org/10.18178/ijesd.2017.8.5.975
Portella, K. F., Joukoski, A., Franck, R., & Derksen, R. (2006). Reciclagem Secundária de Rejeitos de porcelanas elétricas em estruturas de concreto: Determinação do Desempenho Sob Envelhecimento Acelerado. Cerâmica, 52(323), 155–167. https://doi.org/10.1590/s0366-69132006000300008
Rodríguez, E. A., Niño, C. J., Contreras, J. E., Vázquez, F. J., López-Perales, J. F., Aguilar-Martínez, J. A., Puente-Ornelas, R., & Lara-Banda, M. (2019). Influence of incorporation of fired porcelain scrap as partial replacement of quartz on properties of an electrical porcelain. Journal of Cleaner Production, 233, 501–509. https://doi.org/10.1016/j.jclepro.2019.05.403
Ruys, A. (2019). Refractory and other specialist industrial applications of alumina. Alumina Ceramics, 473–499. https://doi.org/10.1016/b978-0-08-102442-3.00015-4
Sabaa, Z. M., & Fahad, B. M. (2018). Glass and porcelain waste as abrasives investigated at different conditions. IOP Conference Series: Materials Science and Engineering, 454, 012117. https://doi.org/10.1088/1757-899x/454/1/012117
Sabaa, Z. M., & Fahad, B. M. (2019). Utilization of construction waste to developing an abrasive material. Journal of Engineering and Applied Sciences, 14(8), 2582–2587. https://doi.org/10.36478/jeasci.2019.2582.2587
Said, S., Mikhail, S., & Riad, M. (2019). Recent progress in preparations and applications of Meso-porous alumina. Materials Science for Energy Technologies, 2(2), 288–297. https://doi.org/10.1016/j.mset.2019.02.005
Sekar, T., Ganesan, N., & Nampoothiri, N. (2011). Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. International Journal of Engineering Science and Technology. 3(7), 5436–5440. ISSN: 0975-5462
Sepehri, A., & Sarrafzadeh, M.-H. (2018). Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chemical Engineering and Processing - Process Intensification, 128, 10–18. https://doi.org/10.1016/j.cep.2018.04.006
Shah, K. W., & Huseien, G. F. (2020). Utilizing ceramic wastes in the concrete industry. Recycled Ceramics in Sustainable Concrete, 33–48. https://doi.org/10.1201/9781003120292-3
Siddique, S., Shrivastava, S., & Chaudhary, S. (2018a). Evaluating resistance of fine bone china ceramic aggregate concrete to sulphate attack. Construction and Building Materials, 186, 826–832.https://doi.org/10.1016/j.conbuildmat.2018.07.138
Siddique, S., Shrivastava, S., Chaudhary, S., & Gupta, T. (2018b). Strength and impact resistance properties of concrete containing fine bone china ceramic aggregate. Construction and Building Materials, 169, 289–298. https://doi.org/10.1016/j.conbuildmat.2018.02.213
Siddique, S., Chaudhary, S., Shrivastava, S., & Gupta, T. (2019). Sustainable utilisation of ceramic waste in concrete: Exposure to adverse conditions. Journal of Cleaner Production, 210, 246–255. https://doi.org/10.1016/j.jclepro.2018.10.231
Sun, J., Ye, D., Zou, J., Chen, X., Wang, Y., Yuan, J., Liang, H., Qu, H., Binner, J., & Bai, J. (2023). A review on additive manufacturing of ceramic matrix composites. Journal of Materials Science & Technology, 138, 1–16. https://doi.org/10.1016/j.jmst.2022.06.039
Tam, V. W. Y., Soomro, M., & Evangelista, A. C. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
Tikul, N. (2014). Assessing environmental impact of small and medium ceramic tile manufacturing enterprises in Thailand. Journal of Manufacturing Systems, 33(1), 1–6. https://doi.org/10.1016/j.jmsy.2013.12.002
Zengrong, Y., Xinghua, Z., & Kangming, M. (2013). Patente de China No. CN102951897A. Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/CN102951897A/en#patentCitations
https://revistas.eia.edu.co/index.php/reveia/article/download/1680/1562
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Alternativas de reutilización y valorización de residuos cerámicos: una revisión
spellingShingle Alternativas de reutilización y valorización de residuos cerámicos: una revisión
Arias Ocampo, Mayra Alejandra
Rojas González, Andrés Felipe
Ceramic materials
porcelain wastes
reuse and valorization of waste
concrete formulation
manufacture of electrical insulators
alumina extraction
thermal insulators
abrasive materials
coral reef regeneration
ceramic additive manufacturing
Materiales cerámicos
