Titulo:

Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
.

Sumario:

En este documento se presenta el desarrollo y ensayo de una plataforma de prototipos de control rápido (RCP) para sistemas fotovoltaicos. La plataforma propuesta tiene por objeto apoyar la evaluación tanto de los controladores de tensión de los sistemas fotovoltaicos como de los algoritmos MPPT, dedicados a los sistemas fotovoltaicos, sin necesidad de construir un banco de pruebas para cada aplicación. En cambio, la plataforma proporciona un entorno experimental unificado, fácil de utilizar, para probar las estrategias de control en condiciones realistas, antes de su aplicación final en los dispositivos comerciales. El sistema RCP propuesto es capaz de medir, en tiempo real, las variables físicas necesarias para evaluar el comportamiento de... Ver más

Guardado en:

1794-1237

2463-0950

18

2021-05-31

36002 pp. 1

21

Revista EIA - 2021

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1470
record_format ojs
spelling Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
Rapid control prototyping platform for PV systems based on Arduino and Simulink
En este documento se presenta el desarrollo y ensayo de una plataforma de prototipos de control rápido (RCP) para sistemas fotovoltaicos. La plataforma propuesta tiene por objeto apoyar la evaluación tanto de los controladores de tensión de los sistemas fotovoltaicos como de los algoritmos MPPT, dedicados a los sistemas fotovoltaicos, sin necesidad de construir un banco de pruebas para cada aplicación. En cambio, la plataforma proporciona un entorno experimental unificado, fácil de utilizar, para probar las estrategias de control en condiciones realistas, antes de su aplicación final en los dispositivos comerciales. El sistema RCP propuesto es capaz de medir, en tiempo real, las variables físicas necesarias para evaluar el comportamiento de las estrategias de control, sin necesidad de construir sensores dedicados o utilizar equipos costosos. La plataforma se basa en la combinación de hardware de bajo costo (placa Arduino) y software comúnmente disponible (Matlab/Simulink), que proporciona un entorno fácil de usar para los no expertos en la programación de dispositivos incorporados. La usabilidad del sistema RCP se valida utilizando un controlador de tensión PI clásico y perturba y observa el algoritmo MPPT, pero se puede probar cualquier otra estrategia de control. Por último, los resultados muestran que la plataforma propuesta proporciona resultados similares en comparación con las simulaciones detalladas, lo que confirma la correcta implementación tanto del controlador de tensión como del algoritmo MPPT mediante la plataforma RCP
This paper presents the development and testing of a Rapid Control Prototyping (RCP) platform for PV systems. The proposed platform is intended to support the evaluation of both PV voltage controllers and MPPT algorithms, devoted to PV systems, without the need of constructing a testbench for each application. Instead, the platform provides a unified experimental environment, easy-to-use, for testing control strategies under realistic conditions, prior to their final implementation in commercial devices. The proposed RCP system is capable of measuring, in real-time, physical variables needed to evaluate the behavior of the control strategies, without constructing dedicated sensors or using costly equipment. The platform is based on the combination of low-cost hardware (Arduino board) and commonly available software (Matlab/Simulink), which provides an easy-to-use environment for non-experts in programming embedded devices. The RCP system usability is validated using a classical PI voltage controller and perturb and observe MPPT algorithm, but any other control strategies can be tested. Finally, the results show that the proposed platform provide similar results in comparison with detailed simulations, which confirms the correct implementation of both the voltage controller and MPPT algorithm by means of the RCP platform
