Design, simulation and first test of an automatic suturing device coupled to a robot
.
Objective: Robotic assistants are becoming a very helpful tool for surgeons. As forthe suturing procedure, several commercial devices assist the physician in suturing.However, such devices have not yet been coupled to a robot assistant in order toperform sutures fully automatically. This could contribute to a procedure that isoften routinely performed but requires time and dexterity.Materials and methods: This article presents the adaptation of a commercialmanual suture gripper, the Medtronic Endo Stitch, to a Universal Robots UR3 robot.The gripper was modeled in SolidWorks, as well as a motorized coupling device,which were simulated in CoppeliaSim. Once its proper functioning was verified, thedevice was fabricated in a 3D printer and coupl... Ver más
1794-1237
2463-0950
21
2024-01-01
4116 pp. 1
18
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1667 |
---|---|
record_format |
ojs |
spelling |
Design, simulation and first test of an automatic suturing device coupled to a robot Diseño, simulación y primera prueba de un dispositivo de sutura automática acoplado a un robot Objective: Robotic assistants are becoming a very helpful tool for surgeons. As forthe suturing procedure, several commercial devices assist the physician in suturing.However, such devices have not yet been coupled to a robot assistant in order toperform sutures fully automatically. This could contribute to a procedure that isoften routinely performed but requires time and dexterity.Materials and methods: This article presents the adaptation of a commercialmanual suture gripper, the Medtronic Endo Stitch, to a Universal Robots UR3 robot.The gripper was modeled in SolidWorks, as well as a motorized coupling device,which were simulated in CoppeliaSim. Once its proper functioning was verified, thedevice was fabricated in a 3D printer and coupled to a UR3 robot, then its operationwas tested in the tracking of a suture trajectory with displacement.Results: The trajectories planned in Matlab are sent to the UR3 robot viaROS. It was possible to verify the good performance of the suture movement withdisplacement, carried out by the printed device and by the Endo Stitich gripper.The opening and closing of the gripper was also obtained under the action of themotors included in the device.Conclusions: The motorized device together with the Endo Stitch gripper,coupled to the UR3 robot, is capable of following the trajectories required forautomatic suturing. Future work will test suturing with thread on a test phantom inorder to measure its true potential for automatic suturing. Objetivo: Los asistentes robóticos se están convirtiendo en una herramienta degran ayuda para los cirujanos. En cuanto al procedimiento de sutura, aunque existenvarios dispositivos comerciales que le ayudan al médico a realizarla, todavía no sehan acoplado dichos dispositivos a un robot asistente con el fin de realizar suturasde manera completamente automática. De esta manera se contribuiría con unprocedimiento que muchas veces es rutinario pero que requiere tiempo y destreza.Materiales y métodos: Este artículo presenta la adecuación de una pinzamanual de sutura comercial, la Endo Stitch de Medtronic, a un robot UR3 deUniversal Robots. La pinza fue modelada en SolidWorks, así como un dispositivode acople motorizado, los cuales fueron simulados en CoppeliaSim. Una vezverificado su buen funcionamiento, el dispositivo fue fabricado en una impresora3D y acoplado a un robot UR3, probándose entonces su funcionamiento en elseguimiento de una trayectoria de sutura con desplazamiento.Resultados: Las trayectorias planificadas en Matlab son enviadas al robot UR3vía ROS. Se pudo comprobar el buen desempeño del movimiento de sutura condesplazamiento, efectuado por el dispositivo impreso y por la pinza Endo Stitich.Igualmente se obtuvo la apertura y cerrado de la pinza bajo el accionar de losmotores