Titulo:

Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
.

Sumario:

La bioprecipitación ocurre cuando los microorganismos presentes en el suelo generan precipitados de carbonato de calcio (CaCO3) bien sea de forma natural o inducida mediante la aplicación de nutrientes específicos. Dichos nutrientes pueden ser de origen químico, pero con la desventaja de ser más costosos, o naturales como la cachaza de caña de azúcar, la cual es considerada un residuo y es generada en Colombia en grandes cantidades a partir de la producción de la panela. En este estudio se determinó la capacidad de bioprecipitación de CaCO3 a partir de bacterias aisladas de un suelo franco-limoso proveniente del municipio de Envigado-Antioquia y con éste se elaboraron Bloques de Tierra Comprimida (BTC) a escala en los que se aplicó un nutri... Ver más

Guardado en:

1794-1237

2463-0950

18

2020-12-31

35012 pp. 1

20

Revista EIA - 2020

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1423
record_format ojs
spelling Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
Induced Bioprecipitation with Sugarcane Cachaza as A Potentiating Mechanism for The Structural Improvement of Compressed Earth Blocks
La bioprecipitación ocurre cuando los microorganismos presentes en el suelo generan precipitados de carbonato de calcio (CaCO3) bien sea de forma natural o inducida mediante la aplicación de nutrientes específicos. Dichos nutrientes pueden ser de origen químico, pero con la desventaja de ser más costosos, o naturales como la cachaza de caña de azúcar, la cual es considerada un residuo y es generada en Colombia en grandes cantidades a partir de la producción de la panela. En este estudio se determinó la capacidad de bioprecipitación de CaCO3 a partir de bacterias aisladas de un suelo franco-limoso proveniente del municipio de Envigado-Antioquia y con éste se elaboraron Bloques de Tierra Comprimida (BTC) a escala en los que se aplicó un nutriente elaborado a base de cachaza de caña y cal para determinar el mejoramiento en su resistencia a los esfuerzos de compresión. Se evaluaron diferentes concentraciones de cachaza de caña y cal, la incidencia del pH del medio y la capacidad de precipitación de las cepas seleccionadas por separado. Se obtuvo un esfuerzo máximo de 74.6 kPa, lo que representó una mejora en la resistencia a los esfuerzos de compresión del 36.7% respecto al control inicial y de un 16.2 % con relación al control con cal. Los resultados demostraron que la cachaza de azúcar sirve como mecanismo potenciador de la bioprecipitación, mejorando la resistencia a la comprensión de los BTC.
The use of the Colombian seismic design and construction code requires the selection of an energy dissipation capacity (EDC) for the building that depends on the structural type and the seismic hazard at the site. This work investigates the effects on the materials quantities and the seismic behavior of reinforced concrete buildings due to the selection of an EDC superior to the minimum required for low and intermediate seismic regions. Twenty regular buildings with variations in bay lengths and height were designed according to the parameters and requirements for each EDC. Pushover analyses were performed to assess the potential seismic damage in a subset of those buildings. The results showed that the lowest amount of reinforcement in both seismic regions is obtained by selecting a moderate CDE, and that higher levels of seismic damage could occur when a CDE superior to the minimum is selected.
castro, Veronica Isabel
Loaiza, Diana Catalina Rodriguez
Vega, Carlos
Bioprecipitación
Cachaza de caña
Cal
Esfuerzos de compresión
Microorganismos
Suelos.
Bioprecipitation
Sugarcane Cachaza
Lime
Compression efforts
Microorganisms
Soils
18
35
Artículo de revista
Journal article
2020-12-31 14:30:36
2020-12-31 14:30:36
2020-12-31
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1423
10.24050/reia.v18i35.1423
https://doi.org/10.24050/reia.v18i35.1423
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
35012 pp. 1
20
APHA, AWWA, WPCF. (2017). Standard Methods for the Examination of Water and Wastewater, 23th ed. Washington, DC.
Lee, Y. (2003). Calcite Production by Bacillus amyloliquefaciens CMB01. Journal of Microbiology, 41 (4), pp. 345-348.
Valencia, G.Y., Camapum, J., Lara, L. (2014). Carbonatogénesis induced in a profile of tropical soil. Revista Facultad de Ingeniería Universidad de Antioquia, 72, pp. 229-240
Stocks, S., Galina, J., Bang, G. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11), pp. 1563-1571.
