Titulo:

Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
.

Sumario:

En este trabajo de investigación se realiza un análisis comparativo entre los resultadosde velocidad  de flujo y profundidad del agua obtenidos mediante la implementación de dos conocidos software de uso libre, el HEC-RAS 4.1 versión unidimensional y el HECRAS 6.0 versión bidimensional. La simulación hidráulica se realizó en un tramo recto y de geometría trapecial uniforme del canal del río Medellín donde se contaba con topobatimetría y caudales de diseño. Los resultados preliminares obtenidos con el modelo HECRAS 6.0 versión bidimensional sugieren que para tramos rectos y uniformes los resultados de la simulación son bastantes similares a los obtenidos con el HEC-RAS 4.1 versión unidimensional. Se concluye que la elaboración de ambos tipos... Ver más

Guardado en:

1794-1237

2463-0950

20

2023-12-19

4005 pp. 1

14

Revista EIA - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1661
record_format ojs
spelling Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
Comparison of 1D and 2D hecras models for the simulation of urban rivers
En este trabajo de investigación se realiza un análisis comparativo entre los resultadosde velocidad  de flujo y profundidad del agua obtenidos mediante la implementación de dos conocidos software de uso libre, el HEC-RAS 4.1 versión unidimensional y el HECRAS 6.0 versión bidimensional. La simulación hidráulica se realizó en un tramo recto y de geometría trapecial uniforme del canal del río Medellín donde se contaba con topobatimetría y caudales de diseño. Los resultados preliminares obtenidos con el modelo HECRAS 6.0 versión bidimensional sugieren que para tramos rectos y uniformes los resultados de la simulación son bastantes similares a los obtenidos con el HEC-RAS 4.1 versión unidimensional. Se concluye que la elaboración de ambos tipos de modelos exige un grado de experiencia importante, sin embargo, el modelo unidimensional arroja valores de las variables hidráulicas sin un grado de esfuerzo y coste computacional tan alto, sin embargo, es evidente que para efectos de manchas de inundación y definición de profundidades es más conveniente el uso del modelo bidimensional pues permite obtener profundidades mayores.
In this research work, a comparative analysis is carried out between the results of Flow velocity and water depth obtained through the implementation of two well-known free-use software, the HEC-RAS 4.1 one-dimensional version and the HEC-RAS 6.0 two-dimensional version. The hydraulic simulation was carried out in a straight section with a uniform trapezoidal geometry of the Medellín river channel where topo-bathymetry and design flows were available. The preliminary results obtained with the HEC-RAS 6.0 two-dimensional version suggest that for straight and uniform sections the simulation results are quite similar to those obtained with the HEC-RAS 4.1 one-dimensional version. It is concluded that the elaboration of both types of models requires a significant degree of experience, however, the one-dimensional model yields values of the hydraulic variables without such a high degree of effort and computational cost, however, it is evident that for the effects of stains of flooding and definition of depths, the use of the two-dimensional model is more convenient since it allows obtaining greater depths.
Rios Arboleda, Juan Daniel
HEC-RAS 1D and 2D
Urban rivers
Hydraulic simulation
HEC-RAS 1D y 2D
Ríos urbanos
Simulación hidráulica
20
40
Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40
Artículo de revista
Journal article
2023-12-19 00:00:00
2023-12-19 00:00:00
2023-12-19
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1661
10.24050/reia.v20i40.1661
https://doi.org/10.24050/reia.v20i40.1661
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
4005 pp. 1
14
Ardiclioglu, M., Hadi, A. M. W. M., Periku, E., & Kuriqi, A. (2022). Experimental and Numerical Investigation of Bridge Configuration Effect on Hydraulic Regime. International Journal of Civil Engineering, 20(8), 981–991. https://doi.org/10.1007/s40999-022-00715-2
