Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana
.
El presente trabajo pretende profundizar en el estudio de la deserción estudiantil universitaria, un problema serio que preocupa a los gobiernos, las instituciones universitarias y estudiantes a nivel mundial. Para lograr lo anterior, este estudio aplica minería de datos con el propósito de analizar la deserción estudiantil en una universidad latinoamericana, basados en el descubrimiento de las características relevantes que tienen mayor incidencia y en la identificación de patrones que faciliten el entendimiento de dicho problema. La metodología empleada se basa en una adaptación de los pasos propuestos por KDD (descubrimiento de conocimiento en bases de datos) y en un diseño de investigación observacional, descriptivo y transversal, con m... Ver más
1794-1237
2463-0950
20
2023-12-19
4002 pp. 1
28
Revista EIA - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1628 |
---|---|
record_format |
ojs |
spelling |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana Analysis of characteristics influencing student dropout in the context of a latin american university El presente trabajo pretende profundizar en el estudio de la deserción estudiantil universitaria, un problema serio que preocupa a los gobiernos, las instituciones universitarias y estudiantes a nivel mundial. Para lograr lo anterior, este estudio aplica minería de datos con el propósito de analizar la deserción estudiantil en una universidad latinoamericana, basados en el descubrimiento de las características relevantes que tienen mayor incidencia y en la identificación de patrones que faciliten el entendimiento de dicho problema. La metodología empleada se basa en una adaptación de los pasos propuestos por KDD (descubrimiento de conocimiento en bases de datos) y en un diseño de investigación observacional, descriptivo y transversal, con muestreo por conveniencia. La muestra está compuesta por 10705 estudiantes, los cuales se encuentran distribuidos en 7 facultades y 33 programas académicos de pregrado. Las relaciones predictivas entre la condición de estudiante desertor y las características influyentes, se han sometido a verificación mediante un modelo basado en árbol de decisión. Como resultado de este trabajo, se identifican algunas técnicas y métodos comúnmente empleados para este tipo de estudios y se desarrolla un método para identificar patrones de relaciones entre las características más influyentes en el fenómeno de la deserción. Se encontró que las principales características influyentes en este tipo de deserción se refieren a estrato socioeconómico, género, situación laboral y promedio acumulado. Un aspecto a resaltar es la coincidencia de los hallazgos de este trabajo con los resultados de otros trabajos similares a nivel mundial, en los cuales se identificó el rendimiento académico como un factor fundamental que incide en la deserción universitaria. Se concluye que la deserción estudiantil universitaria no depende de una sola característica, sino que es causada por un conjunto de características y su interrelación. The present work aims to deepen the study of the student dropout, which is a serious problem that worries the governments, university institutions and students worldwide. To achieve the above, this study uses data mining to analyze student dropout in a Latin American university by discovering the most influential relevant characteristics and by identifying patterns to facilitate the understanding of such problem. The methodology used considers an adaptation of the steps proposed by KDD (knowledge discovery in databases) and the study design was observational, descriptive and cross-sectional, using convenience sampling. The sample is made up of 10705 students, which are distributed in 7 faculties and 33 undergraduate academic programs. A model based on decisióntree was used to verify the predictive relationships between the status of dropping out student and the influential characteristics. As a result, this work identified techniques and methods commonly used in these studies and developed a method to