Titulo:

Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
.

Sumario:

Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabras que se asocian con un concepto de tecnologías de bajo impacto ambiental (IA). Sin embargo, las ERs también tienen asociados IAs negativos, que pueden identificarse y evaluarse mediante instrumentos como la Evaluación de Impactos Ambientales (EIA) o el Análisis de ciclo de vida (ACV). Este artículo se centra en la revisión de los IAs documentados en diferentes ACV para sistemas de energía solar fotovoltaica (SEPV), el tipo más común de ERs moder... Ver más

Guardado en:

1794-1237

2463-0950

19

2022-06-01

3825 pp. 1

18

Revista EIA - 2022

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1570
record_format ojs
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
spellingShingle Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
Romero Pereira, María Carolina
Sánchez Coria, Alba
Renewable Energy
Sustainable Energy
Clean Energy
Green Energy
Environmental Impact
Photovoltaic
Sustainable Development
SDGs
Environmental Impact Assessment
Life Cycle Assessment
Energías Renovables
Energías Sostenibles
Energías Limpias
Energías Verdes
Impacto Ambiental
Sistemas de Energía Solar Fotovoltaica
desarrollo sostenible
Evaluación de Impactos Ambientales
Análisis de Ciclo de Vida
title_short Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
title_full Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
title_fullStr Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
title_full_unstemmed Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
title_sort impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
title_eng Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studies
description Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabras que se asocian con un concepto de tecnologías de bajo impacto ambiental (IA). Sin embargo, las ERs también tienen asociados IAs negativos, que pueden identificarse y evaluarse mediante instrumentos como la Evaluación de Impactos Ambientales (EIA) o el Análisis de ciclo de vida (ACV). Este artículo se centra en la revisión de los IAs documentados en diferentes ACV para sistemas de energía solar fotovoltaica (SEPV), el tipo más común de ERs modernas para satisfacer la demanda energética a nivel mundial. Aunque diferentes estudios de ACV incluyen varias categorías ambientales de evaluación, para el análisis se seleccionaron 5 categorías, potencial de calentamiento global (GWP, por sus siglas en inglés), uso del suelo, pérdida de biodiversidad, salud humana y generación de residuos. Los resultados muestran que los IAs de los SEPV documentados en ACVs dependen no solo de la tecnología, el contexto y la escala del proyecto, sino también del objetivo y alcance de cada estudio. Aun así, este artículo recoge valores orientativos para el GWP, el uso de suelo y los accidentes mortales de aves relacionados con SEPV. Además, la investigación revela la necesidad de enfoques complementarios como EIA o estudios de toxicidad para poder dimensionar impactos acerca de pérdida de biodiversidad y daños a la salud humana, así mismo concluye la falta de un sistema de gestión de residuos adecuado para las miles de toneladas que generarán estos sistemas a futuro.
description_eng According to the 7th goal of sustainable development concluded by the United Nations (UN), energy should become clean and accessible for every human being on the planet in the upcoming decades. Clean energy is often used as a synonym for renewable, sustainable or green energy, words which are associated with a concept of low-impact technologies. However, renewable energies (REs) also have a set of negative environmental impacts (EIs), which can be identified and assessed through an EI Assessment (EIA) and/or a Life Cycle Assessment (LCA). This article focuses on the revision of EIs documented in LCA studies for solar photovoltaic (PV) systems (SPVSs), the most common type of modern REs to satisfy energy demand globally. Although different LCA studies include various environmental assessment categories, five categories were selected for analysis, namely global warming potential (GWP), land use, biodiversity loss, human health (HH) and waste generation. The results show that documented EIs of SPVSs from LCAs depend not only on the technology, context and scale of the project, but also on the objective and scope of each study. Still, this article summarizes orientational values for the GWP, land use and fatal bird accidents related to SPVSs. Further, the research reveals the need for complementary approaches such as EIAs or toxicity studies for the assessment of biodiversity loss as well as the impacts on HH, and the lack of an existing waste management system for the million tons of waste soon to be disposed.