incluidos en el dispositivo.Conclusiones: El dispositivo motorizado junto con la pinza Endo Stitch,y acoplado al robot UR3, es capaz de seguir las trayectorias necesarias para larealización de una sutura automática. Trabajos futuros realizarán pruebas desutura con hilo sobre un phantom de prueba con el fin de medir su verdaderopotencial para realizar suturas de manera automática. Tapias Diaz, Omaira Luz Consuegra Gonzalez, Jose Luis Vivas Alban, Oscar Andres Fraile Marinero, Juan Carlos Automatic suture Colaborative robots Virtual environment Endo Stitch device Sutura automática Robots colaborativos Ambiente virtual Pinza Endo Stitch 21 41 Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41 Artículo de revista Journal article 2024-01-01 00:00:00 2024-01-01 00:00:00 2024-01-01 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1667 10.24050/reia.v21i41.1667 https://doi.org/10.24050/reia.v21i41.1667 eng https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 4116 pp. 1 18 Andersen, R. S. (2018). Kinematics of a UR5. Aalborg University, 1–12. http://rasmusan.blog.aau.dk/files/ur5_kinematics.pdf Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive Controller and Observer for a Magnetic Microrobot. IEEE Transactions on Robotics, 29(4), 1060–1067. DOI: 10.1109/TRO.2013.2257581 Bauzano, E., Garcia-Morales, I., & Muñoz-Martinez, V. (2013). Asistencia de Robots Colaborativos para Procedimientos de Sutura Vía Cirugía Mínimamente Invasiva. XXXIV Jornadas de Automática, Barcelona, España. https://www.researchgate.net/publication/303881054 Beuss, F., Schmatz, F., Stepputat, M., Nokodian, F., Fluegge, W., & Frerich, B. (2021). Cobots in maxillofacial surgery - Challenges for workplace design and the human-machine-interface. Procedia CIRP, 100, 488–493. DOI:10.1007/s10845-022-01953-w Brehmer, B., Moll, C., Makris, A., Kirschner-Hermanns, R., Knüchel, R., & Jakse, G. (2008). EndoSewTM: New device for laparoscopic running sutures. Journal of Endourology, 22(2), 307–311. DOI: 10.1089/end.2007.0055 Chen, Y., Wang, Q., Chi, C., Wang, C., Gao, Q., Zhang, H., Li, Z., Mu, Z., Xu, R., Sun, Z., & Qian, H. (2022). A collaborative robot for COVID-19 oropharyngeal swabbing. Robotics and Autonomous Systems, 148, 103917. DOI: 10.1016/j.robot.2021.103917 Cho, C. N., Cho, S. H., Cho, S. Y., Kim, K. G., & Park, S. J. (2016). A Novel Successive Suturing Device for Laparoscopic Surgery. Surgical Innovation, 23(4), 390–396. DOI: 10.1177/1553350616628682 D’Auria, D., & Persia, F. (2017). A collaborative robotic cyber physical system for surgery applications. 2017 IEEE International Conference on Information Reuse and Integration, San Diego, USA, 79–83. DOI: 10.1109/IRI.2017.84 Díez del Val, I., Loureiro, C., Asensio, J. I., Bettonica, C., Leturio, S., Eizaguirre, E., Miró, M., García, M. M., Martí, L., Aranda, H., Barrenetxea, J., Estremiana, F., Ortiz, J., & Farran, L. (2019). Minimally Invasive and Robotic Surgery in the Surgical Treatment of Esophagogastric Junction Cancer. Cirugía Española (English Edition), 97(8), 451–458. DOI: 10.1016/j.ciresp.2019.03.013 Galvao-Neto, M., Grecco, E., Souza, T. F., Quadros, L. G., Silva, L. B., & Campos, J. M. (2016). Endoscopic Sleeve Gastroplasty - Minimally Invasive Therapy for Primary Obesity Treatment. Arquivos Brasileiros de Cirurgia Digestiva, 29(suppl 1), 95–97. DOI: 10.1590/0102-6720201600S10023 García, M. L., Castro, L., Aguirrezabalaga, J., & Noguera, J. F. (2021). Robotic-like suturing with FlexDex Surgical System® for difficult laparoscopic suture. Cirugía Española, 99(3), 222–228. DOI: 10.1016/j.ciresp.2020.10.005 Gonzalez, C. A. (2018). Desarrollo de aplicaciones industriales con robots colaborativos utilizando el middleware de control de robots. Máster en Ingeniería Industrial, Universidad Politecnica de Valencia, España. Guevara, P. (2019). Dispositivo mecatrónico para el manejo de un instrumento quirúrigico de sutura laparoscópica. Tesis pregrado Ingeniería de Sistemas y Automática, Universidad de Málaga, España. http://zaguan.unizar.es/TAZ/EUCS/2014/14180/TAZ-TFG-2014-408.pdf Hideki, E., Simas, H., & Martins, D. (2015). New Kinematic Structures For One-side Stitching Devices. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, December. DOI:10.13140/RG.2.1.4777.8644 Huhn, J. C. (2016). Advances in Equipment and Instrumentation in Laparoscopic Surgery. Veterinary Clinics of North America - Small Animal Practice, 46(1), 13–29. DOI: 10.1016/j.cvsm.2015.08.005 Iacovacci, V., Lucarini, G., Innocenti, C., Comisso, N., Dario, P., Ricotti, L., & Menciassi, A. (2015). Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics. Biomedical Microdevices, 17, 112. DOI: 10.1007/s10544-015-0024-0 Kam, M., Saeidi, H., Hsieh, M. H., Kang, J. U., & Krieger, A. (2021). A Confidence-Based Supervised-Autonomous Control Strategy for Robotic Vaginal Cuff Closure. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xián, China, 12261–12267. DOI: 10.1109/icra48506.2021.9561685 Kebria, P. M., Al-Wais, S., Abdi, H., & Nahavandi, S. (2017). Kinematic and dynamic modelling of UR5 manipulator. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 4229–4234. DOI: 10.1109/SMC.2016.7844896 Leeds, S. G., Wooley, L., Sankaranarayanan, G., Daoud, Y., Fleshman, J., & Chauhan, S. (2017). Learning Curve Associated with an Automated Laparoscopic Suturing Device Compared with Laparoscopic Suturing. Surgical Innovation, 24(2), 109–114. DOI: 10.1177/1553350616687903 Lin, C., Li, X., Phan, P. T., Meng, A. H. T. H. L. K., Liu, J., Lai, W., Huang, Y., Le, H. M., Miyasaka, M., Ho, K. Y., Chiu, P. W. Y., & Phee, S. J. (2020). Sewing up the Wounds: A Robotic Suturing System for Flexible Endoscopy. IEEE Robotics & Automation Magazine, 27(3), 45-54. Medtronic. (2022). Endo Stitch™ Suturing Device. https://medtronic.com. Acceseed november 2022. Melzer, A., Schurr, M. O., Lirici, M. M., Klemm, B., Stöckel, D., & Buess, G. (1994). Future trends in endoscopic suturing. Endoscopic Surgery and Allied Technologies, 2(1), 78–82. Muñoz, A. (2020). Estrategia de control del robot UR3 para entornos de cirugía robotizados, Maestría en Ingeniería Industrial, Universidad de Valladolid, España. http://uvadoc.uva.es/handle/10324/42399 Nguyen, N. T., Mayer, K. L., Bold, R. J., Larson, M., Foster, S., Ho, H. S., & Wolfe, B. M. (2000). Laparoscopic suturing evaluation among surgical residents. Journal of Surgical Research, 93(1), 133–136. DOI: 10.1006/jsre.2000.5969 Nuzzi, R., & Brusasco, L. (2018). State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices. Eye and Brain, 10, 13–24. DOI: 10.2147/EB.S148644 Páez, D., Romero, J. P., & Guarnizo, J. G. (2021). UR3 modelo cinemático inverso. Documento interno de investigación. Universidad Santo Tomás, Colombia. DOI: 10.15332/dt.inv.2021.02849 https://doi.org/10.15332/dt.inv.2021.02849 Pedram, S. A., Ferguson, P., Ma, J., Dutson, E., & Rosen, J. (2017). Autonomous suturing via surgical robot: An algorithm for optimal selection of needle diameter, shape, and path. 2017 IEEE International Conference on Robotics and Automation, Singapur, 2391–2398, DOI: 10.1109/ICRA.2017.7989278 ROS (2022). Robot Operating system. https://www.ros.org/. Acceseed november 2022. Universal Robots (2022). https://www.universal-robots.com/es/productos/robot-ur3/. Acceseed november 2022. Vivas, A., & Sabater, J. M. (2021). UR5 Robot Manipulation using Matlab/Simulink and ROS. 2021 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 338–343. DOI: 10.1109/ICMA52036.2021.9512650 https://revistas.eia.edu.co/index.php/reveia/article/download/1667/1593 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Design, simulation and first test of an automatic suturing device coupled to a robot |
spellingShingle |
Design, simulation and first test of an automatic suturing device coupled to a robot Tapias Diaz, Omaira Luz Consuegra Gonzalez, Jose Luis Vivas Alban, Oscar Andres Fraile Marinero, Juan Carlos Automatic suture Colaborative robots Virtual environment Endo Stitch device Sutura automática Robots colaborativos Ambiente virtual Pinza Endo Stitch |