Zabala Daza, Juan Esteban
González-Montoya, Daniel
Henao Bravo, Elkin Edilberto
Ramos-Paja, Carlos Andrés
Aponte-Roa, Diego Andrés
RCP, P&O, MPPT algorithm, Simulink, Arduino
RCP, P&O, Algoritmo MPPT, Simulink, Arduino
18
36
Núm. 36 , Año 2021 :
Artículo de revista
Journal article
2021-05-31 00:00:00
2021-05-31 00:00:00
2021-05-31
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1470
10.24050/reia.v18i36.1470
https://doi.org/10.24050/reia.v18i36.1470
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
36002 pp. 1
21
Ahmed, N. A., Al-Othman, A. K., & AlRashidi, M. R. (2011). Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation. Electric Power Systems Research, 81(5), 1096–1106.
Boscaino, V., Miceli, R., & Capponi, G. (2013). MATLAB-based simulator of a 5kW fuel cell for power electronics design. International Journal of Hydrogen Energy, 38(19), 7924–7934. https://doi.org/https://doi.org/10.1016/j.ijhydene.2013.04.123
Claros-Marfil, L. J., Padial, J. F., & Lauret, B. (2016). A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing. Renewable Energy, 92, 450–461. https://doi.org/https://doi.org/10.1016/j.renene.2016.02.037
de Brito, M. A. G., Galotto, L., Sampaio, L. P., e Melo, G. de A., & Canesin, C. A. (2013). Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Transactions on Industrial Electronics, 60(3), 1156–1167. https://doi.org/10.1109/TIE.2012.2198036
Eghtedarpour, N., & Farjah, E. (2012). Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids. Renewable Energy, 45, 96–110. https://doi.org/10.1016/j.renene.2012.02.017
Femia, N, Petrone, G., Spagnuolo, G., & Vitelli, M. (2010). A new analog MPPT technique: TEODI. Progress in Photovoltaics: Research and Applications, 18(1), 28–41.
Femia, Nicola, Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics, 20(4), 963–973. https://doi.org/10.1109/TPEL.2005.850975
Gonzalez Montoya, D., Ramos-Paja, C. A., & Giral, R. (2016). Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques. IEEE Transactions on Power Electronics, 31(1), 235–247. https://doi.org/10.1109/TPEL.2015.2397831
Grepl, R. (2011). Real-time control prototyping in MATLAB/simulink: Review of tools for research and education in mechatronics. 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 881–886. https://doi.org/10.1109/ICMECH.2011.5971238
Hossain, M. Z., Rahim, N. A., & a/l Selvaraj, J. (2018). Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 81, 205–230. https://doi.org/https://doi.org/10.1016/j.rser.2017.07.017
Ibrahim, M. A., Hamoodi, A. N., & Salih, B. M. (2020). PI controller for DC motor speed realized with simulink and practical measurements. International Journal of Power Electronics and Drive Systems, 11(1), 119–126. https://doi.org/10.11591/ijpeds.v11.i1.pp119-126
Lee, Y. S., Jo, B., & Han, S. (2017). A Light-Weight Rapid Control Prototyping System Based on Open Source Hardware. IEEE Access, 5, 11118–11130. https://doi.org/10.1109/ACCESS.2017.2715184 MathWorks. (n.d.). Arduino Programming with MATLAB and Simulink - MATLAB & Simulink. Retrieved October 1, 2018, from https://la.mathworks.com/discovery/arduino-programming-matlab-simulink.html
Müller, L., Mohammed, M., & Kimball, J. W. (2015). Using the Arduino Uno to teach digital control of power electronics. 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics, COMPEL 2015. https://doi.org/10.1109/COMPEL.2015.7236487
Petrone, G., & Ramos-Paja, C. A. (2011). Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations. Electric Power Systems Research, 81(4), 1003–1013.
Petrone, G., Spagnuolo, G., & Vitelli, M. (2007). Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Solar Energy Materials and Solar Cells, 91(18), 1652–1657. https://doi.org/10.1016/j.solmat.2007.05.021