Montoya, C., Marquez, M., Lopez, J., Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología, 7 (2), pp. 19-25.
Garcia, M., Marquez, M.m Ximena, C. (2016). Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiological Research, 182, pp. 21-30
Valencia, Y. G. (2009). Influência da biomineralização nas propriedades físico - mecânicas de um perfil de solo tropical afetado por processos erosivos. Tese de Doutorado. Universidade de Brasília. Faculdade de Tecnologia, Departamento de engenharia civil e ambiental, Brasília, DF, p. 183.
Salamanca, C.A. (2018). Efecto de las fuentes orgánicas obtenidas de los subproductos agroindustriales de la caña de azúcar (saccharum officinarum l) y el plátano (musa spp.) sobre la actividad microbiana y enzimática en el suelo. Tesis Doctoral. Universidad Nacional de Colombia Sede Palmira.
Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 90, pp. 58-64.
Cezario, N., Pinto, L., Goncalves, A., Nakazato, G., Katsuko, R., Martins, B. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis. International Biodeterioration & Biodegradation, 123, pp. 200-205.
Van der Star, W., van Wijngaarden, W., Paassen, L., van Zwieten, G. (2011). Stabilization of Gravel Deposits using Microorganisms. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5-9 October 2011.
van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., van Loosdrechr, M. (2010). Quantifying Bio-Mediated Ground Improvement by Ureolysis: A Large Scale Biogrout Experiment. Journal of geotechnical and geoenvironmental engineering, 136 (12), pp. 1721-1728.
Canakci, H., Sidik, W., Kilic, I.H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55 (5), pp. 1211-122.
Capote, J. (2019). La mecánica de suelos y las cimentaciones en las construcciones industriales. La mecánica de suelos y las cimentaciones. Universidad de Cantabria.
Hernandez, A., Botero, L., Arango, D. (2015). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Ingeniería y ciencia, 11 (21), pp. 197-220.
Arteaga, K., Medina, O., Gutierrez, J. (2012). Bloque de tierra comprimida como material constructivo. Revista Facultad de Ingeniería, 20 (31), pp. 55-68.
Galíndez, F. (2007). Bloques de tierra comprimida (BTC) sin adición de cemento. Seguridad y medio ambiente, 115, pp. 63-73
Rocha, M., Sandoval, F. (2015). Técnicas de construcción con tierra: Introducción. 1ra edición. Lisboba: Argumenum.
Ohba, M., Aizawa, K. (1986). Distribution of Bacillus thuringiensis in soils of Japan. Journal of Invertebrate Pathology, 47 (3), pp. 277-282
Koneman, E., Allen, W., Koneman, S. (2008). Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. Médica Panamericana, pp. 31-39.
Larrea, I., Falconí, C., Arcos, A. (2015). Aislamiento y caracterización de cepas de Bacillus spp. con actividad contra Tetranychus urticae Koch en cultivos comerciales de rosas. Revista Colombiana de Biotecnología, 17 (2), pp. 149-155.
Salazar, M., Sanchez, M., Aucatoma, B. (2009). Uso de cachaza descompuesta y porcentaje de sustitución de fertilización química en un lote del ingenio Valdez. Centro de investigación de la caña de azucar del Ecuador. Sabadí, R. (2007). Análisis de procesos en la industria azucarera: Fermentación y destilación., Taller Combustibles, Energía. Medio Ambiente y Programas para Análisis de Procesos., Red Temática IVH: Empleo de la biomasa azucarera como fuente de alimento, energía, derivados y su relación con la preservación del medio ambiente (BAZDREAM). Managua, Nicaragua, pp. 2-4
Bohórquez, A., Puentes, Y., Menjivar, J. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 15 (1), pp. 73-81.
Prescott, H. (1999). Microbiología. Mc Graw-Hill Interamericana de España. 4a ed.
Tortosa, G. (2012). Los microorganismos del suelo y la relación C/N. Blog Compostando ciencia. Recuperado el 3 de febrero de 2020 de Blog Compostando ciencia: http://www.compostandociencia.com/2012/05/los-microorganismos-del-suelo-y-la-html/
Hammes, F., Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate. Reviews in environmental science and biotechnology, 1 (1), pp. 3-7.
https://revistas.eia.edu.co/index.php/reveia/article/download/1423/1397
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
spellingShingle Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
castro, Veronica Isabel
Loaiza, Diana Catalina Rodriguez
Vega, Carlos
Bioprecipitación
Cachaza de caña
Esfuerzos de compresión
Microorganismos
Suelos.
Bioprecipitation
Sugarcane Cachaza
Lime
Compression efforts
Microorganisms
Soils
