Detección de dolor apartir de señales de EEG
.
La evaluación de dolor es de gran importancia en el campo de la medicina ya que permite detectar condiciones médicas o definir la manera en la que se debe tratar. Su evaluación se basa en primera instancia en información que el mismo paciente entrega. Sin embargo, en algunos casos en los que el paciente no tiene la capacidad de expresarlo, resulta de gran utilidad métodos que permitan evaluarlo. En este artículo se propone la evaluación de presencia o ausencia de dolor a partir de características asociadas a señales electro-encefalográficas en un experimento en el que se induce dolor agudo a 14 participantes con una prueba de electro-diagnóstico, en hombres y mujeres con edades entre 18 y 33 años.  Se utilizan redes neuronales... Ver más
1794-1237
2463-0950
19
2022-06-01
3829 pp. 1
18
Revista EIA - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1577 |
---|---|
record_format |
ojs |
spelling |
Detección de dolor apartir de señales de EEG Pain detection evaluated from electroencephalographic signals La evaluación de dolor es de gran importancia en el campo de la medicina ya que permite detectar condiciones médicas o definir la manera en la que se debe tratar. Su evaluación se basa en primera instancia en información que el mismo paciente entrega. Sin embargo, en algunos casos en los que el paciente no tiene la capacidad de expresarlo, resulta de gran utilidad métodos que permitan evaluarlo. En este artículo se propone la evaluación de presencia o ausencia de dolor a partir de características asociadas a señales electro-encefalográficas en un experimento en el que se induce dolor agudo a 14 participantes con una prueba de electro-diagnóstico, en hombres y mujeres con edades entre 18 y 33 años.  Se utilizan redes neuronales para la clasificación, obteniendo una exactitud del 74,19 %. The evaluation of pain allows the detection of medical conditions and defines the procedure to treat them. Medical staff measures pain by patient´s self-report. Nevertheless, in some cases, it is difficult or impossible for the patient to communicate the level of pain perceived. In these cases, it is useful to evaluate pain employing different techniques. In this paper, we propose the evaluation of pain through a procedure based on the analysis of the electroencephalographic signals. The algorithms were evaluated in an experiment with 14 participants where the pain was induced with an electrodiagnostic system. The participants were males and females between 18 and 33 years old. To classify between pain and no pain, we employed neural networks with an accuracy of 74,19 %.   Peñuela Calderón, Lina María Caicedo Gutierrez, Nicolas Esteban Redes Neuronales Electroencefalografía Densidad del Espectro de Frecuencia Valor Medio Cuadrático Frecuencia Pico Escala Análoga Visual Escala de Valoración Numérica Electro-diagnóstico Neural Networks Electroencephalography Power Spectral Density Root-Mean-Square Peak Frequency Visual Analog Scale Numerical Rating Scale Electrodiagnosis 19 38 Núm. 38 , Año 2022 : Tabla de contenido Revista EIA No. 38 Artículo de revista Journal article 2022-06-01 00:00:00 2022-06-01 00:00:00 2022-06-01 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1577 10.24050/reia.v19i38.1577 https://doi.org/10.24050/reia.v19i38.1577 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 3829 pp. 1 18 Grabowski, S. R., & Tortora, G. J. (2000). Principles of anatomy and physiology. New York/Chichester: Wiley. Tortora, G. J., & Nielsen, M. T. (1995). Human Anatomy. Harper Collins College Pub. Ilana, E. (1979). Pain terms; a list with definitions and notes on usage. Pain, 6, 249. Manworren, R. C., & Stinson, J. (2016). Pediatric pain measurement, assessment, and evaluation. In Seminars in pediatric neurology (Vol. 23, No. 3, pp. 189-200). WB Saunders. DOI: https: / / doi .org /10.1016/j.spen.2016.10.001. Kagita, J., & Mitsukura, Y. (2018). Quantification of pain degree by frequency features of single-chanelled EEG. In 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC) (pp. 