Restrepo, C., Ramos-Paja, C. A., Giral, R., Calvente, J., & Romero, A. (2012). Fuel cell emulator for oxygen excess ratio estimation on power electronics applications. Computers & Electrical Engineering, 38(4), 926–937. https://doi.org/https://doi.org/10.1016/j.compeleceng.2012.02.012
Salah, C. Ben, Mimouni, M. F., & Ouali, M. (2015). A real-time control of photovoltaic water-pumping network. Computers & Electrical Engineering, 46, 14–28. https://doi.org/https://doi.org/10.1016/j.compeleceng.2015.06.026
Serna-Garcés, S. I., Montoya, D. G., & Ramos-Paja, C. A. (2016). Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems. Energies, 9(4). https://doi.org/10.3390/en9040245
Smedsgaard, J. (2006). Analytical Tools. Metabolome Analysis: An Introduction, 83–145. https://doi.org/10.1002/9780470105511.ch4
Trejos, A., Gonzalez, D., & Ramos-Paja, C. A. (2012). Modeling of step-up grid-connected photovoltaic systems for control purposes. Energies, 5(6), 1900–1926. https://doi.org/10.3390/en5061900
Ulloa, C., Nuñez, J. M., Suárez, A., & Lin, C. (2017). Design and development of a PV-T test bench based on Arduino. Energy Procedia, 141, 71–75. https://doi.org/https://doi.org/10.1016/j.egypro.2017.11.014
Winston, D. P., Kumar, B. P., Christabel, S. C., Chamkha, A. J., & Sathyamurthy, R. (2018). Maximum power extraction in solar renewable power system - a bypass diode scanning approach. Computers & Electrical Engineering, 70, 122–136. https://doi.org/https://doi.org/10.1016/j.compeleceng.2018.02.034
Zeng, Z., Zhao, R., & Yang, H. (2013). Micro-sources design of an intelligent building integrated with micro-grid. Energy and Buildings, 57, 261–267. https://doi.org/10.1016/j.enbuild.2012.11.018
https://revistas.eia.edu.co/index.php/reveia/article/download/1470/1414
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
spellingShingle Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
Zabala Daza, Juan Esteban
González-Montoya, Daniel
Henao Bravo, Elkin Edilberto
Ramos-Paja, Carlos Andrés
Aponte-Roa, Diego Andrés
RCP, P&O, MPPT algorithm, Simulink, Arduino
RCP, P&O, Algoritmo MPPT, Simulink, Arduino
title_short Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
title_full Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
title_fullStr Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
title_full_unstemmed Plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en Arduino y Simulink
title_sort plataforma de prototipos de control rápido para sistemas fotovoltaicos basados en arduino y simulink
title_eng Rapid control prototyping platform for PV systems based on Arduino and Simulink
description En este documento se presenta el desarrollo y ensayo de una plataforma de prototipos de control rápido (RCP) para sistemas fotovoltaicos. La plataforma propuesta tiene por objeto apoyar la evaluación tanto de los controladores de tensión de los sistemas fotovoltaicos como de los algoritmos MPPT, dedicados a los sistemas fotovoltaicos, sin necesidad de construir un banco de pruebas para cada aplicación. En cambio, la plataforma proporciona un entorno experimental unificado, fácil de utilizar, para probar las estrategias de control en condiciones realistas, antes de su aplicación final en los dispositivos comerciales. El sistema RCP propuesto es capaz de medir, en tiempo real, las variables físicas necesarias para evaluar el comportamiento de las estrategias de control, sin necesidad de construir sensores dedicados o utilizar equipos costosos. La plataforma se basa en la combinación de hardware de bajo costo (placa Arduino) y software comúnmente disponible (Matlab/Simulink), que proporciona un entorno fácil de usar para los no expertos en la programación de dispositivos incorporados. La usabilidad del sistema RCP se valida utilizando un controlador de tensión PI clásico y perturba y observa el algoritmo MPPT, pero se puede probar cualquier otra estrategia de control. Por último, los resultados muestran que la plataforma propuesta proporciona resultados similares en comparación con las simulaciones detalladas, lo que confirma la correcta implementación tanto del controlador de tensión como del algoritmo MPPT mediante la plataforma RCP