title_short |
Design, simulation and first test of an automatic suturing device coupled to a robot |
title_full |
Design, simulation and first test of an automatic suturing device coupled to a robot |
title_fullStr |
Design, simulation and first test of an automatic suturing device coupled to a robot |
title_full_unstemmed |
Design, simulation and first test of an automatic suturing device coupled to a robot |
title_sort |
design, simulation and first test of an automatic suturing device coupled to a robot |
title_eng |
Diseño, simulación y primera prueba de un dispositivo de sutura automática acoplado a un robot |
description |
Objective: Robotic assistants are becoming a very helpful tool for surgeons. As forthe suturing procedure, several commercial devices assist the physician in suturing.However, such devices have not yet been coupled to a robot assistant in order toperform sutures fully automatically. This could contribute to a procedure that isoften routinely performed but requires time and dexterity.Materials and methods: This article presents the adaptation of a commercialmanual suture gripper, the Medtronic Endo Stitch, to a Universal Robots UR3 robot.The gripper was modeled in SolidWorks, as well as a motorized coupling device,which were simulated in CoppeliaSim. Once its proper functioning was verified, thedevice was fabricated in a 3D printer and coupled to a UR3 robot, then its operationwas tested in the tracking of a suture trajectory with displacement.Results: The trajectories planned in Matlab are sent to the UR3 robot viaROS. It was possible to verify the good performance of the suture movement withdisplacement, carried out by the printed device and by the Endo Stitich gripper.The opening and closing of the gripper was also obtained under the action of themotors included in the device.Conclusions: The motorized device together with the Endo Stitch gripper,coupled to the UR3 robot, is capable of following the trajectories required forautomatic suturing. Future work will test suturing with thread on a test phantom inorder to measure its true potential for automatic suturing.
|
description_eng |
Objetivo: Los asistentes robóticos se están convirtiendo en una herramienta degran ayuda para los cirujanos. En cuanto al procedimiento de sutura, aunque existenvarios dispositivos comerciales que le ayudan al médico a realizarla, todavía no sehan acoplado dichos dispositivos a un robot asistente con el fin de realizar suturasde manera completamente automática. De esta manera se contribuiría con unprocedimiento que muchas veces es rutinario pero que requiere tiempo y destreza.Materiales y métodos: Este artículo presenta la adecuación de una pinzamanual de sutura comercial, la Endo Stitch de Medtronic, a un robot UR3 deUniversal Robots. La pinza fue modelada en SolidWorks, así como un dispositivode acople motorizado, los cuales fueron simulados en CoppeliaSim. Una vezverificado su buen funcionamiento, el dispositivo fue fabricado en una impresora3D y acoplado a un robot UR3, probándose entonces su funcionamiento en elseguimiento de una trayectoria de sutura con desplazamiento.Resultados: Las trayectorias planificadas en Matlab son enviadas al robot UR3vía ROS. Se pudo comprobar el buen desempeño del movimiento de sutura condesplazamiento, efectuado por el dispositivo impreso y por la pinza Endo Stitich.Igualmente se obtuvo la apertura y cerrado de la pinza bajo el accionar de losmotores incluidos en el dispositivo.Conclusiones: El dispositivo motorizado junto con la pinza Endo Stitch,y acoplado al robot UR3, es capaz de seguir las trayectorias necesarias para larealización de una sutura automática. Trabajos futuros realizarán pruebas desutura con hilo sobre un phantom de prueba con el fin de medir su verdaderopotencial para realizar suturas de manera automática.