author Romero Pereira, María Carolina
Sánchez Coria, Alba
author_facet Romero Pereira, María Carolina
Sánchez Coria, Alba
topic Renewable Energy
Sustainable Energy
Clean Energy
Green Energy
Environmental Impact
Photovoltaic
Sustainable Development
SDGs
Environmental Impact Assessment
Life Cycle Assessment
Energías Renovables
Energías Sostenibles
Energías Limpias
Energías Verdes
Impacto Ambiental
Sistemas de Energía Solar Fotovoltaica
desarrollo sostenible
Evaluación de Impactos Ambientales
Análisis de Ciclo de Vida
topic_facet Renewable Energy
Sustainable Energy
Clean Energy
Green Energy
Environmental Impact
Photovoltaic
Sustainable Development
SDGs
Environmental Impact Assessment
Life Cycle Assessment
Energías Renovables
Energías Sostenibles
Energías Limpias
Energías Verdes
Impacto Ambiental
Sistemas de Energía Solar Fotovoltaica
desarrollo sostenible
Evaluación de Impactos Ambientales
Análisis de Ciclo de Vida
topicspa_str_mv Energías Renovables
Energías Sostenibles
Energías Limpias
Energías Verdes
Impacto Ambiental
Sistemas de Energía Solar Fotovoltaica
desarrollo sostenible
Evaluación de Impactos Ambientales
Análisis de Ciclo de Vida
citationvolume 19
citationissue 38
citationedition Núm. 38 , Año 2022 : Tabla de contenido Revista EIA No. 38
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1570
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Alsema, E.; de Wild-Scholten, M. J. (2007). Keep it clean. Reducing environmental impacts from solar PV. Renewable Energy World, pp. 96-103. Anak John, C.; See Tan, L.; Tan, J.; Loo Kiew, P.; Mohd Shariff, A.; Abdul Halim, H. N. (2021). Selection of Renewable Energy in Rural Are Via Life Cycle Assessment-Analytical Hierarchy Process (LCA.AHP): A Case Study of tatau, Sarawak. Sustainability, 13(21), 1880. DOI: 10.3390/su132111880. Antonanzas, J.; Quinn, J. C. (2021). Net environmental impact of the PV industry from 2000-2025. Journal of Cleaner Production, 311, 127791. DOI: 10.1016/j.jclepro.2021.127791 Balfour, J. R.; Shaw, M.; Bremer Nash, N. (2011). Introduction to Photovoltaic System Design. Burlington, Jones & Bartlett Publishers, pp. 2-6. Bakhiyi, B.; Labrèche, F.; Zayed, J. (2014). The photovoltaic industry on the path to a sustainable future - environmental and occupational health issues. Environmental International, 73, pp. 224-234. DOI: 10.1016/j.envint.2014.07.023 Chowdhury, Md. S.; Rahman, K. S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman; Tiong, S. K.; Kamaruzzaman, S.; Nowshad, A. (2020): An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, pp. 100431. DOI: 10.1016/j.esr.2019.100431. Cornejo, F.; Janssen, M.; Gaudrealt, C.; Samson, R. (2005): Using Life Cycle Assessment (LCA) as a Tool to Enhance Environmental Impact Assessment (EIA). Chemical Engineering Transaction, 7, pp. 521- 528. Da Pimentel Silva, G. D.; Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36 (5), pp. 390-400. DOI: 10.1080/14615517.2018.1477498. Dhar, A.; Naeth, M. A.; Jennings, P. D.; El-Din, M. G. (2020). Perspectives on environmental impacts and a land reclamation strategyfor solar and wind energy systems. Science of the Total Environment, 718, pp. 134602. DOI: 10.1016/j.scitotenv.2019.134602 Domínguez, A.; Geyer, R. (2017). Photovoltaic waste assessment in Mexico. Resource, Conservation and Recycling, 127, pp. 29-41. DOI: 10.1016/j.resconrec.2017.08.013 Dubey, S.; Jadhav, N. Y.; Zakirova, B. (2013). Socio-Economic and Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, pp. 322-334. DOI: 10.1016/j.egypro.2013.05.073. Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36 (10), pp. 2725-2732. DOI: 10.1016/j.renene.2011.03.005. Edenhofer, O.; Pichs Madruga, R.; Sokona, Y. (2012): Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change, New York, Cambridge University Press. European Commission (2012): Waste from Electrical and Electronic Equipment (WEEE). [Online]. Available at: https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_de. Fraunhofer Institute for Solar Energy Systems (2021). Photovoltaics report. [Online]. Available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf Food and Agriculture Organization of the UN. FAO (2014). The Water-energy-Food Nexus. A new approach in support of food security and sustainable agriculture. Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam. Fthenakis, V.; Kim, H. C.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. (2011). Life cycle inventories and life cycle assessment of photovoltaic systems, New York, International Energy Agency. Fthenakis, V.; Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), pp. 1465-1474. DOI: 10.1016/j.rser.2008.09.017. Hernandez, R. R.; Murphy-Mariscal, M. I.; Easter, S. B.; Maestre, F. T.; Tavassoli, M.; Allen, E. B.; Barrows, C. W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, pp. 766-779. DOI: 10.1016/j.rser.2013.08.041 Hong, J.; Chen, W.; Qi, C.;Ye, L.; Xu, C. (2016). Life cycle assessment of multicristalline silicon photovoltaic cell production in China. Solar Energy, 133, pp. 283-293. DOI: 10.1016/j.solener.2016.04.013 International Energy Agency (IEA). 2020. World energy outlook 2020. Online. Available at: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf IEA (2021). Renewable Power. International Energy Agency. Available at: https://www.iea.org/reports/renewable-power IEA, IRENA, UNSD, WBG, WHO (2019). Tracking SDG 7: The Energy progress report, Washington DC. IFO (2015). Utility-Scale Solar Photovoltaic Power Plants. [Online]. Available at: https://www.ifc.org/wps/wcm/connect/a1b3dbd3-983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05.pdf?MOD=AJPERES&CVID=kZePDPG IRENA (2019), Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi. Available at: https://Irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic IUCN ROWA (2019). Nexus comprehensive methodological framework: the MENA Region Initiative as a model of Nexus Approach and Renewable Energy Technologies (MINARET). Amman, Jordan: IUCN. Kafka, J.; Miller, M.A. (2020). The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use. Renewable Energy, 155, pp. 531-546. DOI: 10.1016/j.renene.2020.03.025. Kim, B.; Lee, J.; Kim, K.; Hur, T. (2013). Evaluation of the environmental performance of sc-Si and mc-SiPV systems in Korea. Solar Energy, pp, pp. 100-114. DOI: 10.1016/j.solener.2013.10.038 Kim, J. Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. (2021). Current site planning of medium to large solar power systems acceleratesthe loss of the remaining semi-natural and agricultural habitats. Science of the Total Environment, 779, 146475. DOI: 10.1016/j.scitotenv.2021.146475. Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. (2020). A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. PLoS ONE, 15 (4). DOI: 10.1371/journal.pone.0232034. Loss, S. R. (2016). Avian interactions with energy infrastructure in the context of other anthropogenic threats. The Condor, 118 (2), pp. 424-432. DOI: 10.1650/CONDOR-16-12.1. Loss, S. R.; Will, T.; Marra, P. P. (2015). Direct Mortality of Birds from Anthropogenic Causes. Annual Reviw of Ecology, Evolution and Systatics, 46 (1), pp. 99-120. DOI: 10.1146/annurev-ecolsys-112414-054133. Ludin, N. A.; Affandi, N. A. A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M. A.; Sophian, K.; Jusoh, S. (2021). Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Energy, 13(1), pp. 396. DOI: 10.3390/su13010396 Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del Borghi, A. (2018). Hybrid solar poewr system versus photovoltaic plant: A comparative analysis though a life cycle approach. Renewable Energy, 130, pp. 290-304. DOI: 10.1016/j.renene.2018.06.072. Mahmoudi, S.; Huda, N.; Behnia, M. (2021). Critical assessment of renewable energy waste generation in OECD countries: Decommissioned PV panels. Resources, Conservation and Recycling 164, pp. 105145. DOI: 10.1016/j.resconrec.2020.105145. Mérida García, A; Gallagher, J.; McNabola, A.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. (2019). Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 140, pp. 895-904. DOI: 10.1016/j.renene.2019.03.122. Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M. L. (2020). Review on Life Cycle Assessment of Soar Photovoltaic Panels. Eergies, 13 (1), pp.252. DOI: 10.3390/en13010252 Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar energy Materials and Solar Cells, 230, 111277. DOI: 10.1016/j.solmat.2021.111277 North Carolina State University (2017). Health and Safety Impacts of Solar Photovoltaics. [Online]. Available at: https://nccleantech.ncsu.edu/wp-content/uploads/2018/10/Health-and-Safety-Impacts-of-Solar-Photovoltaics-2017_white-paper.pdf Ong, P.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Available at: https://www.nrel.gov/docs/fy13osti/56290.pdf Peng, J.; Lu, L.; Yang, H.; (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, pp. 255-274. DOI: 10.1016/j.rser.2012.11.035. Rao, H.; Gemechu, E.; Thakur, U.; Shankar, K.; Kumar, A. (2021). Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, 230, 111288. DOI: 10.1016/j.solmat.2021.111288. Rix, A. J.; Steyl, J. D. T.; Rudman, J.; Terblanche, U.; van Niekerk, J. L. (2015). First Solar´s CdTe technology - performance, life cycle, health and safety assessment. [Online]. Available online: https://www.firstsolar.com/-/media/First-Solar/Sustainability-Documents/Sustainability-Peer-Reviews/CRSES2015_06_First-Solar-CdTe-Module-Technology-Review-FINAL.ashx Robinson, S.; Meindl, G. (2019). Potential for leaching of heavy metals and metalloids from crystalline silicon photovoltaic systems. Journal of Natural Resources and Development, 9, pp. 19-24. DOI: 10.5027/jnrd.v9i0.02. Romero and Higinio (2021). Energías renovables no convencionales para satisfacer la demanda energética: análisis de tendencias entre 1990 y 2018. Revista EIA, 18(36), pp.1-21. DOI: 10.24050/reia.v18i36-1513 Schumacher, K. (2019). Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EUand the US. Energy Policy, 129, pp. 139-152. DOI: 10.1016/j.enpol.2019.02.013 Sinha, P.; Heath, G.; Wade, A.; Komoto, K. (2019). Human Health Risk Assessment Methods for PV (Part 2: Breakage Risks). U.S. Department of Energy. DOI: 10.2172/1603943 Stamford, L.; Azapagic, A. (2018). Environmental Impacts of Photovoltaics: The Effects of Technological Improvements and Transfer of Manufacturing from Europe to China. Energy Technology, 6 (6), pp. 11481160. DOI: 10.1002/ente.201800037. Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of the Environment, 759. DOI: 10.1016/j.scitotenv.2020.143528. U.S. Department of energy (2021a). Solar Futures Study. [Online]. Available at: https://www.energy.gov/eere/solar/solar-futures-study Union of Concerned Scientists (2013). Environmental Impacts of Wind Power. [Online] Available at: https://www.ucsusa.org/resources/environmental-impacts-wind-power. United Nations (2021). Sustainable Development Goals. Ensure access to affordable, reliable, sustainable and modern energy. [Online] Available at: www.un.org/sustainabledevelopment/energy/. United Nations Environmental Programme (2015). Waste Crimes, Waste Risks: Gaps and Challenges in the Waste Sector. [Online]. Available at: https://wedocs.unep.org/handle/20.500.11822/9648. United Nations Environment Programme (2018). Assessing Environmental Impact – A Global Reviews of Legislation. [Online]. Available online: https://europa.eu/capacity4dev/unep/documents/assessing-environmental-impacts-global-review-legislation United Nations Statistics Division (2021): Ensure access to affordable, reliable, sustainable and modern energy for all. [Online]. Available at: https://unstats.un.org/sdgs/report/2019/goal-07/. Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan; P. G. (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy, 133, pp. 1285-1294. DOI: 10.1016/j.renene.2018.08.106 World Economic Forum (2019). A New Circular Vision for Electronics. Time for a Global Reboot. [Online]. Available at: https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2022-06-01
date_accessioned 2022-06-01 00:00:00
date_available 2022-06-01 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1570
url_doi https://doi.org/10.24050/reia.v19i38.1570
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v19i38.1570
citationstartpage 3825 pp. 1
citationendpage 18
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1570/1477
_version_ 1811200526043316224
spelling Impactos ambientales de sistemas de energía solar fotovoltaica: una revisión de análisis de ciclo de vida y otros estudios.