description_eng This paper presents the development and testing of a Rapid Control Prototyping (RCP) platform for PV systems. The proposed platform is intended to support the evaluation of both PV voltage controllers and MPPT algorithms, devoted to PV systems, without the need of constructing a testbench for each application. Instead, the platform provides a unified experimental environment, easy-to-use, for testing control strategies under realistic conditions, prior to their final implementation in commercial devices. The proposed RCP system is capable of measuring, in real-time, physical variables needed to evaluate the behavior of the control strategies, without constructing dedicated sensors or using costly equipment. The platform is based on the combination of low-cost hardware (Arduino board) and commonly available software (Matlab/Simulink), which provides an easy-to-use environment for non-experts in programming embedded devices. The RCP system usability is validated using a classical PI voltage controller and perturb and observe MPPT algorithm, but any other control strategies can be tested. Finally, the results show that the proposed platform provide similar results in comparison with detailed simulations, which confirms the correct implementation of both the voltage controller and MPPT algorithm by means of the RCP platform
author Zabala Daza, Juan Esteban
González-Montoya, Daniel
Henao Bravo, Elkin Edilberto
Ramos-Paja, Carlos Andrés
Aponte-Roa, Diego Andrés
author_facet Zabala Daza, Juan Esteban
González-Montoya, Daniel
Henao Bravo, Elkin Edilberto
Ramos-Paja, Carlos Andrés
Aponte-Roa, Diego Andrés
topic RCP, P&O, MPPT algorithm, Simulink, Arduino
RCP, P&O, Algoritmo MPPT, Simulink, Arduino
topic_facet RCP, P&O, MPPT algorithm, Simulink, Arduino
RCP, P&O, Algoritmo MPPT, Simulink, Arduino
topicspa_str_mv RCP, P&O, Algoritmo MPPT, Simulink, Arduino
citationvolume 18
citationissue 36
citationedition Núm. 36 , Año 2021 :
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1470
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2021
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Ahmed, N. A., Al-Othman, A. K., & AlRashidi, M. R. (2011). Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation. Electric Power Systems Research, 81(5), 1096–1106.
Boscaino, V., Miceli, R., & Capponi, G. (2013). MATLAB-based simulator of a 5kW fuel cell for power electronics design. International Journal of Hydrogen Energy, 38(19), 7924–7934. https://doi.org/https://doi.org/10.1016/j.ijhydene.2013.04.123
Claros-Marfil, L. J., Padial, J. F., & Lauret, B. (2016). A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing. Renewable Energy, 92, 450–461. https://doi.org/https://doi.org/10.1016/j.renene.2016.02.037
de Brito, M. A. G., Galotto, L., Sampaio, L. P., e Melo, G. de A., & Canesin, C. A. (2013). Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Transactions on Industrial Electronics, 60(3), 1156–1167. https://doi.org/10.1109/TIE.2012.2198036
Eghtedarpour, N., & Farjah, E. (2012). Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids. Renewable Energy, 45, 96–110. https://doi.org/10.1016/j.renene.2012.02.017
Femia, N, Petrone, G., Spagnuolo, G., & Vitelli, M. (2010). A new analog MPPT technique: TEODI. Progress in Photovoltaics: Research and Applications, 18(1), 28–41.
Femia, Nicola, Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics, 20(4), 963–973. https://doi.org/10.1109/TPEL.2005.850975
Gonzalez Montoya, D., Ramos-Paja, C. A., & Giral, R. (2016). Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques. IEEE Transactions on Power Electronics, 31(1), 235–247. https://doi.org/10.1109/TPEL.2015.2397831
