Titulo:

Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
.

Sumario:

Métodos hidrogeoquímicos e isotópicos fueron utilizados para caracterizar la calidad del agua subterránea (N=19) pertenecientes al acuífero aluvial de la cuenca del Rio Pavas en Colombia, para evaluar su origen, renovabilidad y dinámica espacial y temporal. El agua subterránea transita en dirección Sureste-Noroeste, con características de agua fresca (SDT < 500 mg/L; 5,55 ≤ pH ≤ 7,90), no recomendada para consumo humano al superar los valores microbiológicos máximos aceptables establecidos por la normatividad colombiana. Presenta facies Ca2+-Mg2+-HCO3- o Ca2+-Mg2+-Na+-HCO3-. Los procesos modificantes de la hidrogeoquímica son la disolución de rocas y el intercambio catiónico. Los isótopos estables indican que el agua subterránea... Ver más

Guardado en:

1794-1237

2463-0950

20

2022-12-20

3903 pp. 1

25

Revista EIA - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1602
record_format ojs
spelling Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
Hydrogeochemical and isotopic evaluation of groundwater quality in the alluvial aquifer of the Rio Pavas valley, Colombia
Métodos hidrogeoquímicos e isotópicos fueron utilizados para caracterizar la calidad del agua subterránea (N=19) pertenecientes al acuífero aluvial de la cuenca del Rio Pavas en Colombia, para evaluar su origen, renovabilidad y dinámica espacial y temporal. El agua subterránea transita en dirección Sureste-Noroeste, con características de agua fresca (SDT < 500 mg/L; 5,55 ≤ pH ≤ 7,90), no recomendada para consumo humano al superar los valores microbiológicos máximos aceptables establecidos por la normatividad colombiana. Presenta facies Ca2+-Mg2+-HCO3- o Ca2+-Mg2+-Na+-HCO3-. Los procesos modificantes de la hidrogeoquímica son la disolución de rocas y el intercambio catiónico. Los isótopos estables indican que el agua subterránea es formada por la recarga de agua meteórica sin evidencia del efecto de la evaporación. La datación con tritio manifiesta que el agua subterránea es un agua joven menor de 20 años.
Hydrogeochemical and isotopic methods were used to characterize the quality of groundwater (N=19) belonging to the alluvial aquifer of the Rio Pavas basin in Colombia, to evaluate its origin, renewability, spatial and temporal dynamics. The groundwater flows in a Southeast-Northwest direction, with freshwater characteristics (TSD < 500 mg/L; 5,55 ≤ pH ≤ 7,90) not recommended for human consumption as it exceeds the maximum acceptable microbiological values ​​established by Colombian regulations. It presents Ca2+-Mg2+-HCO3- or Ca2+-Mg2+-Na+-HCO3-facies. The hydrogeochemistry modifying processes are rock dissolution and cation exchange. Stable isotopes indicate the groundwater is formed by meteoric water recharge without evidence of the evaporation effect. Tritium dating shows that groundwater is young water less than 20 years old
López Velandia, Cristian Camilo
Hidrogeología
Agua subterránea
Hidrogeoquímica
Isótopos Ambientales
Valle del Rio Pavas
Colombia
Hydrogeology
Groundwater
Hydro-geochemistry
Environmental isotopes
Rio Pavas valley
Colombia
20
39
Núm. 39 , Año 2023 : Tabla de contenido Revista EIA No. 39
Artículo de revista
Journal article
2022-12-20 00:00:00
2022-12-20 00:00:00
2022-12-20
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1602
10.24050/reia.v20i39.1602
https://doi.org/10.24050/reia.v20i39.1602
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
3903 pp. 1
25
Al-khashman, O. A. (2005). Study of chemical composition in wet atmospheric precipitation in Eshidiya area, Jordan. Atmospheric Environment, 39, pp. 6175–6183. https://www.doi.org/10.1016/j.atmosenv.2005.06.056.