residuos de porcelana
reutilización y valorización de residuos
hormigón formulación
fabricación de aisladores eléctricos
extracción de alúmina
aisladores térmicos
regeneración de arrecifes de coral
fabricación aditiva cerámica
title_short Alternativas de reutilización y valorización de residuos cerámicos: una revisión
title_full Alternativas de reutilización y valorización de residuos cerámicos: una revisión
title_fullStr Alternativas de reutilización y valorización de residuos cerámicos: una revisión
title_full_unstemmed Alternativas de reutilización y valorización de residuos cerámicos: una revisión
title_sort alternativas de reutilización y valorización de residuos cerámicos: una revisión
title_eng Ceramic waste reuse and valorization alternatives: A review
description Los materiales cerámicos contribuyen con el mayor porcentaje de desechos dentro de los residuos generados en la construcción y demolición de estructuras de concreto. Actualmente estos desechos cerámicos se eliminan directamente en vertederos, debido a la falta de alternativas de disposición y al desconocimiento de opciones de aprovechamiento de estos materiales. El objetivo de este estudio es identificar las alternativas actuales y establecer las perspectivas de aprovechamiento y valorización de los residuos cerámicos. Este análisis de alternativas de aprovechamiento y valorización de los residuos cerámicos se lleva a cabo mediante una revisión bibliográfica, la cual está enfocada a identificar las opciones existentes en el aprovechamiento y valorización de los residuos de cerámico. Para cada alternativa existente se realiza una breve descripción de la metodología empleada y se destacan los principales resultados obtenidos en cada estudio. A partir de la revisión bibliográfica se plantean algunas perspectivas de aprovechamiento de materiales cerámicos. Se encontró que actualmente los residuos cerámicos se aprovechan principalmente en la formulación de concretos, fabricación de aislantes eléctricos, extracción de alúmina y como barrera geológica para contener residuos nucleares. Además, a partir de las propiedades de los materiales cerámicos, se establecieron como perspectivas de aprovechamiento la obtención de aislantes térmicos, materiales abrasivos, recuperación de arrecifes de coral y elaboración de estructuras a partir de técnicas de fabricación aditiva. Se concluye que la opción económicamente más rentable para el aprovechamiento y valorización de los residuos cerámicos es la formulación de concretos, mientras que la perspectiva más viable es la fabricación de materiales abrasivos.
description_eng Ceramic materials account for the largest percentage of waste generated in the construction and demolition of concrete structures. Currently, this ceramic waste is disposed of in landfills, due to the lack of alternative disposal options and the lack of awareness of options for the reuse of these materials. This study aims to identify the existing alternatives and establish the potential for the reuse and valorization of ceramic waste. This analysis of alternatives for the reuse and valorization of ceramic waste is carried out through a bibliographic review focused on identifying the existing options for the reuse and valorization of ceramic waste. For each existing alternative, a brief description of the methodology used is made and the main results achieved in each study are highlighted. Based on the bibliographic review, some alternatives for the reuse of ceramic materials are presented. It was established that ceramic waste is currently used mainly in the formulation of concrete, manufacture of electrical insulators, extraction of alumina, and as a geological barrier to contain nuclear waste. In addition, based on the properties of ceramic materials, it was concluded that the potential applications for reuse include obtaining thermal insulators, abrasive materials, coral reef regeneration, and the elaboration of structures using additive manufacturing techniques. It was found that the most economically profitable option for the reuse and valorization of ceramic waste is the manufacture of concrete, while the most viable option is the manufacture of abrasive materials.
author Arias Ocampo, Mayra Alejandra
Rojas González, Andrés Felipe
author_facet Arias Ocampo, Mayra Alejandra
Rojas González, Andrés Felipe
topic Ceramic materials
porcelain wastes
reuse and valorization of waste
concrete formulation
manufacture of electrical insulators
alumina extraction
thermal insulators
abrasive materials
coral reef regeneration
ceramic additive manufacturing
Materiales cerámicos
residuos de porcelana
reutilización y valorización de residuos
hormigón formulación
fabricación de aisladores eléctricos
extracción de alúmina
aisladores térmicos
regeneración de arrecifes de coral
fabricación aditiva cerámica
topic_facet Ceramic materials
porcelain wastes
reuse and valorization of waste
concrete formulation
manufacture of electrical insulators
alumina extraction
thermal insulators
abrasive materials
coral reef regeneration
ceramic additive manufacturing
Materiales cerámicos
residuos de porcelana
reutilización y valorización de residuos
hormigón formulación
fabricación de aisladores eléctricos
extracción de alúmina
aisladores térmicos
regeneración de arrecifes de coral
fabricación aditiva cerámica
topicspa_str_mv Materiales cerámicos
residuos de porcelana
reutilización y valorización de residuos
hormigón formulación
fabricación de aisladores eléctricos
extracción de alúmina
aisladores térmicos
regeneración de arrecifes de coral
fabricación aditiva cerámica
citationvolume 20
citationissue 40
citationedition Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1680
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Alhabeeb, B. A., Mohammed, H. N., & Alhabeeb, S. A. (2021). Thermal insulators based on abundant waste materials. IOP Conference Series: Materials Science and Engineering, 1067(1), 012097. https://doi.org/10.1088/1757-899x/1067/1/012097
Awoyera, P. O., Ndambuki, J. M., Akinmusuru, J. O., & Omole, D. O. (2018). Characterization of ceramic waste aggregate concrete. HBRC Journal, 14(3), 282–287. https://doi.org/10.1016/j.hbrcj.2016.11.003
Blackett, G., Savory, E., Toy, N., Parke, G. A. R., Clark, M., & Rabjohns, B. (2008). An evaluation of the environmental burdens of present and alternative materials used for electricity transmission. Building and Environment, 43(7), 1326–1338. https://doi.org/10.1016/j.buildenv.2006.08.032
Belhouchet, K., Bayadi, A., Belhouchet, H., & Romero, M. (2019). Improvement of mechanical and dielectric properties of porcelain insulators using economic raw materials. Boletín De La Sociedad Española De Cerámica y Vidrio, 58(1), 28–37. https://doi.org/10.1016/j.bsecv.2018.05.004
Bhattacharyya, S., Das, S. K., & Mitra, N. K. (2005). Effect of titania on fired characteristics of triaxial porcelain. Bulletin of Materials Science, 28(5), 445–452. https://doi.org/10.1007/bf02711234
Bhogilal, V. R., & Tejas, M. (2018). Pertinence of Ceramic Waste in Self Compacted Concrete as Partial Equivalent of Cement. International Research Journal of Engineering and Technology, 5(11), 344–349. ISSN: 2395-0056
Bommisetty, J., Keertan, T. S., Ravitheja, A., & Mahendra, K. (2019). Effect of waste ceramic tiles as a partial replacement of aggregates in concrete. Materials Today: Proceedings, 19, 875–877. https://doi.org/10.1016/j.matpr.2019.08.230
Burger, W., & Kiefer, G. (2021). Alumina, zirconia, and their composite ceramics with properties tailored for medical applications. Journal of Composites Science, 5(11), 306. https://doi.org/10.3390/jcs5110306
Caligaris, R., Quaranta, N., Caligaris, M., & Benavidez, E. (2000). Materias Primas no tradicionales en la Industria Cerámica. Boletín De La Sociedad Española De Cerámica y Vidrio, 39(5), 623–626. https://doi.org/10.3989/cyv.2000.v39.i5.779
Cicek, B., Karadagli, E., & Duman, F. (2018). Valorisation of boron mining wastes in the production of wall and floor tiles. Construction and Building Materials, 179, 232–244. https://doi.org/10.1016/j.conbuildmat.2018.05.182
Contreras, J. (2014). Influencia de la inserción de nano-óxidos cerámicos sobre la microestructura y propiedades de una porcelana triaxial [Tesis de Doctorado, Universidad Autónoma de Nuevo León]. Repositorio institucional http://eprints.uanl.mx/11384/1/1080215587.pdf
Cozzarini, L., Marsich, L., Ferluga, A., & Schmid, C. (2020). Life Cycle Analysis of a novel thermal insulator obtained from recycled glass waste. Developments in the Built Environment, 3, 100014. https://doi.org/10.1016/j.dibe.2020.100014
Devanathan, R., Gao, F., & Sun, X. (2011). Challenges in modeling the degradation of ceramic waste forms, 1, 2–28. https://doi.org/10.2172/1043140
El-Dieb, A. S., & Kanaan, D. M. (2018). Ceramic waste powder an alternative cement replacement – characterization and evaluation. Sustainable Materials and Technologies, 17, 1–11. https://doi.org/10.1016/j.susmat.2018.e00063
El País. (2019, April 24). Ice proyecta instalación de megaestructura de arrecife artificial en Costa del Pacífico. Diario Digital Nuestro País. Retrieved December 1, 2022, from https://www.elpais.cr/2019/04/23/ice-proyecta-instalacion-de-megaestructura-de-arrecife-artificial-en-costa-del-pacifico/
European Commission. (2018). Energy Performance of Buildings directive. Energy performance of buildings directive. Retrieved December 1, 2022, from https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
Fassbinder, G. (2002). A New Ceramic Body Concept for High Strength High Voltage Insulators. CFI Ceramic Forum International, 79, E17-E19. Disponible en: https://www.researchgate.net/publication/287903598_A_new_ceramic_body_concept_for_high_strength_high_voltage_insulators
Garza, J. (2019, April 25). Gobierno propone Construcción de Mega Arrecife artificial en el Pacífico. Periódico La República. Retrieved December 1, 2022, from https://www.larepublica.net/noticia/gobierno-propone-construccion-de-mega-arrecife-artificial-en-el-pacifico
Gress, R. I., & Leshchenko, N. P. (1969). Increasing the porcelain pitchers content in high-voltage porcelain bodies. Glass and Ceramics, 26(4), 249–252. https://doi.org/10.1007/bf00676453
Henao, L. F., & López, M. E. (2017). Caracterización y aprovechamiento de residuos sólidos de la industria electrocerámica, como fuente de extracción de alúmina. Revista Colombiana De Materiales, (10), 43–55. Recuperado de: https://revistas.udea.edu.co/index.php/materiales/article/view/328003
Hind, A. R., Bhargava, S. K., & Grocott, S. C. (1999). The surface chemistry of Bayer Process Solids: A review. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 359–374. https://doi.org/10.1016/s0927-7757(98)00798-5
Huang, B., Li, C., Zhang, Y., Ding, W., Yang, M., Yang, Y., Zhai, H., Xu, X., Wang, D., Debnath, S., Jamil, M., Li, H. N., Ali, H. M., Gupta, M. K., & Said, Z. (2021). Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chinese Journal of Aeronautics, 34(6), 1–17. https://doi.org/10.1016/j.cja.2020.07.004
Hur, H., Jin Park, Y., Kim, D.-H., & Wan Ko, J. (2022). Material extrusion for ceramic additive manufacturing with polymer-free ceramic precursor binder. Materials & Design, 221, 110930. https://doi.org/10.1016/j.matdes.2022.110930
Huseien, G. F., Sam, A. R., Shah, K. W., & Mirza, J. (2020). Effects of ceramic tile powder waste on properties of self-compacted alkali-activated concrete. Construction and Building Materials, 236, 117-574. https://doi.org/10.1016/j.conbuildmat.2019.117574
INMR. (2021). Testing ageing of porcelain insulators. Retrieved November 16, 2022, from https://www.inmr.com/testing-ageing-of-porcelain-insulators/