Grepl, R. (2011). Real-time control prototyping in MATLAB/simulink: Review of tools for research and education in mechatronics. 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 881–886. https://doi.org/10.1109/ICMECH.2011.5971238
Hossain, M. Z., Rahim, N. A., & a/l Selvaraj, J. (2018). Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy Reviews, 81, 205–230. https://doi.org/https://doi.org/10.1016/j.rser.2017.07.017
Ibrahim, M. A., Hamoodi, A. N., & Salih, B. M. (2020). PI controller for DC motor speed realized with simulink and practical measurements. International Journal of Power Electronics and Drive Systems, 11(1), 119–126. https://doi.org/10.11591/ijpeds.v11.i1.pp119-126
Lee, Y. S., Jo, B., & Han, S. (2017). A Light-Weight Rapid Control Prototyping System Based on Open Source Hardware. IEEE Access, 5, 11118–11130. https://doi.org/10.1109/ACCESS.2017.2715184 MathWorks. (n.d.). Arduino Programming with MATLAB and Simulink - MATLAB & Simulink. Retrieved October 1, 2018, from https://la.mathworks.com/discovery/arduino-programming-matlab-simulink.html
Müller, L., Mohammed, M., & Kimball, J. W. (2015). Using the Arduino Uno to teach digital control of power electronics. 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics, COMPEL 2015. https://doi.org/10.1109/COMPEL.2015.7236487
Petrone, G., & Ramos-Paja, C. A. (2011). Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations. Electric Power Systems Research, 81(4), 1003–1013.
Petrone, G., Spagnuolo, G., & Vitelli, M. (2007). Analytical model of mismatched photovoltaic fields by means of Lambert W-function. Solar Energy Materials and Solar Cells, 91(18), 1652–1657. https://doi.org/10.1016/j.solmat.2007.05.021
Restrepo, C., Ramos-Paja, C. A., Giral, R., Calvente, J., & Romero, A. (2012). Fuel cell emulator for oxygen excess ratio estimation on power electronics applications. Computers & Electrical Engineering, 38(4), 926–937. https://doi.org/https://doi.org/10.1016/j.compeleceng.2012.02.012
Salah, C. Ben, Mimouni, M. F., & Ouali, M. (2015). A real-time control of photovoltaic water-pumping network. Computers & Electrical Engineering, 46, 14–28. https://doi.org/https://doi.org/10.1016/j.compeleceng.2015.06.026
Serna-Garcés, S. I., Montoya, D. G., & Ramos-Paja, C. A. (2016). Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems. Energies, 9(4). https://doi.org/10.3390/en9040245
Smedsgaard, J. (2006). Analytical Tools. Metabolome Analysis: An Introduction, 83–145. https://doi.org/10.1002/9780470105511.ch4
Trejos, A., Gonzalez, D., & Ramos-Paja, C. A. (2012). Modeling of step-up grid-connected photovoltaic systems for control purposes. Energies, 5(6), 1900–1926. https://doi.org/10.3390/en5061900
Ulloa, C., Nuñez, J. M., Suárez, A., & Lin, C. (2017). Design and development of a PV-T test bench based on Arduino. Energy Procedia, 141, 71–75. https://doi.org/https://doi.org/10.1016/j.egypro.2017.11.014
Winston, D. P., Kumar, B. P., Christabel, S. C., Chamkha, A. J., & Sathyamurthy, R. (2018). Maximum power extraction in solar renewable power system - a bypass diode scanning approach. Computers & Electrical Engineering, 70, 122–136. https://doi.org/https://doi.org/10.1016/j.compeleceng.2018.02.034
Zeng, Z., Zhao, R., & Yang, H. (2013). Micro-sources design of an intelligent building integrated with micro-grid. Energy and Buildings, 57, 261–267. https://doi.org/10.1016/j.enbuild.2012.11.018
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2021-05-31
date_accessioned 2021-05-31 00:00:00
date_available 2021-05-31 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1470
url_doi https://doi.org/10.24050/reia.v18i36.1470
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v18i36.1470
citationstartpage 36002 pp. 1
citationendpage 21
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1470/1414
_version_ 1811200521605742592