|
author |
Tapias Diaz, Omaira Luz Consuegra Gonzalez, Jose Luis Vivas Alban, Oscar Andres Fraile Marinero, Juan Carlos |
author_facet |
Tapias Diaz, Omaira Luz Consuegra Gonzalez, Jose Luis Vivas Alban, Oscar Andres Fraile Marinero, Juan Carlos |
topic |
Automatic suture Colaborative robots Virtual environment Endo Stitch device Sutura automática Robots colaborativos Ambiente virtual Pinza Endo Stitch |
topic_facet |
Automatic suture Colaborative robots Virtual environment Endo Stitch device Sutura automática Robots colaborativos Ambiente virtual Pinza Endo Stitch |
topicspa_str_mv |
Sutura automática Robots colaborativos Ambiente virtual Pinza Endo Stitch |
citationvolume |
21 |
citationissue |
41 |
citationedition |
Núm. 41 , Año 2024 : Tabla de contenido Revista EIA No. 41 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1667 |
language |
eng |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references_eng |
Andersen, R. S. (2018). Kinematics of a UR5. Aalborg University, 1–12. http://rasmusan.blog.aau.dk/files/ur5_kinematics.pdf Arcese, L., Fruchard, M., & Ferreira, A. (2013). Adaptive Controller and Observer for a Magnetic Microrobot. IEEE Transactions on Robotics, 29(4), 1060–1067. DOI: 10.1109/TRO.2013.2257581 Bauzano, E., Garcia-Morales, I., & Muñoz-Martinez, V. (2013). Asistencia de Robots Colaborativos para Procedimientos de Sutura Vía Cirugía Mínimamente Invasiva. XXXIV Jornadas de Automática, Barcelona, España. https://www.researchgate.net/publication/303881054 Beuss, F., Schmatz, F., Stepputat, M., Nokodian, F., Fluegge, W., & Frerich, B. (2021). Cobots in maxillofacial surgery - Challenges for workplace design and the human-machine-interface. Procedia CIRP, 100, 488–493. DOI:10.1007/s10845-022-01953-w Brehmer, B., Moll, C., Makris, A., Kirschner-Hermanns, R., Knüchel, R., & Jakse, G. (2008). EndoSewTM: New device for laparoscopic running sutures. Journal of Endourology, 22(2), 307–311. DOI: 10.1089/end.2007.0055 Chen, Y., Wang, Q., Chi, C., Wang, C., Gao, Q., Zhang, H., Li, Z., Mu, Z., Xu, R., Sun, Z., & Qian, H. (2022). A collaborative robot for COVID-19 oropharyngeal swabbing. Robotics and Autonomous Systems, 148, 103917. DOI: 10.1016/j.robot.2021.103917 Cho, C. N., Cho, S. H., Cho, S. Y., Kim, K. G., & Park, S. J. (2016). A Novel Successive Suturing Device for Laparoscopic Surgery. Surgical Innovation, 23(4), 390–396. DOI: 10.1177/1553350616628682 D’Auria, D., & Persia, F. (2017). A collaborative robotic cyber physical system for surgery applications. 2017 IEEE International Conference on Information Reuse and Integration, San Diego, USA, 79–83. DOI: 10.1109/IRI.2017.84 Díez del Val, I., Loureiro, C., Asensio, J. I., Bettonica, C., Leturio, S., Eizaguirre, E., Miró, M., García, M. M., Martí, L., Aranda, H., Barrenetxea, J., Estremiana, F., Ortiz, J., & Farran, L. (2019). Minimally Invasive and Robotic Surgery in the Surgical Treatment of Esophagogastric Junction Cancer. Cirugía Española (English Edition), 97(8), 451–458. DOI: 10.1016/j.ciresp.2019.03.013 Galvao-Neto, M., Grecco, E., Souza, T. F., Quadros, L. G., Silva, L. B., & Campos, J. M. (2016). Endoscopic Sleeve Gastroplasty - Minimally Invasive Therapy for Primary Obesity Treatment. Arquivos Brasileiros de Cirurgia Digestiva, 29(suppl 1), 95–97. DOI: 10.1590/0102-6720201600S10023 García, M. L., Castro, L., Aguirrezabalaga, J., & Noguera, J. F. (2021). Robotic-like suturing with FlexDex Surgical System® for difficult laparoscopic suture. Cirugía Española, 99(3), 222–228. DOI: 10.1016/j.ciresp.2020.10.005 Gonzalez, C. A. (2018). Desarrollo de aplicaciones industriales con robots colaborativos utilizando el middleware de control de robots. Máster en Ingeniería Industrial, Universidad Politecnica de Valencia, España. Guevara, P. (2019). Dispositivo mecatrónico para el manejo de un instrumento quirúrigico de sutura laparoscópica. Tesis pregrado Ingeniería de Sistemas y Automática, Universidad de Málaga, España. http://zaguan.unizar.es/TAZ/EUCS/2014/14180/TAZ-TFG-2014-408.pdf Hideki, E., Simas, H., & Martins, D. (2015). New Kinematic Structures For One-side Stitching Devices. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, December. DOI:10.13140/RG.2.1.4777.8644 Huhn, J. C. (2016). Advances in Equipment and Instrumentation in Laparoscopic Surgery. Veterinary Clinics of North America - Small Animal Practice, 46(1), 13–29. DOI: 10.1016/j.cvsm.2015.08.005 Iacovacci, V., Lucarini, G., Innocenti, C., Comisso, N., Dario, P., Ricotti, L., & Menciassi, A. (2015). Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics. Biomedical Microdevices, 17, 112. DOI: 10.1007/s10544-015-0024-0 Kam, M., Saeidi, H., Hsieh, M. H., Kang, J. U., & Krieger, A. (2021). A Confidence-Based Supervised-Autonomous Control Strategy for Robotic Vaginal Cuff Closure. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xián, China, 12261–12267. DOI: 10.1109/icra48506.2021.9561685 Kebria, P. M., Al-Wais, S., Abdi, H., & Nahavandi, S. (2017). Kinematic and dynamic modelling of UR5 manipulator. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 4229–4234. DOI: 10.1109/SMC.2016.7844896 Leeds, S. G., Wooley, L., Sankaranarayanan, G., Daoud, Y., Fleshman, J., & Chauhan, S. (2017). Learning Curve Associated with an Automated Laparoscopic Suturing Device Compared with Laparoscopic Suturing. Surgical Innovation, 24(2), 109–114. DOI: 10.1177/1553350616687903 Lin, C., Li, X., Phan, P. T., Meng, A. H. T. H. L. K., Liu, J., Lai, W., Huang, Y., Le, H. M., Miyasaka, M., Ho, K. Y., Chiu, P. W. Y., & Phee, S. J. (2020). Sewing up the Wounds: A Robotic Suturing System for Flexible Endoscopy. IEEE Robotics & Automation Magazine, 27(3), 45-54. Medtronic. (2022). Endo Stitch™ Suturing Device. https://medtronic.com. Acceseed november 2022. Melzer, A., Schurr, M. O., Lirici, M. M., Klemm, B., Stöckel, D., & Buess, G. (1994). Future trends in endoscopic suturing. Endoscopic Surgery and Allied Technologies, 2(1), 78–82. Muñoz, A. (2020). Estrategia de control del robot UR3 para entornos de cirugía robotizados, Maestría en Ingeniería Industrial, Universidad de Valladolid, España. http://uvadoc.uva.es/handle/10324/42399 Nguyen, N. T., Mayer, K. L., Bold, R. J., Larson, M., Foster, S., Ho, H. S., & Wolfe, B. M. (2000). Laparoscopic suturing evaluation among surgical residents. Journal of Surgical Research, 93(1), 133–136. DOI: 10.1006/jsre.2000.5969 Nuzzi, R., & Brusasco, L. (2018). State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices. Eye and Brain, 10, 13–24. DOI: 10.2147/EB.S148644 Páez, D., Romero, J. P., & Guarnizo, J. G. (2021). UR3 modelo cinemático inverso. Documento interno de investigación. Universidad Santo Tomás, Colombia. DOI: 10.15332/dt.inv.2021.02849 https://doi.org/10.15332/dt.inv.2021.02849 Pedram, S. A., Ferguson, P., Ma, J., Dutson, E., & Rosen, J. (2017). Autonomous suturing via surgical robot: An algorithm for optimal selection of needle diameter, shape, and path. 2017 IEEE International Conference on Robotics and Automation, Singapur, 2391–2398, DOI: 10.1109/ICRA.2017.7989278 ROS (2022). Robot Operating system. https://www.ros.org/. Acceseed november 2022. Universal Robots (2022). https://www.universal-robots.com/es/productos/robot-ur3/. Acceseed november 2022. Vivas, A., & Sabater, J. M. (2021). UR5 Robot Manipulation using Matlab/Simulink and ROS. 2021 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 338–343. DOI: 10.1109/ICMA52036.2021.9512650 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2024-01-01 |
date_accessioned |
2024-01-01 00:00:00 |
date_available |
2024-01-01 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1667 |
url_doi |
https://doi.org/10.24050/reia.v21i41.1667 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v21i41.1667 |
citationstartpage |
4116 pp. 1 |
citationendpage |
18 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1667/1593 |
_version_ |
1811200530044682240 |