Jain, P., Gupta, R., & Chaudhary, S. (2022). A literature review on the effect of using ceramic waste as supplementary cementitious material in cement composites on workability and compressive strength. Materials Today: Proceedings, 65, 871–876. https://doi.org/10.1016/j.matpr.2022.03.453
Jerônimo, V. L., Meira, G. R., & da Silva, L. C. (2018). Performance of self-compacting concretes with wastes from heavy ceramic industry against corrosion by chlorides. Construction and Building Materials, 169, 900–910. https://doi.org/10.1016/j.conbuildmat.2018.03.034
Juan, A., Medina, C., Guerra, I., Morán, J., Aguado, P., Sánchez, M., Frias, M., & Rodríguez, O. (2010). Re-use of ceramic wastes in construction, 1, 197–214. Ceramic Materials. IntechOpen. https://doi.org/10.5772/intechopen.83933
Kannan, D. M., Aboubakr, S. H., EL-Dieb, A. S., & Reda Taha, M. M. (2017). High performance concrete incorporating ceramic waste powder as large partial replacement of Portland Cement. Construction and Building Materials, 144, 35–41. https://doi.org/10.1016/j.conbuildmat.2017.03.115
Keleştemur, O., Yildiz, S., Gökçer, B., & Arici, E. (2014). Statistical analysis for freeze–thaw resistance of cement mortars containing marble dust and glass fiber. Materials & Design, 60, 548–555. https://doi.org/10.1016/j.matdes.2014.04.013
Keshavarz, Z., & Mostofinejad, D. (2019). Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Construction and Building Materials, 195, 218–230. https://doi.org/10.1016/j.conbuildmat.2018.11.033
Khalil, N. M. (2014). Exploitation of the ceramic wastes for the extraction of Nano Aluminum Oxide Powder. Journal of Industrial and Engineering Chemistry, 20(5), 3663–3666. https://doi.org/10.1016/j.jiec.2013.12.063
Khattab, R. M., Wahsh, M. M. S., & Khalil, N. M. (2012). Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceramics International, 38(6), 4723–4728. https://doi.org/10.1016/j.ceramint.2012.02.057
Kostadinović, D., Jovanović, M., Bakić, V., Stepanić, N., & Todorović, M. (2022). Experimental investigation of summer thermal performance of the green roof system with mineral wool substrate. Building and Environment, 217, 109061. https://doi.org/10.1016/j.buildenv.2022.109061
Lassinantti, M., Mugoni, C., Guandalini, S., Cattini, A., Mazzini, D., Alboni, C., & Siligardi, C. (2018). Glass recycling in the production of low-temperature stoneware tiles. Journal of Cleaner Production, 197, 1531–1539. https://doi.org/10.1016/j.jclepro.2018.06.264
Lakhdar, Y., Tuck, C., Binner, J., Terry, A., & Goodridge, R. (2021). Additive Manufacturing of Advanced Ceramic Materials. Progress in Materials Science, 116, 100736. https://doi.org/10.1016/j.pmatsci.2020.100736
Liebermann, J. (2012). High-voltage insulators: Basics and trends for producers, users, and students (1) Fraunhofer Institute for Ceramic Technologies and Systems. ISBN: 9783877352083
Liu, T., Zhang, J., Wu, J., Liu, J., Li, C., Ning, T., Luo, Z., Zhou, X., Yang, Q., & Lu, A. (2019). The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength. Journal of Cleaner Production, 223, 790–800. https://doi.org/10.1016/j.jclepro.2019.03.162
Marciano, S., Mugnier, N., Clerin, P., Cristol, B., & Moulin, P. (2006). Nanofiltration of Bayer Process Solutions. Journal of Membrane Science, 281(1-2), 260–267. https://doi.org/10.1016/j.memsci.2006.03.040
Matjie, R. H., Bunt, J. R., & Van Heerden, J. H. P. (2005). Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal. Minerals Engineering, 18(3), 299–310. https://doi.org/10.1016/j.mineng.2004.06.013
Matteucci, F., Dondi, M., & Guarini, G. (2002). Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles. Ceramics International, 28(8), 873–880. https://doi.org/10.1016/s0272-8842(02)00067-6