identify patterns of relationships among the most influential characteristics in the student dropout. We found that the main influencing characteristics in this study refer to socioeconomic level, gender, employment status and academic performance. One aspect to be highlighted is the coincidence of the findings of this study with the results of other similar studies worldwide, in which academic performance was identified as a fundamental factor that affects university dropout. As a conclusion we can state that university student dropout is caused by a set of characteristics and their interrelations rather than a single characteristic. Castro Rojas, Luis Fernando Espitia Peña, Esperanza Romero Cuero, Edwin Dropout research higher education data analysis relationship patterns Investigación de deserción educación superior análisis de datos patrones de relación 20 40 Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40 Artículo de revista Journal article 2023-12-19 00:00:00 2023-12-19 00:00:00 2023-12-19 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1628 10.24050/reia.v20i40.1628 https://doi.org/10.24050/reia.v20i40.1628 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 4002 pp. 1 28 Ayala, E., López, R. & Menéndez, V. (2021). Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos. Revista de Educación a Distancia (RED), 21(66), 1-36. https://doi.org/10.6018/red.463561 Bakhshinategh, B., Zaiane, O. R., Elatia, S., & Ipperciel, D. (2018). Educational data mining applications and tasks: a survey of the last 10 years. Education and Information Technologies, 23(1), 537–553. https://doi.org/10.1007/s10639-017-9616-z Castro, L. F., Espitia, E. & Cardona, S. (2019). Analysis of Student Desertion in a Systems and Computing Engineering Undergraduate Program. Revista Colombiana de Computación, 20(1), 72-82. https://doi.org/10.29375/25392115.3608 Castro, L. F., Espitia, E. & Mantilla, A. (2018). Applying CRISP-DM in a KDD Process for the Analysis of Student Attrition. Communications in Computer and Information Science, 885, 386-401. https://doi.org/10.1007/978-3-319-98998-3_30 Castrillón-Gómez, O. D., Sarache W., & Ruiz-Herrera, S. (2020). Predicción de las principales variables que conllevan al abandono estudiantil por medio de técnicas de minería de datos. Formación Universitaria, 13(6), 217-228. http://dx.doi.org/10.4067/S0718-50062020000600217 Clerici, R., & Da Re, L. (2019). Evaluación de la eficacia de un programa de tutoría formativa. Revista de Investigación Educativa, 37(1), 39-56. http://dx.doi.org/10.6018/rie.37.1.322331 Constante, A., Florenciano, E., Navarro, E. & Fernández, M. (2021). Factores asociados al abandono universitario. Educación XX1, 24(1), 17-44. http://doi.org/10.5944/educXX1.26889 Cuji, B., Gavilanes, W., & Sánchez, R. (2017). Modelo predictivo de deserción estudiantil basado en arboles de decisión. Espacios, 38(55), 19-25. https://www.revistaespacios.com/a17v38n55/a17v38n55p17.pdf Ghazal, M. & Hammad, A. (2022) Application of knowledge discovery in database (KDD) techniques in cost overrun of construction projects. International Journal of Construction Management, 22(9), 1632-1646. https://doi.org/10.1080/15623599.2020.1738205. Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of Various Decision Tree Algorithms for Classification in Data Mining. International Journal of Computer Applications, 163(8), 15-19. https://doi.org/10.5120/ijca2017913660 Hatos, A., Coloja, R. & Sava, A. (2020). Assessing Situational Awareness of Universities Concerning Student Dropout: A Web-Based Content Analysis of Romanian Universities’ Agenda. Journal of Research in Higher Education, 4 (2), 18-34. https://doi.org/10.24193/JRHE.2020.2.2 Hernández, R., Fernández, C., & Baptista, M. (2014). Metodología de la Investigación. McGraw Hill Educación. Kumar, M., Singh, A. J., & Handa, D. (2017). Literature Survey on Student’s Performance Prediction in Education using Data Mining Techniques. International Journal of Education and Management Engineering, 6, 40-49. https://doi.org/10.5815/ijeme.2017.06.05 Ministerio de Educación Nacional. (2021). Estadísticas