Environmental impacts of solar photovoltaic systems: a revision from Life Cycle Assessments and other studies
Según el séptimo objetivo de desarrollo sostenible (ODS) concluido por la Organización de las Naciones Unidas (ONU), la energía deberá ser limpia y accesible para todos en las próximas décadas. La energía limpia se utiliza a menudo como sinónimo de energía renovable (ER), sostenible o verde, palabras que se asocian con un concepto de tecnologías de bajo impacto ambiental (IA). Sin embargo, las ERs también tienen asociados IAs negativos, que pueden identificarse y evaluarse mediante instrumentos como la Evaluación de Impactos Ambientales (EIA) o el Análisis de ciclo de vida (ACV). Este artículo se centra en la revisión de los IAs documentados en diferentes ACV para sistemas de energía solar fotovoltaica (SEPV), el tipo más común de ERs modernas para satisfacer la demanda energética a nivel mundial. Aunque diferentes estudios de ACV incluyen varias categorías ambientales de evaluación, para el análisis se seleccionaron 5 categorías, potencial de calentamiento global (GWP, por sus siglas en inglés), uso del suelo, pérdida de biodiversidad, salud humana y generación de residuos. Los resultados muestran que los IAs de los SEPV documentados en ACVs dependen no solo de la tecnología, el contexto y la escala del proyecto, sino también del objetivo y alcance de cada estudio. Aun así, este artículo recoge valores orientativos para el GWP, el uso de suelo y los accidentes mortales de aves relacionados con SEPV. Además, la investigación revela la necesidad de enfoques complementarios como EIA o estudios de toxicidad para poder dimensionar impactos acerca de pérdida de biodiversidad y daños a la salud humana, así mismo concluye la falta de un sistema de gestión de residuos adecuado para las miles de toneladas que generarán estos sistemas a futuro.
According to the 7th goal of sustainable development concluded by the United Nations (UN), energy should become clean and accessible for every human being on the planet in the upcoming decades. Clean energy is often used as a synonym for renewable, sustainable or green energy, words which are associated with a concept of low-impact technologies. However, renewable energies (REs) also have a set of negative environmental impacts (EIs), which can be identified and assessed through an EI Assessment (EIA) and/or a Life Cycle Assessment (LCA). This article focuses on the revision of EIs documented in LCA studies for solar photovoltaic (PV) systems (SPVSs), the most common type of modern REs to satisfy energy demand globally. Although different LCA studies include various environmental assessment categories, five categories were selected for analysis, namely global warming potential (GWP), land use, biodiversity loss, human health (HH) and waste generation. The results show that documented EIs of SPVSs from LCAs depend not only on the technology, context and scale of the project, but also on the objective and scope of each study. Still, this article summarizes orientational values for the GWP, land use and fatal bird accidents related to SPVSs. Further, the research reveals the need for complementary approaches such as EIAs or toxicity studies for the assessment of biodiversity loss as well as the impacts on HH, and the lack of an existing waste management system for the million tons of waste soon to be disposed.