Mavrič, A., Valant, M., Cui, C., & Wang, Z. M. (2019). Advanced applications of amorphous alumina: From Nano to bulk. Journal of Non-Crystalline Solids, 521, 119493. https://doi.org/10.1016/j.jnoncrysol.2019.119493
Meena, R. V., Jain, J. K., Chouhan, H. S., & Beniwal, A. S. (2022). Use of waste ceramics to produce sustainable concrete: A Review. Cleaner Materials, 4, 100085. https://doi.org/10.1016/j.clema.2022.100085
Meng, Y., Gong, G., Wei, D., & Xie, Y. (2016). In situ high temperature X-ray diffraction study on high strength aluminous porcelain insulator with the AL2O3-SiO2-K2O-NA2O system. Applied Clay Science, 132-133, 760–767. https://doi.org/10.1016/j.clay.2016.07.014
Meng, Y., Gong, G., Wu, Z., Yin, Z., Xie, Y., & Liu, S. (2012). Fabrication and microstructure investigation of ultra-high-strength porcelain insulator. Journal of the European Ceramic Society, 32(12), 3043–3049. https://doi.org/10.1016/j.jeurceramsoc.2012.04.015
Merga, A., Murthy, H. C. A., Amare, E., Ahmed, K., & Bekele, E. (2019). Fabrication of electrical porcelain insulator from ceramic raw materials of Oromia Region, Ethiopia. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02327
Mert, H. H., & Mert, M. S. (2021). Design of N-octadecane-based form-stable composite phase change materials embedded in porous nano alumina for thermal energy storage applications. Journal of Thermal Analysis and Calorimetry, 147(8), 4925–4934. https://doi.org/10.1007/s10973-021-10886-0
Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. (2018). Additive Manufacturing - a review of 4D printing and future applications. Additive Manufacturing, 24, 606–626. https://doi.org/10.1016/j.addma.2018.10.038
Moraes, E., Sangiacomo, L., P. Stochero, N., Arcaro, S., R. Barbosa, L., Lenzi, A., Siligardi, C., & Novaes de Oliveira, A. P. (2019). Innovative thermal and acoustic insulation foam by using recycled ceramic shell and expandable styrofoam (EPS) wastes. Waste Management, 89, 336–344. https://doi.org/10.1016/j.wasman.2019.04.019
Morocutti, T., Berg, T., Muhr, M., & Godel, G. (2012). Developments of high voltage porcelain post-insulators. 2012 IEEE International Symposium on Electrical Insulation. https://doi.org/10.1109/elinsl.2012.6251497
Nepomuceno, M. C. S., Isidoro, R. A. S., & Catarino, J. P. G. (2018). Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Construction and Building Materials, 165, 284–294. https://doi.org/10.1016/j.conbuildmat.2018.01.052
Owoeye, S. S., Toludare, T. S., Isinkaye, O. E., & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of Porcelain Ceramics. Boletín De La Sociedad Española De Cerámica y Vidrio, 58(2), 77–84. https://doi.org/10.1016/j.bsecv.2018.07.002
Palaniyappan, S., Veiravan, A., Kaliyamoorthy, R., & Kumar, V. (2021). Sustainable solution to low-cost alternative abrasive from electric ceramic insulator waste for use in abrasive water jet machining. https://doi.org/10.21203/rs.3.rs-606563/v1
Papailiou, K. O., & Schmuck, F. (2013). Silicone composite insulators. Power Systems, 1, 197-283. doi:10.1007/978-3-642-15320-4
Piyaphanuwat, R., & Asavapisit, S. (2017). Utilization ceramic wastes from porcelain ceramic industry in lightweight aggregate concrete. International Journal of Environmental Science and Development, 8(5), 342–346. https://doi.org/10.18178/ijesd.2017.8.5.975
Portella, K. F., Joukoski, A., Franck, R., & Derksen, R. (2006). Reciclagem Secundária de Rejeitos de porcelanas elétricas em estruturas de concreto: Determinação do Desempenho Sob Envelhecimento Acelerado. Cerâmica, 52(323), 155–167. https://doi.org/10.1590/s0366-69132006000300008