title_short Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
title_full Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
title_fullStr Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
title_full_unstemmed Bioprecipitación Inducida con Cachaza de Caña de Azúcar como Mecanismo Potenciador para El Mejoramiento Estructural de Bloques de Tierra Comprimida
title_sort bioprecipitación inducida con cachaza de caña de azúcar como mecanismo potenciador para el mejoramiento estructural de bloques de tierra comprimida
title_eng Induced Bioprecipitation with Sugarcane Cachaza as A Potentiating Mechanism for The Structural Improvement of Compressed Earth Blocks
description La bioprecipitación ocurre cuando los microorganismos presentes en el suelo generan precipitados de carbonato de calcio (CaCO3) bien sea de forma natural o inducida mediante la aplicación de nutrientes específicos. Dichos nutrientes pueden ser de origen químico, pero con la desventaja de ser más costosos, o naturales como la cachaza de caña de azúcar, la cual es considerada un residuo y es generada en Colombia en grandes cantidades a partir de la producción de la panela. En este estudio se determinó la capacidad de bioprecipitación de CaCO3 a partir de bacterias aisladas de un suelo franco-limoso proveniente del municipio de Envigado-Antioquia y con éste se elaboraron Bloques de Tierra Comprimida (BTC) a escala en los que se aplicó un nutriente elaborado a base de cachaza de caña y cal para determinar el mejoramiento en su resistencia a los esfuerzos de compresión. Se evaluaron diferentes concentraciones de cachaza de caña y cal, la incidencia del pH del medio y la capacidad de precipitación de las cepas seleccionadas por separado. Se obtuvo un esfuerzo máximo de 74.6 kPa, lo que representó una mejora en la resistencia a los esfuerzos de compresión del 36.7% respecto al control inicial y de un 16.2 % con relación al control con cal. Los resultados demostraron que la cachaza de azúcar sirve como mecanismo potenciador de la bioprecipitación, mejorando la resistencia a la comprensión de los BTC.
description_eng The use of the Colombian seismic design and construction code requires the selection of an energy dissipation capacity (EDC) for the building that depends on the structural type and the seismic hazard at the site. This work investigates the effects on the materials quantities and the seismic behavior of reinforced concrete buildings due to the selection of an EDC superior to the minimum required for low and intermediate seismic regions. Twenty regular buildings with variations in bay lengths and height were designed according to the parameters and requirements for each EDC. Pushover analyses were performed to assess the potential seismic damage in a subset of those buildings. The results showed that the lowest amount of reinforcement in both seismic regions is obtained by selecting a moderate CDE, and that higher levels of seismic damage could occur when a CDE superior to the minimum is selected.
author castro, Veronica Isabel
Loaiza, Diana Catalina Rodriguez
Vega, Carlos
author_facet castro, Veronica Isabel
Loaiza, Diana Catalina Rodriguez
Vega, Carlos
topicspa_str_mv Bioprecipitación
Cachaza de caña
Esfuerzos de compresión
Microorganismos
Suelos.
topic Bioprecipitación
Cachaza de caña
Esfuerzos de compresión
Microorganismos
Suelos.
Bioprecipitation
Sugarcane Cachaza
Lime
Compression efforts
Microorganisms
Soils
topic_facet Bioprecipitación
Cachaza de caña
Esfuerzos de compresión
Microorganismos
Suelos.
Bioprecipitation
Sugarcane Cachaza
Lime
Compression efforts
Microorganisms
Soils
citationvolume 18
citationissue 35
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1423
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references APHA, AWWA, WPCF. (2017). Standard Methods for the Examination of Water and Wastewater, 23th ed. Washington, DC.
Lee, Y. (2003). Calcite Production by Bacillus amyloliquefaciens CMB01. Journal of Microbiology, 41 (4), pp. 345-348.
Valencia, G.Y., Camapum, J., Lara, L. (2014). Carbonatogénesis induced in a profile of tropical soil. Revista Facultad de Ingeniería Universidad de Antioquia, 72, pp. 229-240
Stocks, S., Galina, J., Bang, G. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31 (11), pp. 1563-1571.
Montoya, C., Marquez, M., Lopez, J., Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología, 7 (2), pp. 19-25.
Garcia, M., Marquez, M.m Ximena, C. (2016). Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiological Research, 182, pp. 21-30