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30(1), 1–10.
Brunner, G. W. (2010). HEC-RAS, River Analysis System Hydraulic Reference Manual. Version 4.1.
Brunner, G. W. (2020). HEC-RAS, River Analysis System Hydraulic Reference Manual. Version 6.0 Beta.
Brunner, G. W., Piper, S., Jensen, M., & Chacon, B. (2015). Combined 1D and 2D Hydraulic Modeling within HEC-RAS. World Environmental and Water Resources Congress 2015. https://doi.org/doi:10.1061/9780784479162.141
Dasallas, L., Kim, Y., & An, H. (2019). Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water. https://doi.org/10.3390/w11102048
Deltares. (2022). Delft3D-FLOW, User Manual.
DHI. (2023). MIKE 21 Flow Model FM.
Espinoza Vigil, A. J., & Booker, J. (2023). Hydrological Vulnerability Assessment of Riverine Bridges: The Bajo Grau Bridge Case Study. Water. https://doi.org/10.3390/w15050846
Farias, H. D., Domínguez Ruben, L., & Prieto Villarroya, y J. (2020). Análisis hidro-sedimentológico 2d del comportamiento de un campo de espigones para la protección de márgenes en un río meandriforme. Ribagua, 7(2), 43–55. https://doi.org/10.1080/23863781.2021.1911609
Ghimire, E., Sharma, S., & Lamichhane, N. (2022). Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH Journal of Hydraulic Engineering, 28(1), 110–126. https://doi.org/10.1080/09715010.2020.1824621
Gibson, S., Sánchez, A., Piper, S., & Brunner, G. (2017, October 31). New One-Dimensional Sediment Features in HEC-RAS 5.0 and 5.1. World Environmental and Water Resources Congress 2017. https://doi.org/doi:10.1061/9780784480625.018
Hervouet, J. M. (2007). Hydrodynamics of free surface flows, modelling with the finite element method. John Wiley & Sons.
Huţanu, E., Mihu-Pintilie, A., Urzica, A., Paveluc, L. E., Stoleriu, C. C., & Grozavu, A. (2020). Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water. https://doi.org/10.3390/w12061624
Le, T. B., Crosato, A., Mosselman, E., & Uijttewaal, W. S. J. (2018). On the stability of river bifurcations created by longitudinal training walls. Numerical investigation. Advances in Water Resources, 113, 112–125. https://doi.org/https://doi.org/10.1016/j.advwatres.2018.01.012
Malik, S., & Pal, S. C. (2021). Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India. SN Applied Sciences, 3(1), 31. https://doi.org/10.1007/s42452-020-04104-z
Mehta, D. J., & Yadav, S. M. (2020). Analysis of scour depth in the case of parallel bridges using HEC-RAS. Water Supply, 20(8), 3419–3432. https://doi.org/10.2166/ws.2020.255
Mosselman, E. (2020). Studies on River Training. Water. https://doi.org/10.3390/w12113100
Moya Quiroga, V., Kure, S., Udo, K., & Mano, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001
Namara, W. G., Damisse, T. A., & Tufa, F. G. (2022). Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449–1460. https://doi.org/10.1007/s40808-021-01166-9
Rangari, V. A., Umamahesh, N. V, & Bhatt, C. M. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839–1851. https://doi.org/10.1007/s40808-019-00641-8
Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., & Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14), 1769–1782. https://doi.org/10.1080/02626667.2019.1671982
Tamiru, H., & Dinka, M. O. (2021). Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 36, 100855. https://doi.org/https://doi.org/10.1016/j.ejrh.2021.100855
Universidad Nacional. (2013). Estudio de patología del canal del río Medellín entre la variante de Caldas y la desembocadura de la quebrada La García: Informe final revisado / (#000806553). Medellín.
Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers & Geosciences, 53, 105–113. https://doi.org/https://doi.org/10.1016/j.cageo.2011.10.004
https://revistas.eia.edu.co/index.php/reveia/article/download/1661/1556
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
spellingShingle Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
Rios Arboleda, Juan Daniel
HEC-RAS 1D and 2D