Rodríguez, E. A., Niño, C. J., Contreras, J. E., Vázquez, F. J., López-Perales, J. F., Aguilar-Martínez, J. A., Puente-Ornelas, R., & Lara-Banda, M. (2019). Influence of incorporation of fired porcelain scrap as partial replacement of quartz on properties of an electrical porcelain. Journal of Cleaner Production, 233, 501–509. https://doi.org/10.1016/j.jclepro.2019.05.403
Ruys, A. (2019). Refractory and other specialist industrial applications of alumina. Alumina Ceramics, 473–499. https://doi.org/10.1016/b978-0-08-102442-3.00015-4
Sabaa, Z. M., & Fahad, B. M. (2018). Glass and porcelain waste as abrasives investigated at different conditions. IOP Conference Series: Materials Science and Engineering, 454, 012117. https://doi.org/10.1088/1757-899x/454/1/012117
Sabaa, Z. M., & Fahad, B. M. (2019). Utilization of construction waste to developing an abrasive material. Journal of Engineering and Applied Sciences, 14(8), 2582–2587. https://doi.org/10.36478/jeasci.2019.2582.2587
Said, S., Mikhail, S., & Riad, M. (2019). Recent progress in preparations and applications of Meso-porous alumina. Materials Science for Energy Technologies, 2(2), 288–297. https://doi.org/10.1016/j.mset.2019.02.005
Sekar, T., Ganesan, N., & Nampoothiri, N. (2011). Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. International Journal of Engineering Science and Technology. 3(7), 5436–5440. ISSN: 0975-5462
Sepehri, A., & Sarrafzadeh, M.-H. (2018). Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chemical Engineering and Processing - Process Intensification, 128, 10–18. https://doi.org/10.1016/j.cep.2018.04.006
Shah, K. W., & Huseien, G. F. (2020). Utilizing ceramic wastes in the concrete industry. Recycled Ceramics in Sustainable Concrete, 33–48. https://doi.org/10.1201/9781003120292-3
Siddique, S., Shrivastava, S., & Chaudhary, S. (2018a). Evaluating resistance of fine bone china ceramic aggregate concrete to sulphate attack. Construction and Building Materials, 186, 826–832.https://doi.org/10.1016/j.conbuildmat.2018.07.138
Siddique, S., Shrivastava, S., Chaudhary, S., & Gupta, T. (2018b). Strength and impact resistance properties of concrete containing fine bone china ceramic aggregate. Construction and Building Materials, 169, 289–298. https://doi.org/10.1016/j.conbuildmat.2018.02.213
Siddique, S., Chaudhary, S., Shrivastava, S., & Gupta, T. (2019). Sustainable utilisation of ceramic waste in concrete: Exposure to adverse conditions. Journal of Cleaner Production, 210, 246–255. https://doi.org/10.1016/j.jclepro.2018.10.231
Sun, J., Ye, D., Zou, J., Chen, X., Wang, Y., Yuan, J., Liang, H., Qu, H., Binner, J., & Bai, J. (2023). A review on additive manufacturing of ceramic matrix composites. Journal of Materials Science & Technology, 138, 1–16. https://doi.org/10.1016/j.jmst.2022.06.039
Tam, V. W. Y., Soomro, M., & Evangelista, A. C. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
Tikul, N. (2014). Assessing environmental impact of small and medium ceramic tile manufacturing enterprises in Thailand. Journal of Manufacturing Systems, 33(1), 1–6. https://doi.org/10.1016/j.jmsy.2013.12.002
Zengrong, Y., Xinghua, Z., & Kangming, M. (2013). Patente de China No. CN102951897A. Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/CN102951897A/en#patentCitations
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-12-19
date_accessioned 2023-12-19 00:00:00
date_available 2023-12-19 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1680
url_doi https://doi.org/10.24050/reia.v20i40.1680
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v20i40.1680
citationstartpage 4018 pp. 1
citationendpage 19
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1680/1562
_version_ 1811200530864668672