de deserción y permanencia en educación superior, históricos indicadores 2010-2018. https://www.mineducacion.gov.co/sistemasdeinformacion/1735/articles-357549_recurso_7.pdf Munizaga, F., Cifuentes, M., & Beltrán, A. (2018). Retención y abandono estudiantil en la Educación Superior Universitaria en América Latina y el Caribe: Una revisión sistemática. Archivos Analíticos de Políticas Educativas, 26(61), 1-36. http://dx.doi.org/10.14507/epaa.26.3348 Oficina Europea de Estadística. (2020). Early leavers from education and training. [Mensaje en un blog]. Blog Eurostat. https://ec.europa.eu/eurostat/statistics-explained/index.php/Early_leavers_from_education_and_training#Overview Oñate, A. A. (2016). Análisis de la Deserción y Permanencia Académica en la Educación Superior Aplicando Minería de datos. [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional. https://repositorio.unal.edu.co/handle/unal/57387 Pando, A. & Zarate, W. (2020). Aplicación de un modelo de minería de datos para identificación de patrones que influyen en la deserción académica en el instituto superior Leonardo Davinci. [Trabajo de grado, Universidad Privada Antenor Orrego]. Repositorio de Tesis UPAO. https://hdl.handle.net/20.500.12759/7033 Proyecto ALFA-GUIA. (2013). Marco Conceptual sobre el Abandono. https://documentop.com/marco-conceptual-abandono-proyecto-alfa-guia_59fbf0b21723dda8a11794fa.html. Quiñones, L., Jara, D., Alvarado, N., Milla, M. & Gamarra, O. (2020). Modelo para la estimación de la deserción estudiantil Awajún y Wampis empleando minería de datos. RECyT, 34, 45–50. https://doi.org/10.36995/j.recyt.2020.34.006 Ramírez, P., & Grandón, E. (2018). Predicción de la deserción académica en una universidad pública chilena a través de la clasificación basada en árboles de decisión con parámetros optimizados. Formación Universitaria, 11(3), 3–10. http://dx.doi.org/10.4067/S0718-50062018000300003 Ramírez, V. (2021). Deserción estudiantil y el costo económico en universidades chilenas. [Tesis de Maestría, Universidad del Bio-Bio]. Repositorio digital Universidad del Bio-Bio. http://repobib.ubiobio.cl/jspui/handle/123456789/3609 Sharma, H., & Kumar, S. (2016). A Survey on Decision Tree Algorithms of Classification in Data Mining. International Journal of Science and Research, 5 (4), 2094-2097. https://doi.org/10.21275/v5i4.NOV162954 Urbina-Nájera, A. B., Camino-Hampshire, J. C., & Cruz-Barbosa, R. (2020). Deserción escolar universitaria: Patrones para prevenirla aplicando minería de datos educativa. RELIEVE, 26(1), 1-21. http://doi.org/10.7203/relieve.26.1.16061 Vásquez, J. (2016). Modelo predictivo para estimar la deserción de estudiantes en una Institución de Educación Superior. [Tesis de Maestría, Universidad de Chile]. Repositorio Académico de la Universidad de Chile. http://repositorio.uchile.cl/handle/2250/144169 Vicente, V. X. (2020). Aplicación de la técnica de minería de datos para la predicción de la deserción estudiantil universitaria. [Trabajo de grado, Universidad Técnica de Ambato]. Repositorio Universidad Técnica de Ambato. https://repositorio.uta.edu.ec/jspui/bitstream/123456789/30892/1/Victor%20Xavier%20Vicente%20Guerrero..pdf Vila, D. (2019). Detección de patrones de deserción estudiantil utilizando técnicas predictivas de clasificación y regresión de minería de datos. [Trabajo de grado, Universidad Técnica del Norte]. Repositorio Digital Universidad Técnica del Norte. http://repositorio.utn.edu.ec/handle/123456789/9095 Villalobos, L. R. (2017). Enfoques y diseños de investigación social: cuantitativos, cualitativos y mixtos. EUNED. https://revistas.eia.edu.co/index.php/reveia/article/download/1628/1549 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana |
spellingShingle |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana Castro Rojas, Luis Fernando Espitia Peña, Esperanza Romero Cuero, Edwin Dropout research higher education data analysis relationship patterns Investigación de deserción educación superior análisis de datos patrones de relación |
title_short |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana |
title_full |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana |
title_fullStr |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana |
title_full_unstemmed |
Análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana |
title_sort |
análisis de características que influyen en la deserción estudiantil en el contexto de una universidad latinoamericana |
title_eng |
Analysis of characteristics influencing student dropout in the context of a latin american university |
description |
El presente trabajo pretende profundizar en el estudio de la deserción estudiantil universitaria, un problema serio que preocupa a los gobiernos, las instituciones universitarias y estudiantes a nivel mundial. Para lograr lo anterior, este estudio aplica minería de datos con el propósito de analizar la deserción estudiantil en una universidad latinoamericana, basados en el descubrimiento de las características relevantes que tienen mayor incidencia y en la identificación de patrones que faciliten el entendimiento de dicho problema. La metodología empleada se basa en una adaptación de los pasos propuestos por KDD (descubrimiento de conocimiento en bases de datos) y en un diseño de investigación observacional, descriptivo y transversal, con muestreo por conveniencia. La muestra está compuesta por 10705 estudiantes, los cuales se encuentran distribuidos en 7 facultades y 33 programas académicos de pregrado. Las relaciones predictivas entre la condición de estudiante desertor y las características influyentes, se han sometido a verificación mediante un modelo basado en árbol de decisión. Como resultado de este trabajo, se identifican algunas técnicas y métodos comúnmente empleados para este tipo de estudios y se desarrolla un método para identificar patrones de relaciones entre las características más influyentes en el fenómeno de la deserción. Se encontró que las principales características influyentes en este tipo de deserción se refieren a estrato socioeconómico, género, situación laboral y promedio acumulado. Un aspecto a resaltar es la coincidencia de los hallazgos de este trabajo con los resultados de otros trabajos similares a nivel mundial, en los cuales se identificó el rendimiento académico como un factor fundamental que incide en la deserción universitaria. Se concluye que la deserción estudiantil universitaria no depende de una sola característica, sino que es causada por un conjunto de características y su interrelación.
|
description_eng |
The present work aims to deepen the study of the student dropout, which is a serious problem that worries the governments, university institutions and students worldwide. To achieve the above, this study uses data mining to analyze student dropout in a Latin American university by discovering the most influential relevant characteristics and by identifying patterns to facilitate the understanding of such problem. The methodology used considers an adaptation of the steps proposed by KDD (knowledge discovery in databases) and the study design was observational, descriptive and cross-sectional, using convenience sampling. The sample is made up of 10705 students, which are distributed in 7 faculties and 33 undergraduate academic programs. A model based on decisióntree was used to verify the predictive relationships between the status of dropping out student and the influential characteristics. As a result, this work identified techniques and methods commonly used in these studies and developed a method to identify patterns of relationships among the most influential characteristics in the student dropout. We found that the main influencing characteristics in this study refer to socioeconomic level, gender, employment status and academic performance. One aspect to be highlighted is the coincidence of the findings of this study with the results of other similar studies worldwide, in which academic performance was identified as a fundamental factor that affects university dropout. As a conclusion we can state that university student dropout is caused by a set of characteristics and their interrelations rather than a single characteristic.