Alcaldia de La Cumbre (2020) Plan de desarrollo municipal 2020 - 2023 “La Cumbre somos todos” [Online]. Disponible en: https://ogpt.valledelcauca.gov.co/storage/Clientes/ogpt/principal/imagenes/contenidos/2445-pdm la cumbre.pdf.
Bridgewater, L.; American Public Health Association; American Water Works Association; Water Environment Federation. (2012). Standard Methods for the Examination of Water and Wastewater, editado por E. W. Rice et al.
Asare, A.; Appiah-Adjei, E.K.; Ali, B.; Owusu-Nimo, F. (2021). Physico-chemical evaluation of groundwater along the coast of the Central Region, Ghana. Groundwater for Sustainable Development, 13. https://www.doi.org/10.1016/j.gsd.2021.100571.
Cabrera, A.; Blarasin, M.; Maldonado, L. (2014). Cuadernos de estudios de aguas subterráneas: edad del agua subterránea, Argentina , Editado por Unirio editora. https://www.unrc.edu.ar/unrc/comunicacion/editorial/repositorio/978-987-688-106-7.pdf.
Correa Basto, O. (2020). Modelo hidrogeológico conceptual de la cuenca del río pavas en la zona de influencia del proyecto vial mulaló – loboguerrero en el municipio de la Cumbre – Valle del Cauca, tesis (Maestría en hidrogeología ambiental), Colombia, Universidad Antonio Nariño, facultad de ingeniería ambiental. Disponible en: http://repositorio.uan.edu.co/handle/123456789/2179.
Custodio, E.; Llamas, M. R. (1983). Hidrología Subterránea Tomo I. 2da ed, Barcelona, España, Ediciones Omega.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), pp. 436–468. https://www.doi.org/10.3402/tellusa.v16i4.8993.
Environmental Isotope Laboratory. (2022). Water Samples [Online]. Disponible en: https://uwaterloo.ca/environmental-isotope-laboratory/analytical-services/water-samples. Consultado: el 27 de enero de 2022.
Escobar Delgado, F. A. (2017). Acciones colectivas de la veeduría ambiental mulaló – loboguerrero para la defensa del recurso hídrico en el corregimiento de Pavas, tesis, Colombia, Universidad del Valle, facultad de ciencias sociales y económicas. Disponible en: http://hdl.handle.net/10893/10140.
Fritz, S. J. (1994). A Survey of Charge-Balance Errors on Published Analyses of Potable Ground and Surface Waters. Ground Water, 32(4), pp. 539–546. https://www.doi.org/10.1111/j.1745-6584.1994.tb00888.x.
Gat, J. R.; Mook, W. G.; Meijer, H. A. J. (2001). Sección II. Agua Atmosférica. Isótopos Ambientales en el Ciclo Hidrológico: Principios y Aplicaciones. Vienna, p. 60, UNESCO – IAEA. Disponible en: http://www-naweb.iaea.org/napc/ih/IHS.
Geyh, M. et al. (2001) Environmental Isotopes in the Hydrological Cycle Principles and Applications. Groundwater Saturated and Unsaturated Zone, UNESCO y IAEA. Vienna: UNESCO - IAEA.
González, J. D.; Arboleda, C. A.; Botero, S. (2015). Social Infrastructure Development: The Case for Private Participation in Potable Water Supply in Colombia. PM World Journal, 4(10), pp. 1–15. https://www.researchgate.net/publication/277955149.
Hem, J. (1985). Study and Interpretation of the Chemical Characteristicas of Natural Water. U.S Geological Survey Water, 2254, p. 264. Disponible en: http://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf.
IDEAM. (2015). Mapa de Cobertura de la Tierra. Adaptación Corine Land Cover. Escala 1:100.000. Periodo 2010 – 2012 [Online]. Disponible en: https://www.colombiaenmapas.gov.co/?e=-76.72593182729393,3.5648638999446645,-76.37711590932565,3.758445174465464,4686&b=igac&l=880&u=76377&t=32&servicio=880. Consultado: el 31 de enero de 2022.
IDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá D.C. [Online]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf.
Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environmental Monitoring and Assessment, 130(1–3), pp. 347–364. https://www.doi.org/10.1007/s10661-006-9402-7.
Jean-Eudes, O.; Avahounlin, R.; Kélomé, C.; Pierre, O.; Adéké, A.; Vissin, E. (2022). Evaluation of the Physico-Chemical Quality and Potability of Groundwater Consumption in Department of Collines at Benin. Journal of Geoscience and Environment Protection, 10(01), pp. 29–48. https://www.doi.org/10.4236/gep.2022.101003.
Kattan, Z. (2018). Using hydrochemistry and environmental isotopes in the assessment of groundwater quality in the Euphrates alluvial aquifer, Syria. Environmental Earth Sciences, 77(2), p. 45. https://www.doi.org/10.1007/s12665-017-7197-1.
Kumar, M.; Kumari, K.; Ramanathan, A. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53(3), pp. 553–574. https://www.doi.org/10.1007/s00254-007-0672-3.
Liu, J.; Wang, M.; Gao, Z. (2020). Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin. Acta Geophysica, 68, pp. 877–889. https://www.doi.org/10.1007/s11600-020-00440-1.
López Velandia, C. C. (2018). Análisis de las características fisicoquímicas del agua subterránea de la cuenca del río chicú, Colombia, usando indicadores hidroquímicos y estadística multivariante. Ingeniería y Ciencia, 14(28), pp. 35–68. https://www.doi.org/10.17230/ingciencia.14.28.2.
Murray, K.; Wade, P. (1996). Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters. Water SA, 22(1), pp. 27–32. Disponible en: http://www.wrc.org.za/Lists/Knowledge Hub Items/Attachments/6719/1996_Jan_0926_abstract.pdf.
Naranjo Henao, J. L. (2020). Modelo geológico detallado del acuífero del valle del río Pavas.
OIEA y GNIP (2014). Guía para el muestreo de la precipitación OIEA/GNIP [Online]. Disponible en: http://www.iaea.org/water. Consultado: el 7 de abril de 2020.
OMM y GNIR (2019). Sistema de isótopos de agua para análisis de datos, visualización y recuperación electrónica [Online]. Disponible en: https://nucleus.iaea.org/wiser/index.aspx. Consultado: el 11 de diciembre de 2019.
Pimenta, R.; Rocha, Z.; Viana, J.; Gardini, G.; Duarte, M.; Moreira, R. (2017). Use of Environmental Tritium in Groundwater Dating in the Upper Jequitibá River Basin, Municipality of Sete Lagoas, Minas Gerais, Brazil. International Nuclear Atlantic Conference. Belo Horizonte, p. 9. Disponible en: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/015/49015755.pdf.
Puertas Orozco, O. L.; Carvajal Escobar, Y.; Quintero Angel, M. (2011). Estudio de tendencias de la precipitación mensual en la cuenca alta-media del río Cauca, Colombia, DYNA (Colombia), 78(169), pp. 112–120.
Rodríguez, C. O. (2004). Línea meteórica isotópica de Colombia, Meteorología Colombiana, (8), pp. 43–51.
Sanford, R. F.; Pierson, C. T.; Crovelli, R. A. (1993). An objective replacement method for censored geochemical data. Mathematical Geology, 25(1), pp. 59–80. https://www.doi.org/10.1007/BF00890676.
U.S. EPA. (1994). Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Cincinnati, Ohio [Online]. Disponible en: https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.7.pdf. Consultado: el 27 de enero de 2022.
Valencia, J. (2013). Significado del exceso de deuterio en la interpretación de isótopos estables δ 18O y δ 2H en estudios hidrogeológicos. Informe científico tecnológico, 13, pp. 125–127.
Valenzuela, L.; Ramírez-Hernández, J.; Palomares, R. B. (2013). Composición Isotópica del Agua Subterránea y su Relación con la Salinidad en el Valle de San Luis Río Colorado Sonora Mexico. Información Tecnológica, 24(2), pp. 57–66. https://www.doi.org/10.4067/S0718-07642013000200008.
Vélez, M. V.; Rhenals, R. L. (2008). Determinación de la recarga con isótopos ambientales en los acuíferos de Santa Fé de Antioquia. Boletín Ciencias de la Tierra, (24), p. 18. Disponible en: https://revistas.unal.edu.co/index.php/rbct/article/view/9271/11078.
Xiong, G.-Y.; Chen, G.-Q.; Xu, X.-Y.; Liu, W.-Q.; Fu, T.-F.; Khokiattiwong, S.; Kornkanitnan, N.; Ali Seddique, A.; Shi, X.-F.; Liu, S.-F.; Su, Q.; & Xu, X.-L. (2020). A comparative study on hydrochemical evolution and quality of groundwater in coastal areas of Thailand and Bangladesh. Journal of Asian Earth Sciences, 195 https://www.doi.org/10.1016/j.jseaes.2020.104336.
Yidana, S. M.; Banoeng-Yakubo, B.; Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58(2), pp. 220–234. https://www.doi.org/10.1016/j.jafrearsci.2010.03.003.
Yidana, S. M.; Yidana, A. (2009). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences, 59(7), pp. 1461–1473. https://www.doi.org/10.1007/s12665-009-0132-3.
Zhou, X.; Shen, Y.; Zhang, H. (2015). Hydrochemistry of the natural low pH groundwater in the coastal aquifers near Beihai, China. Journal of Ocean University of China, 14(3), pp. 475–483. https://www.doi.org/10.1007/s11802-015-2631-z.
Zolekar, R.B.; Todmal, R.S.; Bhagat, V.S. (2021). Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India. Environment, Development and Sustainability, 23(3), pp. 4433–4452. https://www.doi.org/10.1007/s10668-020-00782-2.
https://revistas.eia.edu.co/index.php/reveia/article/download/1602/1514
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
spellingShingle Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
López Velandia, Cristian Camilo
Hidrogeología
Agua subterránea
Hidrogeoquímica
Isótopos Ambientales
Valle del Rio Pavas
Colombia
Hydrogeology
Groundwater
Hydro-geochemistry
Environmental isotopes
Rio Pavas valley
Colombia
title_short Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
title_full Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
title_fullStr Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
title_full_unstemmed Evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del Rio Pavas, Colombia
title_sort evaluación hidrogeoquímica e isotópica de la calidad del agua subterránea en el acuífero aluvial del valle del rio pavas, colombia
title_eng Hydrogeochemical and isotopic evaluation of groundwater quality in the alluvial aquifer of the Rio Pavas valley, Colombia
description Métodos hidrogeoquímicos e isotópicos fueron utilizados para caracterizar la calidad del agua subterránea (N=19) pertenecientes al acuífero aluvial de la cuenca del Rio Pavas en Colombia, para evaluar su origen, renovabilidad y dinámica espacial y temporal. El agua subterránea transita en dirección Sureste-Noroeste, con características de agua fresca (SDT < 500 mg/L; 5,55 ≤ pH ≤ 7,90), no recomendada para consumo humano al superar los valores microbiológicos máximos aceptables establecidos por la normatividad colombiana. Presenta facies Ca2+-Mg2+-HCO3- o Ca2+-Mg2+-Na+-HCO3-. Los procesos modificantes de la hidrogeoquímica son la disolución de rocas y el intercambio catiónico. Los isótopos estables indican que el agua subterránea es formada por la recarga de agua meteórica sin evidencia del efecto de la evaporación. La datación con tritio manifiesta que el agua subterránea es un agua joven menor de 20 años.
description_eng Hydrogeochemical and isotopic methods were used to characterize the quality of groundwater (N=19) belonging to the alluvial aquifer of the Rio Pavas basin in Colombia, to evaluate its origin, renewability, spatial and temporal dynamics. The groundwater flows in a Southeast-Northwest direction, with freshwater characteristics (TSD < 500 mg/L; 5,55 ≤ pH ≤ 7,90) not recommended for human consumption as it exceeds the maximum acceptable microbiological values ​​established by Colombian regulations. It presents Ca2+-Mg2+-HCO3- or Ca2+-Mg2+-Na+-HCO3-facies. The hydrogeochemistry modifying processes are rock dissolution and cation exchange. Stable isotopes indicate the groundwater is formed by meteoric water recharge without evidence of the evaporation effect. Tritium dating shows that groundwater is young water less than 20 years old
author López Velandia, Cristian Camilo
author_facet López Velandia, Cristian Camilo
topicspa_str_mv Hidrogeología
Agua subterránea
Hidrogeoquímica
Isótopos Ambientales
Valle del Rio Pavas
Colombia
topic Hidrogeología
Agua subterránea
Hidrogeoquímica
Isótopos Ambientales
Valle del Rio Pavas
Colombia
Hydrogeology
Groundwater
Hydro-geochemistry
Environmental isotopes
Rio Pavas valley
Colombia
topic_facet Hidrogeología
Agua subterránea
Hidrogeoquímica
Isótopos Ambientales
Valle del Rio Pavas
Colombia
Hydrogeology
Groundwater
Hydro-geochemistry
Environmental isotopes
Rio Pavas valley
Colombia
citationvolume 20
citationissue 39
citationedition Núm. 39 , Año 2023 : Tabla de contenido Revista EIA No. 39
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1602
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Al-khashman, O. A. (2005). Study of chemical composition in wet atmospheric precipitation in Eshidiya area, Jordan. Atmospheric Environment, 39, pp. 6175–6183. https://www.doi.org/10.1016/j.atmosenv.2005.06.056.
Alcaldia de La Cumbre (2020) Plan de desarrollo municipal 2020 - 2023 “La Cumbre somos todos” [Online]. Disponible en: https://ogpt.valledelcauca.gov.co/storage/Clientes/ogpt/principal/imagenes/contenidos/2445-pdm la cumbre.pdf.
Bridgewater, L.; American Public Health Association; American Water Works Association; Water Environment Federation. (2012). Standard Methods for the Examination of Water and Wastewater, editado por E. W. Rice et al.
Asare, A.; Appiah-Adjei, E.K.; Ali, B.; Owusu-Nimo, F. (2021). Physico-chemical evaluation of groundwater along the coast of the Central Region, Ghana. Groundwater for Sustainable Development, 13. https://www.doi.org/10.1016/j.gsd.2021.100571.
Cabrera, A.; Blarasin, M.; Maldonado, L. (2014). Cuadernos de estudios de aguas subterráneas: edad del agua subterránea, Argentina , Editado por Unirio editora. https://www.unrc.edu.ar/unrc/comunicacion/editorial/repositorio/978-987-688-106-7.pdf.
Correa Basto, O. (2020). Modelo hidrogeológico conceptual de la cuenca del río pavas en la zona de influencia del proyecto vial mulaló – loboguerrero en el municipio de la Cumbre – Valle del Cauca, tesis (Maestría en hidrogeología ambiental), Colombia, Universidad Antonio Nariño, facultad de ingeniería ambiental. Disponible en: http://repositorio.uan.edu.co/handle/123456789/2179.
Custodio, E.; Llamas, M. R. (1983). Hidrología Subterránea Tomo I. 2da ed, Barcelona, España, Ediciones Omega.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), pp. 436–468. https://www.doi.org/10.3402/tellusa.v16i4.8993.
Environmental Isotope Laboratory. (2022). Water Samples [Online]. Disponible en: https://uwaterloo.ca/environmental-isotope-laboratory/analytical-services/water-samples. Consultado: el 27 de enero de 2022.
Escobar Delgado, F. A. (2017). Acciones colectivas de la veeduría ambiental mulaló – loboguerrero para la defensa del recurso hídrico en el corregimiento de Pavas, tesis, Colombia, Universidad del Valle, facultad de ciencias sociales y económicas. Disponible en: http://hdl.handle.net/10893/10140.
Fritz, S. J. (1994). A Survey of Charge-Balance Errors on Published Analyses of Potable Ground and Surface Waters. Ground Water, 32(4), pp. 539–546. https://www.doi.org/10.1111/j.1745-6584.1994.tb00888.x.
Gat, J. R.; Mook, W. G.; Meijer, H. A. J. (2001). Sección II. Agua Atmosférica. Isótopos Ambientales en el Ciclo Hidrológico: Principios y Aplicaciones. Vienna, p. 60, UNESCO – IAEA. Disponible en: http://www-naweb.iaea.org/napc/ih/IHS.
Geyh, M. et al. (2001) Environmental Isotopes in the Hydrological Cycle Principles and Applications. Groundwater Saturated and Unsaturated Zone, UNESCO y IAEA. Vienna: UNESCO - IAEA.
González, J. D.; Arboleda, C. A.; Botero, S. (2015). Social Infrastructure Development: The Case for Private Participation in Potable Water Supply in Colombia. PM World Journal, 4(10), pp. 1–15. https://www.researchgate.net/publication/277955149.
Hem, J. (1985). Study and Interpretation of the Chemical Characteristicas of Natural Water. U.S Geological Survey Water, 2254, p. 264. Disponible en: http://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf.
IDEAM. (2015). Mapa de Cobertura de la Tierra. Adaptación Corine Land Cover. Escala 1:100.000. Periodo 2010 – 2012 [Online]. Disponible en: https://www.colombiaenmapas.gov.co/?e=-76.72593182729393,3.5648638999446645,-76.37711590932565,3.758445174465464,4686&b=igac&l=880&u=76377&t=32&servicio=880. Consultado: el 31 de enero de 2022.
IDEAM. (2019). Estudio Nacional del Agua 2018. Bogotá D.C. [Online]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/023858/ENA_2018.pdf.
Jalali, M. (2007). Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environmental Monitoring and Assessment, 130(1–3), pp. 347–364. https://www.doi.org/10.1007/s10661-006-9402-7.
Jean-Eudes, O.; Avahounlin, R.; Kélomé, C.; Pierre, O.; Adéké, A.; Vissin, E. (2022). Evaluation of the Physico-Chemical Quality and Potability of Groundwater Consumption in Department of Collines at Benin. Journal of Geoscience and Environment Protection, 10(01), pp. 29–48. https://www.doi.org/10.4236/gep.2022.101003.
Kattan, Z. (2018). Using hydrochemistry and environmental isotopes in the assessment of groundwater quality in the Euphrates alluvial aquifer, Syria. Environmental Earth Sciences, 77(2), p. 45. https://www.doi.org/10.1007/s12665-017-7197-1.
Kumar, M.; Kumari, K.; Ramanathan, A. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53(3), pp. 553–574. https://www.doi.org/10.1007/s00254-007-0672-3.
Liu, J.; Wang, M.; Gao, Z. (2020). Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin. Acta Geophysica, 68, pp. 877–889. https://www.doi.org/10.1007/s11600-020-00440-1.
López Velandia, C. C. (2018). Análisis de las características fisicoquímicas del agua subterránea de la cuenca del río chicú, Colombia, usando indicadores hidroquímicos y estadística multivariante. Ingeniería y Ciencia, 14(28), pp. 35–68. https://www.doi.org/10.17230/ingciencia.14.28.2.
Murray, K.; Wade, P. (1996). Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters. Water SA, 22(1), pp. 27–32. Disponible en: http://www.wrc.org.za/Lists/Knowledge Hub Items/Attachments/6719/1996_Jan_0926_abstract.pdf.
Naranjo Henao, J. L. (2020). Modelo geológico detallado del acuífero del valle del río Pavas.
OIEA y GNIP (2014). Guía para el muestreo de la precipitación OIEA/GNIP [Online]. Disponible en: http://www.iaea.org/water. Consultado: el 7 de abril de 2020.
OMM y GNIR (2019). Sistema de isótopos de agua para análisis de datos, visualización y recuperación electrónica [Online]. Disponible en: https://nucleus.iaea.org/wiser/index.aspx. Consultado: el 11 de diciembre de 2019.
Pimenta, R.; Rocha, Z.; Viana, J.; Gardini, G.; Duarte, M.; Moreira, R. (2017). Use of Environmental Tritium in Groundwater Dating in the Upper Jequitibá River Basin, Municipality of Sete Lagoas, Minas Gerais, Brazil. International Nuclear Atlantic Conference. Belo Horizonte, p. 9. Disponible en: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/015/49015755.pdf.
Puertas Orozco, O. L.; Carvajal Escobar, Y.; Quintero Angel, M. (2011). Estudio de tendencias de la precipitación mensual en la cuenca alta-media del río Cauca, Colombia, DYNA (Colombia), 78(169), pp. 112–120.
Rodríguez, C. O. (2004). Línea meteórica isotópica de Colombia, Meteorología Colombiana, (8), pp. 43–51.
Sanford, R. F.; Pierson, C. T.; Crovelli, R. A. (1993). An objective replacement method for censored geochemical data. Mathematical Geology, 25(1), pp. 59–80. https://www.doi.org/10.1007/BF00890676.
U.S. EPA. (1994). Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Cincinnati, Ohio [Online]. Disponible en: https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.7.pdf. Consultado: el 27 de enero de 2022.
Valencia, J. (2013). Significado del exceso de deuterio en la interpretación de isótopos estables δ 18O y δ 2H en estudios hidrogeológicos. Informe científico tecnológico, 13, pp. 125–127.
Valenzuela, L.; Ramírez-Hernández, J.; Palomares, R. B. (2013). Composición Isotópica del Agua Subterránea y su Relación con la Salinidad en el Valle de San Luis Río Colorado Sonora Mexico. Información Tecnológica, 24(2), pp. 57–66. https://www.doi.org/10.4067/S0718-07642013000200008.
Vélez, M. V.; Rhenals, R. L. (2008). Determinación de la recarga con isótopos ambientales en los acuíferos de Santa Fé de Antioquia. Boletín Ciencias de la Tierra, (24), p. 18. Disponible en: https://revistas.unal.edu.co/index.php/rbct/article/view/9271/11078.
Xiong, G.-Y.; Chen, G.-Q.; Xu, X.-Y.; Liu, W.-Q.; Fu, T.-F.; Khokiattiwong, S.; Kornkanitnan, N.; Ali Seddique, A.; Shi, X.-F.; Liu, S.-F.; Su, Q.; & Xu, X.-L. (2020). A comparative study on hydrochemical evolution and quality of groundwater in coastal areas of Thailand and Bangladesh. Journal of Asian Earth Sciences, 195 https://www.doi.org/10.1016/j.jseaes.2020.104336.
Yidana, S. M.; Banoeng-Yakubo, B.; Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58(2), pp. 220–234. https://www.doi.org/10.1016/j.jafrearsci.2010.03.003.
Yidana, S. M.; Yidana, A. (2009). Assessing water quality using water quality index and multivariate analysis. Environmental Earth Sciences, 59(7), pp. 1461–1473. https://www.doi.org/10.1007/s12665-009-0132-3.
Zhou, X.; Shen, Y.; Zhang, H. (2015). Hydrochemistry of the natural low pH groundwater in the coastal aquifers near Beihai, China. Journal of Ocean University of China, 14(3), pp. 475–483. https://www.doi.org/10.1007/s11802-015-2631-z.
Zolekar, R.B.; Todmal, R.S.; Bhagat, V.S. (2021). Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India. Environment, Development and Sustainability, 23(3), pp. 4433–4452. https://www.doi.org/10.1007/s10668-020-00782-2.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-12-20
date_accessioned 2022-12-20 00:00:00
date_available 2022-12-20 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1602
url_doi https://doi.org/10.24050/reia.v20i39.1602
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v20i39.1602
citationstartpage 3903 pp. 1
citationendpage 25
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1602/1514
_version_ 1811200527320481792