Urban rivers
Hydraulic simulation
HEC-RAS 1D y 2D
Ríos urbanos
Simulación hidráulica
title_short Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
title_full Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
title_fullStr Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
title_full_unstemmed Comparación de los modelos hecras 1D y 2D para la simulación de ríos urbanos
title_sort comparación de los modelos hecras 1d y 2d para la simulación de ríos urbanos
title_eng Comparison of 1D and 2D hecras models for the simulation of urban rivers
description En este trabajo de investigación se realiza un análisis comparativo entre los resultadosde velocidad  de flujo y profundidad del agua obtenidos mediante la implementación de dos conocidos software de uso libre, el HEC-RAS 4.1 versión unidimensional y el HECRAS 6.0 versión bidimensional. La simulación hidráulica se realizó en un tramo recto y de geometría trapecial uniforme del canal del río Medellín donde se contaba con topobatimetría y caudales de diseño. Los resultados preliminares obtenidos con el modelo HECRAS 6.0 versión bidimensional sugieren que para tramos rectos y uniformes los resultados de la simulación son bastantes similares a los obtenidos con el HEC-RAS 4.1 versión unidimensional. Se concluye que la elaboración de ambos tipos de modelos exige un grado de experiencia importante, sin embargo, el modelo unidimensional arroja valores de las variables hidráulicas sin un grado de esfuerzo y coste computacional tan alto, sin embargo, es evidente que para efectos de manchas de inundación y definición de profundidades es más conveniente el uso del modelo bidimensional pues permite obtener profundidades mayores.
description_eng In this research work, a comparative analysis is carried out between the results of Flow velocity and water depth obtained through the implementation of two well-known free-use software, the HEC-RAS 4.1 one-dimensional version and the HEC-RAS 6.0 two-dimensional version. The hydraulic simulation was carried out in a straight section with a uniform trapezoidal geometry of the Medellín river channel where topo-bathymetry and design flows were available. The preliminary results obtained with the HEC-RAS 6.0 two-dimensional version suggest that for straight and uniform sections the simulation results are quite similar to those obtained with the HEC-RAS 4.1 one-dimensional version. It is concluded that the elaboration of both types of models requires a significant degree of experience, however, the one-dimensional model yields values of the hydraulic variables without such a high degree of effort and computational cost, however, it is evident that for the effects of stains of flooding and definition of depths, the use of the two-dimensional model is more convenient since it allows obtaining greater depths.
author Rios Arboleda, Juan Daniel
author_facet Rios Arboleda, Juan Daniel
topic HEC-RAS 1D and 2D
Urban rivers
Hydraulic simulation
HEC-RAS 1D y 2D
Ríos urbanos
Simulación hidráulica
topic_facet HEC-RAS 1D and 2D
Urban rivers
Hydraulic simulation
HEC-RAS 1D y 2D
Ríos urbanos
Simulación hidráulica
topicspa_str_mv HEC-RAS 1D y 2D
Ríos urbanos
Simulación hidráulica
citationvolume 20
citationissue 40
citationedition Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1661
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Ardiclioglu, M., Hadi, A. M. W. M., Periku, E., & Kuriqi, A. (2022). Experimental and Numerical Investigation of Bridge Configuration Effect on Hydraulic Regime. International Journal of Civil Engineering, 20(8), 981–991. https://doi.org/10.1007/s40999-022-00715-2
Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., … Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 30(1), 1–10.
Brunner, G. W. (2010). HEC-RAS, River Analysis System Hydraulic Reference Manual. Version 4.1.
Brunner, G. W. (2020). HEC-RAS, River Analysis System Hydraulic Reference Manual. Version 6.0 Beta.
Brunner, G. W., Piper, S., Jensen, M., & Chacon, B. (2015). Combined 1D and 2D Hydraulic Modeling within HEC-RAS. World Environmental and Water Resources Congress 2015. https://doi.org/doi:10.1061/9780784479162.141
Dasallas, L., Kim, Y., & An, H. (2019). Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water. https://doi.org/10.3390/w11102048
Deltares. (2022). Delft3D-FLOW, User Manual.
DHI. (2023). MIKE 21 Flow Model FM.
Espinoza Vigil, A. J., & Booker, J. (2023). Hydrological Vulnerability Assessment of Riverine Bridges: The Bajo Grau Bridge Case Study. Water. https://doi.org/10.3390/w15050846
Farias, H. D., Domínguez Ruben, L., & Prieto Villarroya, y J. (2020). Análisis hidro-sedimentológico 2d del comportamiento de un campo de espigones para la protección de márgenes en un río meandriforme. Ribagua, 7(2), 43–55. https://doi.org/10.1080/23863781.2021.1911609
Ghimire, E., Sharma, S., & Lamichhane, N. (2022). Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH Journal of Hydraulic Engineering, 28(1), 110–126. https://doi.org/10.1080/09715010.2020.1824621
Gibson, S., Sánchez, A., Piper, S., & Brunner, G. (2017, October 31). New One-Dimensional Sediment Features in HEC-RAS 5.0 and 5.1. World Environmental and Water Resources Congress 2017. https://doi.org/doi:10.1061/9780784480625.018
Hervouet, J. M. (2007). Hydrodynamics of free surface flows, modelling with the finite element method. John Wiley & Sons.
Huţanu, E., Mihu-Pintilie, A., Urzica, A., Paveluc, L. E., Stoleriu, C. C., & Grozavu, A. (2020). Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water. https://doi.org/10.3390/w12061624
Le, T. B., Crosato, A., Mosselman, E., & Uijttewaal, W. S. J. (2018). On the stability of river bifurcations created by longitudinal training walls. Numerical investigation. Advances in Water Resources, 113, 112–125. https://doi.org/https://doi.org/10.1016/j.advwatres.2018.01.012
Malik, S., & Pal, S. C. (2021). Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India. SN Applied Sciences, 3(1), 31. https://doi.org/10.1007/s42452-020-04104-z
Mehta, D. J., & Yadav, S. M. (2020). Analysis of scour depth in the case of parallel bridges using HEC-RAS. Water Supply, 20(8), 3419–3432. https://doi.org/10.2166/ws.2020.255
Mosselman, E. (2020). Studies on River Training. Water. https://doi.org/10.3390/w12113100
Moya Quiroga, V., Kure, S., Udo, K., & Mano, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25–33. https://doi.org/10.1016/j.riba.2015.12.001
Namara, W. G., Damisse, T. A., & Tufa, F. G. (2022). Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449–1460. https://doi.org/10.1007/s40808-021-01166-9
Rangari, V. A., Umamahesh, N. V, & Bhatt, C. M. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839–1851. https://doi.org/10.1007/s40808-019-00641-8
Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., & Castellarin, A. (2019). Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrological Sciences Journal, 64(14), 1769–1782. https://doi.org/10.1080/02626667.2019.1671982
Tamiru, H., & Dinka, M. O. (2021). Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia. Journal of Hydrology: Regional Studies, 36, 100855. https://doi.org/https://doi.org/10.1016/j.ejrh.2021.100855
Universidad Nacional. (2013). Estudio de patología del canal del río Medellín entre la variante de Caldas y la desembocadura de la quebrada La García: Informe final revisado / (#000806553). Medellín.
Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U., & Davies, A. G. (2013). Morphodynamic modeling using the Telemac finite-element system. Computers & Geosciences, 53, 105–113. https://doi.org/https://doi.org/10.1016/j.cageo.2011.10.004
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-12-19
date_accessioned 2023-12-19 00:00:00
date_available 2023-12-19 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1661
url_doi https://doi.org/10.24050/reia.v20i40.1661
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v20i40.1661
citationstartpage 4005 pp. 1
citationendpage 14
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1661/1556
_version_ 1811200529952407552