|
author |
Castro Rojas, Luis Fernando Espitia Peña, Esperanza Romero Cuero, Edwin |
author_facet |
Castro Rojas, Luis Fernando Espitia Peña, Esperanza Romero Cuero, Edwin |
topic |
Dropout research higher education data analysis relationship patterns Investigación de deserción educación superior análisis de datos patrones de relación |
topic_facet |
Dropout research higher education data analysis relationship patterns Investigación de deserción educación superior análisis de datos patrones de relación |
topicspa_str_mv |
Investigación de deserción educación superior análisis de datos patrones de relación |
citationvolume |
20 |
citationissue |
40 |
citationedition |
Núm. 40 , Año 2023 : Tabla de contenido Revista EIA No. 40 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1628 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2023 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Ayala, E., López, R. & Menéndez, V. (2021). Modelos predictivos de riesgo académico en carreras de computación con minería de datos educativos. Revista de Educación a Distancia (RED), 21(66), 1-36. https://doi.org/10.6018/red.463561 Bakhshinategh, B., Zaiane, O. R., Elatia, S., & Ipperciel, D. (2018). Educational data mining applications and tasks: a survey of the last 10 years. Education and Information Technologies, 23(1), 537–553. https://doi.org/10.1007/s10639-017-9616-z Castro, L. F., Espitia, E. & Cardona, S. (2019). Analysis of Student Desertion in a Systems and Computing Engineering Undergraduate Program. Revista Colombiana de Computación, 20(1), 72-82. https://doi.org/10.29375/25392115.3608 Castro, L. F., Espitia, E. & Mantilla, A. (2018). Applying CRISP-DM in a KDD Process for the Analysis of Student Attrition. Communications in Computer and Information Science, 885, 386-401. https://doi.org/10.1007/978-3-319-98998-3_30 Castrillón-Gómez, O. D., Sarache W., & Ruiz-Herrera, S. (2020). Predicción de las principales variables que conllevan al abandono estudiantil por medio de técnicas de minería de datos. Formación Universitaria, 13(6), 217-228. http://dx.doi.org/10.4067/S0718-50062020000600217 Clerici, R., & Da Re, L. (2019). Evaluación de la eficacia de un programa de tutoría formativa. Revista de Investigación Educativa, 37(1), 39-56. http://dx.doi.org/10.6018/rie.37.1.322331 Constante, A., Florenciano, E., Navarro, E. & Fernández, M. (2021). Factores asociados al abandono universitario. Educación XX1, 24(1), 17-44. http://doi.org/10.5944/educXX1.26889 Cuji, B., Gavilanes, W., & Sánchez, R. (2017). Modelo predictivo de deserción estudiantil basado en arboles de decisión. Espacios, 38(55), 19-25. https://www.revistaespacios.com/a17v38n55/a17v38n55p17.pdf Ghazal, M. & Hammad, A. (2022) Application of knowledge discovery in database (KDD) techniques in cost overrun of construction projects. International Journal of Construction Management, 22(9), 1632-1646. https://doi.org/10.1080/15623599.2020.1738205. Gupta, B., Rawat, A., Jain, A., Arora, A., & Dhami, N. (2017). Analysis of Various Decision Tree Algorithms for Classification in Data Mining. International Journal of Computer Applications, 163(8), 15-19. https://doi.org/10.5120/ijca2017913660 Hatos, A., Coloja, R. & Sava, A. (2020). Assessing Situational Awareness of Universities Concerning Student Dropout: A Web-Based Content Analysis of Romanian Universities’ Agenda. Journal of Research in Higher Education, 4 (2), 18-34. https://doi.org/10.24193/JRHE.2020.2.2 Hernández, R., Fernández, C., & Baptista, M. (2014). Metodología de la Investigación. McGraw Hill Educación. Kumar, M., Singh, A. J., & Handa, D. (2017). Literature Survey on Student’s Performance Prediction in Education using Data Mining Techniques. International Journal of Education and Management Engineering, 6, 40-49. https://doi.org/10.5815/ijeme.2017.06.05 Ministerio de Educación Nacional. (2021). Estadísticas de deserción y permanencia en educación superior, históricos indicadores 