359-363). IEEE. Tatum IV, W. O. (2021). Handbook of EEG interpretation. Springer Publishing Company. Bonotis, P. A., Tsouros, D. C., Smyrlis, P. N., Tzallas, A. T., Giannakeas, N., Glavas, E., & Tsipouras, M. G. (2019). Automated Assessment of Pain Intensity based on EEG Signal Analysis. In 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 583-588). IEEE. Panavaranan, P., & Wongsawat, Y. (2013). EEG-based pain estimation via fuzzy logic and polynomial kernel support vector machine. In The 6th 2013 Biomedical Engineering International Conference (pp. 1-4). IEEE. Nir, R. R., Sinai, A., Raz, E., Sprecher, E., & Yarnitsky, D. (2010). Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain research, 1344, 77-86. Cao, T., Wang, Q., Liu, D., Sun, J., & Bai, O. (2020). Resting state EEG-based sudden pain recognition method and experimental study. Biomedical Signal Processing and Control, 59, 101925. Tatum IV, W. O. (2021). Handbook of EEG interpretation. Springer Publishing Company. Bai, Y., Hu, Y., & Zhang, Z. (2016). Spontaneous EEG-based normalization of pain-evoked neural responses: Effect on improving the accuracy of pain prediction. In 2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1-4). IEEE. Yu, M., Sun, Y., Zhu, B., Zhu, L., Lin, Y., Tang, X., ... & Dong, M. (2020). Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG. Neurocomputing, 378, 270-282. https://revistas.eia.edu.co/index.php/reveia/article/download/1577/1517 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Detección de dolor apartir de señales de EEG |
spellingShingle |
Detección de dolor apartir de señales de EEG Peñuela Calderón, Lina María Caicedo Gutierrez, Nicolas Esteban Redes Neuronales Electroencefalografía Densidad del Espectro de Frecuencia Valor Medio Cuadrático Frecuencia Pico Escala Análoga Visual Escala de Valoración Numérica Electro-diagnóstico Neural Networks Electroencephalography Power Spectral Density Root-Mean-Square Peak Frequency Visual Analog Scale Numerical Rating Scale Electrodiagnosis |
title_short |
Detección de dolor apartir de señales de EEG |
title_full |
Detección de dolor apartir de señales de EEG |
title_fullStr |
Detección de dolor apartir de señales de EEG |
title_full_unstemmed |
Detección de dolor apartir de señales de EEG |
title_sort |
detección de dolor apartir de señales de eeg |
title_eng |
Pain detection evaluated from electroencephalographic signals |
description |
La evaluación de dolor es de gran importancia en el campo de la medicina ya que permite detectar condiciones médicas o definir la manera en la que se debe tratar. Su evaluación se basa en primera instancia en información que el mismo paciente entrega. Sin embargo, en algunos casos en los que el paciente no tiene la capacidad de expresarlo, resulta de gran utilidad métodos que permitan evaluarlo. En este artículo se propone la evaluación de presencia o ausencia de dolor a partir de características asociadas a señales electro-encefalográficas en un experimento en el que se induce dolor agudo a 14 participantes con una prueba de electro-diagnóstico, en hombres y mujeres con edades entre 18 y 33 años.  Se utilizan redes neuronales para la clasificación, obteniendo una exactitud del 74,19 %.
|
description_eng |
The evaluation of pain allows the detection of medical conditions and defines the procedure to treat them. Medical staff measures pain by patient´s self-report. Nevertheless, in some cases, it is difficult or impossible for the patient to communicate the level of pain perceived. In these cases, it is useful to evaluate pain employing different techniques. In this paper, we propose the evaluation of pain through a procedure based on the analysis of the electroencephalographic signals. The algorithms were evaluated in an experiment with 14 participants where the pain was induced with an electrodiagnostic system. The participants were males and females between 18 and 33 years old. To classify between pain and no pain, we employed neural networks with an accuracy of 74,19 %.
 
|
author |
Peñuela Calderón, Lina María Caicedo Gutierrez, Nicolas Esteban |
author_facet |
Peñuela Calderón, Lina María Caicedo Gutierrez, Nicolas Esteban |
topicspa_str_mv |
Redes Neuronales Electroencefalografía Densidad del Espectro de Frecuencia Valor Medio Cuadrático Frecuencia Pico Escala Análoga Visual Escala de Valoración Numérica Electro-diagnóstico |
topic |
Redes Neuronales Electroencefalografía Densidad del Espectro de Frecuencia Valor Medio Cuadrático Frecuencia Pico Escala Análoga Visual Escala de Valoración Numérica Electro-diagnóstico Neural Networks Electroencephalography Power Spectral Density Root-Mean-Square Peak Frequency Visual Analog Scale Numerical Rating Scale Electrodiagnosis |
topic_facet |
Redes Neuronales Electroencefalografía Densidad del Espectro de Frecuencia Valor Medio Cuadrático Frecuencia Pico Escala Análoga Visual Escala de Valoración Numérica Electro-diagnóstico Neural Networks Electroencephalography Power Spectral Density Root-Mean-Square Peak Frequency Visual Analog Scale Numerical Rating Scale Electrodiagnosis |
citationvolume |
19 |
citationissue |
38 |
citationedition |
Núm. 38 , Año 2022 : Tabla de contenido Revista EIA No. 38 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1577 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2022 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Grabowski, S. R., & Tortora, G. J. (2000). Principles of anatomy and physiology. New York/Chichester: Wiley. Tortora, G. J., & Nielsen, M. T. (1995). Human Anatomy. Harper Collins College Pub. Ilana, E. (1979). Pain terms; a list with definitions and notes on usage. Pain, 6, 249. Manworren, R. C., & Stinson, J. (2016). Pediatric pain measurement, assessment, and evaluation. In Seminars in pediatric neurology (Vol. 23, No. 3, pp. 189-200). WB Saunders. DOI: https: / / doi .org /10.1016/j.spen.2016.10.001. Kagita, J., & Mitsukura, Y. (2018). Quantification of pain degree by frequency features of single-chanelled EEG. In 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC) (pp. 359-363). IEEE. Tatum IV, W. O. (2021). Handbook of EEG interpretation. Springer Publishing Company. Bonotis, P. A., Tsouros, D. C., Smyrlis, P. N., Tzallas, A. T., Giannakeas, N., Glavas, E., & Tsipouras, M. G. (2019). Automated Assessment of Pain Intensity based on EEG Signal Analysis. In 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 583-588). IEEE. Panavaranan, P., & Wongsawat, Y. (2013). EEG-based pain estimation via fuzzy logic and polynomial kernel support vector machine. In The 6th 2013 Biomedical Engineering International Conference (pp. 1-4). IEEE. Nir, R. R., Sinai, A., Raz, E., Sprecher, E., & Yarnitsky, D. (2010). Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain research, 1344, 77-86. Cao, T., Wang, Q., Liu, D., Sun, J., & Bai, O. (2020). Resting state EEG-based sudden pain recognition method and experimental study. Biomedical Signal Processing and Control, 59, 101925. Tatum IV, W. O. (2021). Handbook of EEG interpretation. Springer Publishing Company. Bai, Y., Hu, Y., & Zhang, Z. (2016). Spontaneous EEG-based normalization of pain-evoked neural responses: Effect on improving the accuracy of pain prediction. In 2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (pp. 1-4). IEEE. Yu, M., Sun, Y., Zhu, B., Zhu, L., Lin, Y., Tang, X., ... & Dong, M. (2020). Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG. Neurocomputing, 378, 270-282. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2022-06-01 |
date_accessioned |
2022-06-01 00:00:00 |
date_available |
2022-06-01 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1577 |
url_doi |
https://doi.org/10.24050/reia.v19i38.1577 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v19i38.1577 |
citationstartpage |
3829 pp. 1 |
citationendpage |
18 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1577/1517 |
_version_ |
1811200526447017984 |