Romero Pereira, María Carolina
Sánchez Coria, Alba
Renewable Energy
Sustainable Energy
Clean Energy
Green Energy
Environmental Impact
Photovoltaic
Sustainable Development
SDGs
Environmental Impact Assessment
Life Cycle Assessment
Energías Renovables
Energías Sostenibles
Energías Limpias
Energías Verdes
Impacto Ambiental
Sistemas de Energía Solar Fotovoltaica
desarrollo sostenible
ODS
Evaluación de Impactos Ambientales
Análisis de Ciclo de Vida
19
38
Núm. 38 , Año 2022 : Tabla de contenido Revista EIA No. 38
Artículo de revista
Journal article
2022-06-01 00:00:00
2022-06-01 00:00:00
2022-06-01
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1570
10.24050/reia.v19i38.1570
https://doi.org/10.24050/reia.v19i38.1570
eng
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2022
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
3825 pp. 1
18
Alsema, E.; de Wild-Scholten, M. J. (2007). Keep it clean. Reducing environmental impacts from solar PV. Renewable Energy World, pp. 96-103. Anak John, C.; See Tan, L.; Tan, J.; Loo Kiew, P.; Mohd Shariff, A.; Abdul Halim, H. N. (2021). Selection of Renewable Energy in Rural Are Via Life Cycle Assessment-Analytical Hierarchy Process (LCA.AHP): A Case Study of tatau, Sarawak. Sustainability, 13(21), 1880. DOI: 10.3390/su132111880. Antonanzas, J.; Quinn, J. C. (2021). Net environmental impact of the PV industry from 2000-2025. Journal of Cleaner Production, 311, 127791. DOI: 10.1016/j.jclepro.2021.127791 Balfour, J. R.; Shaw, M.; Bremer Nash, N. (2011). Introduction to Photovoltaic System Design. Burlington, Jones & Bartlett Publishers, pp. 2-6. Bakhiyi, B.; Labrèche, F.; Zayed, J. (2014). The photovoltaic industry on the path to a sustainable future - environmental and occupational health issues. Environmental International, 73, pp. 224-234. DOI: 10.1016/j.envint.2014.07.023 Chowdhury, Md. S.; Rahman, K. S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman; Tiong, S. K.; Kamaruzzaman, S.; Nowshad, A. (2020): An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, pp. 100431. DOI: 10.1016/j.esr.2019.100431. Cornejo, F.; Janssen, M.; Gaudrealt, C.; Samson, R. (2005): Using Life Cycle Assessment (LCA) as a Tool to Enhance Environmental Impact Assessment (EIA). Chemical Engineering Transaction, 7, pp. 521- 528. Da Pimentel Silva, G. D.; Branco, D. A. C. (2018). Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts. Impact Assessment and Project Appraisal, 36 (5), pp. 390-400. DOI: 10.1080/14615517.2018.1477498. Dhar, A.; Naeth, M. A.; Jennings, P. D.; El-Din, M. G. (2020). Perspectives on environmental impacts and a land reclamation strategyfor solar and wind energy systems. Science of the Total Environment, 718, pp. 134602. DOI: 10.1016/j.scitotenv.2019.134602 Domínguez, A.; Geyer, R. (2017). Photovoltaic waste assessment in Mexico. Resource, Conservation and Recycling, 127, pp. 29-41. DOI: 10.1016/j.resconrec.2017.08.013 Dubey, S.; Jadhav, N. Y.; Zakirova, B. (2013). Socio-Economic and Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, pp. 322-334. DOI: 10.1016/j.egypro.2013.05.073. Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable Energy, 36 (10), pp. 2725-2732. DOI: 10.1016/j.renene.2011.03.005. Edenhofer, O.; Pichs Madruga, R.; Sokona, Y. (2012): Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change, New York, Cambridge University Press. European Commission (2012): Waste from Electrical and Electronic Equipment (WEEE). [Online]. Available at: https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_de. Fraunhofer Institute for Solar Energy Systems (2021). Photovoltaics report. [Online]. Available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf Food and Agriculture Organization of the UN. FAO (2014). The Water-energy-Food Nexus. A new approach in support of food security and sustainable agriculture. Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. (2020). The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam. Fthenakis, V.; Kim, H. C.; Frischknecht, R.; Raugei, M.; Sinha, P.; Stucki, M. (2011). Life cycle inventories and life cycle assessment of photovoltaic systems, New York, International Energy Agency. Fthenakis, V.; Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), pp. 1465-1474. DOI: 10.1016/j.rser.2008.09.017. Hernandez, R. R.; Murphy-Mariscal, M. I.; Easter, S. B.; Maestre, F. T.; Tavassoli, M.; Allen, E. B.; Barrows, C. W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, pp. 766-779. DOI: 10.1016/j.rser.2013.08.041 Hong, J.; Chen, W.; Qi, C.;Ye, L.; Xu, C. (2016). Life cycle assessment of multicristalline silicon photovoltaic cell production in China. Solar Energy, 133, pp. 283-293. DOI: 10.1016/j.solener.2016.04.013 International Energy Agency (IEA). 2020. World energy outlook 2020. Online. Available at: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf IEA (2021). Renewable Power. International Energy Agency. Available at: https://www.iea.org/reports/renewable-power IEA, IRENA, UNSD, WBG, WHO (2019). Tracking SDG 7: The Energy progress report, Washington DC. IFO (2015). Utility-Scale Solar Photovoltaic Power Plants. [Online]. Available at: https://www.ifc.org/wps/wcm/connect/a1b3dbd3-983e-4ee3-a67b-cdc29ef900cb/IFC+Solar+Report_Web+_08+05.pdf?MOD=AJPERES&CVID=kZePDPG IRENA (2019), Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper), International Renewable Energy Agency, Abu Dhabi. Available at: https://Irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic IUCN ROWA (2019). Nexus comprehensive methodological framework: the MENA Region Initiative as a model of Nexus Approach and Renewable Energy Technologies (MINARET). Amman, Jordan: IUCN. Kafka, J.; Miller, M.A. (2020). The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use. Renewable Energy, 155, pp. 531-546. DOI: 10.1016/j.renene.2020.03.025. Kim, B.; Lee, J.; Kim, K.; Hur, T. (2013). Evaluation of the environmental performance of sc-Si and mc-SiPV systems in Korea. Solar Energy, pp, pp. 100-114. DOI: 10.1016/j.solener.2013.10.038 Kim, J. Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. (2021). Current site planning of medium to large solar power systems acceleratesthe loss of the remaining semi-natural and agricultural habitats. Science of the Total Environment, 779, 146475. DOI: 10.1016/j.scitotenv.2021.146475. Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. (2020). A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. PLoS ONE, 15 (4). DOI: 10.1371/journal.pone.0232034. Loss, S. R. (2016). Avian interactions with energy infrastructure in the context of other anthropogenic threats. The Condor, 118 (2), pp. 424-432. DOI: 10.1650/CONDOR-16-12.1. Loss, S. R.; Will, T.; Marra, P. P. (2015). Direct Mortality of Birds from Anthropogenic Causes. Annual Reviw of Ecology, Evolution and Systatics, 46 (1), pp. 99-120. DOI: 10.1146/annurev-ecolsys-112414-054133. Ludin, N. A.; Affandi, N. A. A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M. A.; Sophian, K.; Jusoh, S. (2021). Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Energy, 13(1), pp. 396. DOI: 10.3390/su13010396 Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del Borghi, A. (2018). Hybrid solar poewr system versus photovoltaic plant: A comparative analysis though a life cycle approach. Renewable Energy, 130, pp. 290-304. DOI: 10.1016/j.renene.2018.06.072. Mahmoudi, S.; Huda, N.; Behnia, M. (2021). Critical assessment of renewable energy waste generation in OECD countries: Decommissioned PV panels. Resources, Conservation and Recycling 164, pp. 105145. DOI: 10.1016/j.resconrec.2020.105145. Mérida García, A; Gallagher, J.; McNabola, A.; Camacho Poyato, E.; Montesinos Barrios, P.; Rodríguez Díaz, J.A. (2019). Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems. Renewable Energy, 140, pp. 895-904. DOI: 10.1016/j.renene.2019.03.122. Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M. L. (2020). Review on Life Cycle Assessment of Soar Photovoltaic Panels. Eergies, 13 (1), pp.252. DOI: 10.3390/en13010252 Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar energy Materials and Solar Cells, 230, 111277. DOI: 10.1016/j.solmat.2021.111277 North Carolina State University (2017). Health and Safety Impacts of Solar Photovoltaics. [Online]. Available at: https://nccleantech.ncsu.edu/wp-content/uploads/2018/10/Health-and-Safety-Impacts-of-Solar-Photovoltaics-2017_white-paper.pdf Ong, P.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Available at: https://www.nrel.gov/docs/fy13osti/56290.pdf Peng, J.; Lu, L.; Yang, H.; (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, pp. 255-274. DOI: 10.1016/j.rser.2012.11.035. Rao, H.; Gemechu, E.; Thakur, U.; Shankar, K.; Kumar, A. (2021). Life cycle assessment of high-performance monocrystalline titanium dioxide nanorod-based perovskite solar cells. Solar Energy Materials and Solar Cells, 230, 111288. DOI: 10.1016/j.solmat.2021.111288. Rix, A. J.; Steyl, J. D. T.; Rudman, J.; Terblanche, U.; van Niekerk, J. L. (2015). First Solar´s CdTe technology - performance, life cycle, health and safety assessment. [Online]. Available online: https://www.firstsolar.com/-/media/First-Solar/Sustainability-Documents/Sustainability-Peer-Reviews/CRSES2015_06_First-Solar-CdTe-Module-Technology-Review-FINAL.ashx Robinson, S.; Meindl, G. (2019). Potential for leaching of heavy metals and metalloids from crystalline silicon photovoltaic systems. Journal of Natural Resources and Development, 9, pp. 19-24. DOI: 10.5027/jnrd.v9i0.02. Romero and Higinio (2021). Energías renovables no convencionales para satisfacer la demanda energética: análisis de tendencias entre 1990 y 2018. Revista EIA, 18(36), pp.1-21. DOI: 10.24050/reia.v18i36-1513 Schumacher, K. (2019). Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EUand the US. Energy Policy, 129, pp. 139-152. DOI: 10.1016/j.enpol.2019.02.013 Sinha, P.; Heath, G.; Wade, A.; Komoto, K. (2019). Human Health Risk Assessment Methods for PV (Part 2: Breakage Risks). U.S. Department of Energy. DOI: 10.2172/1603943 Stamford, L.; Azapagic, A. (2018). Environmental Impacts of Photovoltaics: The Effects of Technological Improvements and Transfer of Manufacturing from Europe to China. Energy Technology, 6 (6), pp. 11481160. DOI: 10.1002/ente.201800037. Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of the Environment, 759. DOI: 10.1016/j.scitotenv.2020.143528. U.S. Department of energy (2021a). Solar Futures Study. [Online]. Available at: https://www.energy.gov/eere/solar/solar-futures-study Union of Concerned Scientists (2013). Environmental Impacts of Wind Power. [Online] Available at: https://www.ucsusa.org/resources/environmental-impacts-wind-power. United Nations (2021). Sustainable Development Goals. Ensure access to affordable, reliable, sustainable and modern energy. [Online] Available at: www.un.org/sustainabledevelopment/energy/. United Nations Environmental Programme (2015). Waste Crimes, Waste Risks: Gaps and Challenges in the Waste Sector. [Online]. Available at: https://wedocs.unep.org/handle/20.500.11822/9648. United Nations Environment Programme (2018). Assessing Environmental Impact – A Global Reviews of Legislation. [Online]. Available online: https://europa.eu/capacity4dev/unep/documents/assessing-environmental-impacts-global-review-legislation United Nations Statistics Division (2021): Ensure access to affordable, reliable, sustainable and modern energy for all. [Online]. Available at: https://unstats.un.org/sdgs/report/2019/goal-07/. Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan; P. G. (2019). Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa. Renewable Energy, 133, pp. 1285-1294. DOI: 10.1016/j.renene.2018.08.106 World Economic Forum (2019). A New Circular Vision for Electronics. Time for a Global Reboot. [Online]. Available at: https://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf
https://revistas.eia.edu.co/index.php/reveia/article/download/1570/1477
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication