Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
.
La bioprecipitación ocurre cuando los microorganismos presentes en el suelo generan precipitados de carbonato de calcio (CaCO3) bien sea de forma natural o inducida mediante la aplicación de nutrientes específicos. Dichos nutrientes pueden ser de origen químico, pero con la desventaja de ser más costosos, o naturales como la cachaza de caña de azúcar, la cual es considerada un residuo y es generada en Colombia en grandes cantidades a partir de la producción de la panela. En este estudio se determinó la capacidad de bioprecipitación de CaCO3 a partir de bacterias aisladas de un suelo franco-limoso proveniente del municipio de Envigado-Antioquia y con éste se elaboraron Bloques de Tierra Comprimida (BTC) a escala en los que se aplicó un nutri... Ver más
1794-1237
2463-0950
18
2020-12-31
35012 pp. 1
20
Revista EIA - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1423 |
---|---|
record_format |
ojs |
spelling |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida Induced Bioprecipitation with Sugarcane Cachaza as A Potentiating Mechanism for The Structural Improvement of Compressed Earth Blocks La bioprecipitación ocurre cuando los microorganismos presentes en el suelo generan precipitados de carbonato de calcio (CaCO3) bien sea de forma natural o inducida mediante la aplicación de nutrientes específicos. Dichos nutrientes pueden ser de origen químico, pero con la desventaja de ser más costosos, o naturales como la cachaza de caña de azúcar, la cual es considerada un residuo y es generada en Colombia en grandes cantidades a partir de la producción de la panela. En este estudio se determinó la capacidad de bioprecipitación de CaCO3 a partir de bacterias aisladas de un suelo franco-limoso proveniente del municipio de Envigado-Antioquia y con éste se elaboraron Bloques de Tierra Comprimida (BTC) a escala en los que se aplicó un nutriente elaborado a base de cachaza de caña y cal para determinar el mejoramiento en su resistencia a los esfuerzos de compresión. Se evaluaron diferentes concentraciones de cachaza de caña y cal, la incidencia del pH del medio y la capacidad de precipitación de las cepas seleccionadas por separado. Se obtuvo un esfuerzo máximo de 74.6 kPa, lo que representó una mejora en la resistencia a los esfuerzos de compresión del 36.7% respecto al control inicial y de un 16.2 % con relación al control con cal. Los resultados demostraron que la cachaza de azúcar sirve como mecanismo potenciador de la bioprecipitación, mejorando la resistencia a la comprensión de los BTC. The use of the Colombian seismic design and construction code requires the selection of an energy dissipation capacity (EDC) for the building that depends on the structural type and the seismic hazard at the site. This work investigates the effects on the materials quantities and the seismic behavior of reinforced concrete buildings due to the selection of an EDC superior to the minimum required for low and intermediate seismic regions. Twenty regular buildings with variations in bay lengths and height were designed according to the parameters and requirements for each EDC. Pushover analyses were performed to assess the potential seismic damage in a subset of those buildings. The results showed that the lowest amount of reinforcement in both seismic regions is obtained by selecting a moderate CDE, and that higher levels of seismic damage could occur when a CDE superior to the minimum is selected. castro, Veronica Isabel Loaiza, Diana Catalina Rodriguez Vega, Carlos Bioprecipitación Cachaza de caña Cal Esfuerzos de compresión Microorganismos Suelos. Bioprecipitation Sugarcane Cachaza Lime Compression efforts Microorganisms Soils 18 35 Artículo de revista Journal article 2020-12-31 14:30:36 2020-12-31 14:30:36 2020-12-31 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1423 10.24050/reia.v18i35.1423 https://doi.org/10.24050/reia.v18i35.1423 spa https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2020 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. 35012 pp. 1 20 APHA, AWWA, WPCF. (2017). Standard Methods for the Examination of Water and Wastewater, 23th ed. Washington, DC. Lee, Y. (2003). Calcite Production by Bacillus amyloliquefaciens CMB01. Journal of Microbiology, 41 (4), pp. 345-348. Valencia, G.Y., Camapum, J., Lara, L. (2014). Carbonatogénesis induced in a profile of tropical soil. Revista Facultad de Ingeniería Universidad de Antioquia, 72, pp. 229-240 Stocks, S., Galina, J., Bang, G. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11), pp. 1563-1571. Montoya, C., Marquez, M., Lopez, J., Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología, 7 (2), pp. 19-25. Garcia, M., Marquez, M.m Ximena, C. (2016). Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiological Research, 182, pp. 21-30 Valencia, Y. G. (2009). Influência da biomineralização nas propriedades físico - mecânicas de um perfil de solo tropical afetado por processos erosivos. Tese de Doutorado. Universidade de Brasília. Faculdade de Tecnologia, Departamento de engenharia civil e ambiental, Brasília, DF, p. 183. Salamanca, C.A. (2018). Efecto de las fuentes orgánicas obtenidas de los subproductos agroindustriales de la caña de azúcar (saccharum officinarum l) y el plátano (musa spp.) sobre la actividad microbiana y enzimática en el suelo. Tesis Doctoral. Universidad Nacional de Colombia Sede Palmira. Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 90, pp. 58-64. Cezario, N., Pinto, L., Goncalves, A., Nakazato, G., Katsuko, R., Martins, B. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis. International Biodeterioration & Biodegradation, 123, pp. 200-205. Van der Star, W., van Wijngaarden, W., Paassen, L., van Zwieten, G. (2011). Stabilization of Gravel Deposits using Microorganisms. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5-9 October 2011. van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., van Loosdrechr, M. (2010). Quantifying Bio-Mediated Ground Improvement by Ureolysis: A Large Scale Biogrout Experiment. Journal of geotechnical and geoenvironmental engineering, 136 (12), pp. 1721-1728. Canakci, H., Sidik, W., Kilic, I.H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55 (5), pp. 1211-122. Capote, J. (2019). La mecánica de suelos y las cimentaciones en las construcciones industriales. La mecánica de suelos y las cimentaciones. Universidad de Cantabria. Hernandez, A., Botero, L., Arango, D. (2015). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Ingeniería y ciencia, 11 (21), pp. 197-220. Arteaga, K., Medina, O., Gutierrez, J. (2012). Bloque de tierra comprimida como material constructivo. Revista Facultad de Ingeniería, 20 (31), pp. 55-68. Galíndez, F. (2007). Bloques de tierra comprimida (BTC) sin adición de cemento. Seguridad y medio ambiente, 115, pp. 63-73 Rocha, M., Sandoval, F. (2015). Técnicas de construcción con tierra: Introducción. 1ra edición. Lisboba: Argumenum. Ohba, M., Aizawa, K. (1986). Distribution of Bacillus thuringiensis in soils of Japan. Journal of Invertebrate Pathology, 47 (3), pp. 277-282 Koneman, E., Allen, W., Koneman, S. (2008). Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. Médica Panamericana, pp. 31-39. Larrea, I., Falconí, C., Arcos, A. (2015). Aislamiento y caracterización de cepas de Bacillus spp. con actividad contra Tetranychus urticae Koch en cultivos comerciales de rosas. Revista Colombiana de Biotecnología, 17 (2), pp. 149-155. Salazar, M., Sanchez, M., Aucatoma, B. (2009). Uso de cachaza descompuesta y porcentaje de sustitución de fertilización química en un lote del ingenio Valdez. Centro de investigación de la caña de azucar del Ecuador. Sabadí, R. (2007). Análisis de procesos en la industria azucarera: Fermentación y destilación., Taller Combustibles, Energía. Medio Ambiente y Programas para Análisis de Procesos., Red Temática IVH: Empleo de la biomasa azucarera como fuente de alimento, energía, derivados y su relación con la preservación del medio ambiente (BAZDREAM). Managua, Nicaragua, pp. 2-4 Bohórquez, A., Puentes, Y., Menjivar, J. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 15 (1), pp. 73-81. Prescott, H. (1999). Microbiología. Mc Graw-Hill Interamericana de España. 4a ed. Tortosa, G. (2012). Los microorganismos del suelo y la relación C/N. Blog Compostando ciencia. Recuperado el 3 de febrero de 2020 de Blog Compostando ciencia: http://www.compostandociencia.com/2012/05/los-microorganismos-del-suelo-y-la-html/ Hammes, F., Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate. Reviews in environmental science and biotechnology, 1 (1), pp. 3-7. https://revistas.eia.edu.co/index.php/reveia/article/download/1423/1397 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida |
spellingShingle |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida castro, Veronica Isabel Loaiza, Diana Catalina Rodriguez Vega, Carlos Bioprecipitación Cachaza de caña Esfuerzos de compresión Microorganismos Suelos. Bioprecipitation Sugarcane Cachaza Lime Compression efforts Microorganisms Soils |
title_short |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida |
title_full |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida |
title_fullStr |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida |
title_full_unstemmed |
Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida |
title_sort |
bioprecipitación inducida con cachaza de caña de azúcar como mecanismo potenciador para el mejoramiento estructural de bloques de tierra comprimida |
title_eng |
Induced Bioprecipitation with Sugarcane Cachaza as A Potentiating Mechanism for The Structural Improvement of Compressed Earth Blocks |
description |
La bioprecipitación ocurre cuando los microorganismos presentes en el suelo generan precipitados de carbonato de calcio (CaCO3) bien sea de forma natural o inducida mediante la aplicación de nutrientes específicos. Dichos nutrientes pueden ser de origen químico, pero con la desventaja de ser más costosos, o naturales como la cachaza de caña de azúcar, la cual es considerada un residuo y es generada en Colombia en grandes cantidades a partir de la producción de la panela. En este estudio se determinó la capacidad de bioprecipitación de CaCO3 a partir de bacterias aisladas de un suelo franco-limoso proveniente del municipio de Envigado-Antioquia y con éste se elaboraron Bloques de Tierra Comprimida (BTC) a escala en los que se aplicó un nutriente elaborado a base de cachaza de caña y cal para determinar el mejoramiento en su resistencia a los esfuerzos de compresión. Se evaluaron diferentes concentraciones de cachaza de caña y cal, la incidencia del pH del medio y la capacidad de precipitación de las cepas seleccionadas por separado. Se obtuvo un esfuerzo máximo de 74.6 kPa, lo que representó una mejora en la resistencia a los esfuerzos de compresión del 36.7% respecto al control inicial y de un 16.2 % con relación al control con cal. Los resultados demostraron que la cachaza de azúcar sirve como mecanismo potenciador de la bioprecipitación, mejorando la resistencia a la comprensión de los BTC.
|
description_eng |
The use of the Colombian seismic design and construction code requires the selection of an energy dissipation capacity (EDC) for the building that depends on the structural type and the seismic hazard at the site. This work investigates the effects on the materials quantities and the seismic behavior of reinforced concrete buildings due to the selection of an EDC superior to the minimum required for low and intermediate seismic regions. Twenty regular buildings with variations in bay lengths and height were designed according to the parameters and requirements for each EDC. Pushover analyses were performed to assess the potential seismic damage in a subset of those buildings. The results showed that the lowest amount of reinforcement in both seismic regions is obtained by selecting a moderate CDE, and that higher levels of seismic damage could occur when a CDE superior to the minimum is selected.
|
author |
castro, Veronica Isabel Loaiza, Diana Catalina Rodriguez Vega, Carlos |
author_facet |
castro, Veronica Isabel Loaiza, Diana Catalina Rodriguez Vega, Carlos |
topicspa_str_mv |
Bioprecipitación Cachaza de caña Esfuerzos de compresión Microorganismos Suelos. |
topic |
Bioprecipitación Cachaza de caña Esfuerzos de compresión Microorganismos Suelos. Bioprecipitation Sugarcane Cachaza Lime Compression efforts Microorganisms Soils |
topic_facet |
Bioprecipitación Cachaza de caña Esfuerzos de compresión Microorganismos Suelos. Bioprecipitation Sugarcane Cachaza Lime Compression efforts Microorganisms Soils |
citationvolume |
18 |
citationissue |
35 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1423 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-nd/4.0 Revista EIA - 2020 Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
APHA, AWWA, WPCF. (2017). Standard Methods for the Examination of Water and Wastewater, 23th ed. Washington, DC. Lee, Y. (2003). Calcite Production by Bacillus amyloliquefaciens CMB01. Journal of Microbiology, 41 (4), pp. 345-348. Valencia, G.Y., Camapum, J., Lara, L. (2014). Carbonatogénesis induced in a profile of tropical soil. Revista Facultad de Ingeniería Universidad de Antioquia, 72, pp. 229-240 Stocks, S., Galina, J., Bang, G. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11), pp. 1563-1571. Montoya, C., Marquez, M., Lopez, J., Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología, 7 (2), pp. 19-25. Garcia, M., Marquez, M.m Ximena, C. (2016). Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiological Research, 182, pp. 21-30 Valencia, Y. G. (2009). Influência da biomineralização nas propriedades físico - mecânicas de um perfil de solo tropical afetado por processos erosivos. Tese de Doutorado. Universidade de Brasília. Faculdade de Tecnologia, Departamento de engenharia civil e ambiental, Brasília, DF, p. 183. Salamanca, C.A. (2018). Efecto de las fuentes orgánicas obtenidas de los subproductos agroindustriales de la caña de azúcar (saccharum officinarum l) y el plátano (musa spp.) sobre la actividad microbiana y enzimática en el suelo. Tesis Doctoral. Universidad Nacional de Colombia Sede Palmira. Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 90, pp. 58-64. Cezario, N., Pinto, L., Goncalves, A., Nakazato, G., Katsuko, R., Martins, B. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis. International Biodeterioration & Biodegradation, 123, pp. 200-205. Van der Star, W., van Wijngaarden, W., Paassen, L., van Zwieten, G. (2011). Stabilization of Gravel Deposits using Microorganisms. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5-9 October 2011. van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., van Loosdrechr, M. (2010). Quantifying Bio-Mediated Ground Improvement by Ureolysis: A Large Scale Biogrout Experiment. Journal of geotechnical and geoenvironmental engineering, 136 (12), pp. 1721-1728. Canakci, H., Sidik, W., Kilic, I.H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55 (5), pp. 1211-122. Capote, J. (2019). La mecánica de suelos y las cimentaciones en las construcciones industriales. La mecánica de suelos y las cimentaciones. Universidad de Cantabria. Hernandez, A., Botero, L., Arango, D. (2015). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Ingeniería y ciencia, 11 (21), pp. 197-220. Arteaga, K., Medina, O., Gutierrez, J. (2012). Bloque de tierra comprimida como material constructivo. Revista Facultad de Ingeniería, 20 (31), pp. 55-68. Galíndez, F. (2007). Bloques de tierra comprimida (BTC) sin adición de cemento. Seguridad y medio ambiente, 115, pp. 63-73 Rocha, M., Sandoval, F. (2015). Técnicas de construcción con tierra: Introducción. 1ra edición. Lisboba: Argumenum. Ohba, M., Aizawa, K. (1986). Distribution of Bacillus thuringiensis in soils of Japan. Journal of Invertebrate Pathology, 47 (3), pp. 277-282 Koneman, E., Allen, W., Koneman, S. (2008). Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. Médica Panamericana, pp. 31-39. Larrea, I., Falconí, C., Arcos, A. (2015). Aislamiento y caracterización de cepas de Bacillus spp. con actividad contra Tetranychus urticae Koch en cultivos comerciales de rosas. Revista Colombiana de Biotecnología, 17 (2), pp. 149-155. Salazar, M., Sanchez, M., Aucatoma, B. (2009). Uso de cachaza descompuesta y porcentaje de sustitución de fertilización química en un lote del ingenio Valdez. Centro de investigación de la caña de azucar del Ecuador. Sabadí, R. (2007). Análisis de procesos en la industria azucarera: Fermentación y destilación., Taller Combustibles, Energía. Medio Ambiente y Programas para Análisis de Procesos., Red Temática IVH: Empleo de la biomasa azucarera como fuente de alimento, energía, derivados y su relación con la preservación del medio ambiente (BAZDREAM). Managua, Nicaragua, pp. 2-4 Bohórquez, A., Puentes, Y., Menjivar, J. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 15 (1), pp. 73-81. Prescott, H. (1999). Microbiología. Mc Graw-Hill Interamericana de España. 4a ed. Tortosa, G. (2012). Los microorganismos del suelo y la relación C/N. Blog Compostando ciencia. Recuperado el 3 de febrero de 2020 de Blog Compostando ciencia: http://www.compostandociencia.com/2012/05/los-microorganismos-del-suelo-y-la-html/ Hammes, F., Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate. Reviews in environmental science and biotechnology, 1 (1), pp. 3-7. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2020-12-31 |
date_accessioned |
2020-12-31 14:30:36 |
date_available |
2020-12-31 14:30:36 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1423 |
url_doi |
https://doi.org/10.24050/reia.v18i35.1423 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v18i35.1423 |
citationstartpage |
35012 pp. 1 |
citationendpage |
20 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1423/1397 |
_version_ |
1811200520196456448 |