Valencia, Y. G. (2009). Influência da biomineralização nas propriedades físico - mecânicas de um perfil de solo tropical afetado por processos erosivos. Tese de Doutorado. Universidade de Brasília. Faculdade de Tecnologia, Departamento de engenharia civil e ambiental, Brasília, DF, p. 183.
Salamanca, C.A. (2018). Efecto de las fuentes orgánicas obtenidas de los subproductos agroindustriales de la caña de azúcar (saccharum officinarum l) y el plátano (musa spp.) sobre la actividad microbiana y enzimática en el suelo. Tesis Doctoral. Universidad Nacional de Colombia Sede Palmira.
Baskar, S., Baskar, R., Mauclaire, L., McKenzie, J. (2006). Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 90, pp. 58-64.
Cezario, N., Pinto, L., Goncalves, A., Nakazato, G., Katsuko, R., Martins, B. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis. International Biodeterioration & Biodegradation, 123, pp. 200-205.
Van der Star, W., van Wijngaarden, W., Paassen, L., van Zwieten, G. (2011). Stabilization of Gravel Deposits using Microorganisms. Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5-9 October 2011.
van Paassen, L., Ghose, R., van der Linden, T., van der Star, W., van Loosdrechr, M. (2010). Quantifying Bio-Mediated Ground Improvement by Ureolysis: A Large Scale Biogrout Experiment. Journal of geotechnical and geoenvironmental engineering, 136 (12), pp. 1721-1728.
Canakci, H., Sidik, W., Kilic, I.H. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55 (5), pp. 1211-122.
Capote, J. (2019). La mecánica de suelos y las cimentaciones en las construcciones industriales. La mecánica de suelos y las cimentaciones. Universidad de Cantabria.
Hernandez, A., Botero, L., Arango, D. (2015). Fabricación de bloques de tierra comprimida con adición de residuos de construcción y demolición como reemplazo del agregado pétreo convencional. Ingeniería y ciencia, 11 (21), pp. 197-220.
Arteaga, K., Medina, O., Gutierrez, J. (2012). Bloque de tierra comprimida como material constructivo. Revista Facultad de Ingeniería, 20 (31), pp. 55-68.
Galíndez, F. (2007). Bloques de tierra comprimida (BTC) sin adición de cemento. Seguridad y medio ambiente, 115, pp. 63-73
Rocha, M., Sandoval, F. (2015). Técnicas de construcción con tierra: Introducción. 1ra edición. Lisboba: Argumenum.
Ohba, M., Aizawa, K. (1986). Distribution of Bacillus thuringiensis in soils of Japan. Journal of Invertebrate Pathology, 47 (3), pp. 277-282
Koneman, E., Allen, W., Koneman, S. (2008). Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. Médica Panamericana, pp. 31-39.
Larrea, I., Falconí, C., Arcos, A. (2015). Aislamiento y caracterización de cepas de Bacillus spp. con actividad contra Tetranychus urticae Koch en cultivos comerciales de rosas. Revista Colombiana de Biotecnología, 17 (2), pp. 149-155.
Salazar, M., Sanchez, M., Aucatoma, B. (2009). Uso de cachaza descompuesta y porcentaje de sustitución de fertilización química en un lote del ingenio Valdez. Centro de investigación de la caña de azucar del Ecuador. Sabadí, R. (2007). Análisis de procesos en la industria azucarera: Fermentación y destilación., Taller Combustibles, Energía. Medio Ambiente y Programas para Análisis de Procesos., Red Temática IVH: Empleo de la biomasa azucarera como fuente de alimento, energía, derivados y su relación con la preservación del medio ambiente (BAZDREAM). Managua, Nicaragua, pp. 2-4
Bohórquez, A., Puentes, Y., Menjivar, J. (2014). Evaluación de la calidad del compost producido a partir de subproductos agroindustriales de caña de azúcar. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 15 (1), pp. 73-81.
Prescott, H. (1999). Microbiología. Mc Graw-Hill Interamericana de España. 4a ed.
Tortosa, G. (2012). Los microorganismos del suelo y la relación C/N. Blog Compostando ciencia. Recuperado el 3 de febrero de 2020 de Blog Compostando ciencia: http://www.compostandociencia.com/2012/05/los-microorganismos-del-suelo-y-la-html/
Hammes, F., Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate. Reviews in environmental science and biotechnology, 1 (1), pp. 3-7.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-12-31
date_accessioned 2020-12-31 14:30:36
date_available 2020-12-31 14:30:36
url https://revistas.eia.edu.co/index.php/reveia/article/view/1423
url_doi https://doi.org/10.24050/reia.v18i35.1423
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v18i35.1423
citationstartpage 35012 pp. 1
citationendpage 20
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1423/1397
_version_ 1811200520196456448