2010-2018. https://www.mineducacion.gov.co/sistemasdeinformacion/1735/articles-357549_recurso_7.pdf Munizaga, F., Cifuentes, M., & Beltrán, A. (2018). Retención y abandono estudiantil en la Educación Superior Universitaria en América Latina y el Caribe: Una revisión sistemática. Archivos Analíticos de Políticas Educativas, 26(61), 1-36. http://dx.doi.org/10.14507/epaa.26.3348 Oficina Europea de Estadística. (2020). Early leavers from education and training. [Mensaje en un blog]. Blog Eurostat. https://ec.europa.eu/eurostat/statistics-explained/index.php/Early_leavers_from_education_and_training#Overview Oñate, A. A. (2016). Análisis de la Deserción y Permanencia Académica en la Educación Superior Aplicando Minería de datos. [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio Universidad Nacional. https://repositorio.unal.edu.co/handle/unal/57387 Pando, A. & Zarate, W. (2020). Aplicación de un modelo de minería de datos para identificación de patrones que influyen en la deserción académica en el instituto superior Leonardo Davinci. [Trabajo de grado, Universidad Privada Antenor Orrego]. Repositorio de Tesis UPAO. https://hdl.handle.net/20.500.12759/7033 Proyecto ALFA-GUIA. (2013). Marco Conceptual sobre el Abandono. https://documentop.com/marco-conceptual-abandono-proyecto-alfa-guia_59fbf0b21723dda8a11794fa.html. Quiñones, L., Jara, D., Alvarado, N., Milla, M. & Gamarra, O. (2020). Modelo para la estimación de la deserción estudiantil Awajún y Wampis empleando minería de datos. RECyT, 34, 45–50. https://doi.org/10.36995/j.recyt.2020.34.006 Ramírez, P., & Grandón, E. (2018). Predicción de la deserción académica en una universidad pública chilena a través de la clasificación basada en árboles de decisión con parámetros optimizados. Formación Universitaria, 11(3), 3–10. http://dx.doi.org/10.4067/S0718-50062018000300003 Ramírez, V. (2021). Deserción estudiantil y el costo económico en universidades chilenas. [Tesis de Maestría, Universidad del Bio-Bio]. Repositorio digital Universidad del Bio-Bio. http://repobib.ubiobio.cl/jspui/handle/123456789/3609 Sharma, H., & Kumar, S. (2016). A Survey on Decision Tree Algorithms of Classification in Data Mining. International Journal of Science and Research, 5 (4), 2094-2097. https://doi.org/10.21275/v5i4.NOV162954 Urbina-Nájera, A. B., Camino-Hampshire, J. C., & Cruz-Barbosa, R. (2020). Deserción escolar universitaria: Patrones para prevenirla aplicando minería de datos educativa. RELIEVE, 26(1), 1-21. http://doi.org/10.7203/relieve.26.1.16061 Vásquez, J. (2016). Modelo predictivo para estimar la deserción de estudiantes en una Institución de Educación Superior. [Tesis de Maestría, Universidad de Chile]. Repositorio Académico de la Universidad de Chile. http://repositorio.uchile.cl/handle/2250/144169 Vicente, V. X. (2020). Aplicación de la técnica de minería de datos para la predicción de la deserción estudiantil universitaria. [Trabajo de grado, Universidad Técnica de Ambato]. Repositorio Universidad Técnica de Ambato. https://repositorio.uta.edu.ec/jspui/bitstream/123456789/30892/1/Victor%20Xavier%20Vicente%20Guerrero..pdf Vila, D. (2019). Detección de patrones de deserción estudiantil utilizando técnicas predictivas de clasificación y regresión de minería de datos. [Trabajo de grado, Universidad Técnica del Norte]. Repositorio Digital Universidad Técnica del Norte. http://repositorio.utn.edu.ec/handle/123456789/9095 Villalobos, L. R. (2017). Enfoques y diseños de investigación social: cuantitativos, cualitativos y mixtos. EUNED. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2023-12-19 |
date_accessioned |
2023-12-19 00:00:00 |
date_available |
2023-12-19 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1628 |
url_doi |
https://doi.org/10.24050/reia.v20i40.1628 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v20i40.1628 |
citationstartpage |
4002 pp. 1 |
citationendpage |
28 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1628/1549 |
_version_ |
1811200528888102912 |