Titulo:

Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
.

Sumario:

En este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM).  Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de RM (0%, 25% Y 50%) como reemplazo parcial de cemento Portland (OPC) expuesto a una solución de sulfato de sodio al 5%. Las propiedades en estado fresco como fluidez, capacidad de paso y resistencia a la segregación se evaluaron mediante el flujo de asentamiento, embudo en V y caja en L. En estado endurecido, la resistencia a la compresión y expansión fueron determinadas. Por otra parte, técnicas de difracción de rayos X (DRX), microscopia electrón... Ver más

Guardado en:

1794-1237

2463-0950

17

2020-02-03

33014 pp. 1

14

Revista EIA - 2020

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1361
record_format ojs
spelling Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
Influence of masonry residue on the resistance of self-compacting concrete to the sodium sulfate attack
En este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM).  Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de RM (0%, 25% Y 50%) como reemplazo parcial de cemento Portland (OPC) expuesto a una solución de sulfato de sodio al 5%. Las propiedades en estado fresco como fluidez, capacidad de paso y resistencia a la segregación se evaluaron mediante el flujo de asentamiento, embudo en V y caja en L. En estado endurecido, la resistencia a la compresión y expansión fueron determinadas. Por otra parte, técnicas de difracción de rayos X (DRX), microscopia electrónica de barrido (MEB) y espectroscopia de Infrarrojo con transformada de Fourier (FTIR) fueron aplicadas en pastas para investigar los efectos de los sulfatos sobre la microestructura.  Los resultados mostraron que todas las mezclas cumplen las propiedades en estado fresco, además se encontró que cuando los CACs son inmersos en la solución de sulfato de sodio, el RM puede mejorar la resistencia de los CACs al ataque por sulfatos en comparación con el CAC solo de OPC.
In this paper are shown the results of an experimental study of self compacting concretes with residue of masonry about their resistance to external sulfate attack, they presented a constant content of water of 202,5 kg/m3 and different volumes of RM (0%, 25% Y 50%) as a partial replacement of Portland cement (OPC) exposed to a sulfate sodium solution at 5%. The properties in fresh state as fluidity, passing ability and resistance to segregation were evaluated through slump flow, V-funnel and L-box. In hard state, the compression strength and expansion were determinate. Besides, techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were applied to pastes in order to investigate the effects of sulfates on the microstructure. The results showed that all mixes have the properties onfresh state. Also, it was found that when CACs areexposed in a sodium sulfate solution, the RM can improve the resistance of CACs to the sulfates attack comparing with CAC only of OPC.
Silva Urrego, Yimmy Fernando
Delvasto, Silvio
Residuo de mampostería
Concreto autocompactante
Sulfatos
Expansión
Etringita.
ceramico / materiales compuestos
Residue of masonry
Self-compacting concrete
Sulfates
Expansion
Ettringite
17
33
Artículo de revista
Journal article
2020-02-03 00:00:00
2020-02-03 00:00:00
2020-02-03
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1361
10.24050/reia.v17i33.1361
https://doi.org/10.24050/reia.v17i33.1361
spa
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
33014 pp. 1
14
Abd Elaty, M.A.A.; Ghazy M.F. (2018). Fluidity evaluation of fiber reinforced-self compacting concrete based on buoyancy law. HBRC Journal, 14, pp. 368-378. https://doi.org/10.1016/j.hbrcj.2017.04.003.
Asensio de Lucas, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2016). Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 127, pp. 950-058. https://doi.org/10.1016/j.conbuildmat.2016.10.047.
Bonavetti, V.L.; Rahhal, V.F. (2006). Interacción de adiciones minerales en pastas de cemento. Revista de la Construccion, 52 (268), pp. 57-64. https://repositorio.uc.cl/handle/11534/11378
Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, pp. 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012.
Bulatović, V.; Melešev, M.; Radeka, M.; Radonjanin, V.; Lukić, I. (2019). Evaluation of sulfate resistance of concrete with recycled and natural aggregates, Construction and Building Materials. 152, pp. 614-631. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.161.
Cai, R.; He, Z.; Tang, S.; Wu, T.; Chen, E. (2018). The early hydration of metakaolin blended cements by non-contact impedance measurement. Cement and Concrete Composites, 92, pp. 70-81. https://doi.org/10.1016/j.cemconcomp.2018.06.001.
Chen, F.; Gao, J.; Qi, B.; Shen, D. (2019). Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Construction and Building Materials, 154, pp. 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017.
Choudhary, H.K.; A.V. A.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015). Observation of phase transformations in cement during hydratation. Construction and Building Materials, 101, pp. 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027.
EFNARC (2002). Specification and guidelines for self-compacting concrete. European association for producers and applicators of specialist building products. http://www.efnarc.org/pdf/SandGforSCC.PDF
EPG (2005). BIBM, CEMBUREAU, ERMCO, EFCA, EFNARC. The European guidelines for self compacting concrete: specification, production and use. The Self-Compacting Concrete European Project Group. http://www.efca.info/download/european-guidelines-for-self-compacting-concrete-scc
Ercikdi, B.; Külekci, G.; Yılmaz, T. (2015). Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, 93, pp. 573–583. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.042
Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation & Recycling, 136, pp. 166–178. https://doi.org/10.1016/j.resconrec.2018.04.016.
Gill, A.S.; Siddique, R. (2018). Durability properties of self compacting concrete incorporating metakaolin and rice husk ash. Construction and Building Materials, 176, pp. 323-332. https://doi.org/10.1016/j.conbuildmat.2018.05.054.
Gülsan, M.E.; Alzeebaree, R.; Rasheed, A. A.; Nis, A.; Kurtoğlu, A.E. (2019). Development of fly ash/slag based self compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, pp. 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228
Irbe, L.; Beddoe, R.E.; Heinz, D. (2019). The role of aluminium in C-A-S-H during sulfate attack on concrete. Cement and Concrete Research, 116, pp. 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012
Islam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S.; Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, pp. 10–21. https://doi.org/10.1016/j.wasman.2019.05.049
Kulkarni, N.G.; Rao, A.B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, pp. 1396-1406. https://doi.org/10.1016/j.jclepro.2016.06.152
Li, B.; Cao, R.; You, N.; Chen, C.; Zhang, Y. (2019). Products and properties of steam cured cement mortar containing lithium slag under partial immersion in sulfate solution. Construction and Building Materials, 220, pp. 596-606. https://doi.org/10.1016/j.conbuildmat.2019.06.062
Li, H.; Dong, L.; Jiang, Z., Yang, X.; Yang, Z. (2016). Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017- 1026. [Online] Disponible en: https://doi.org/10.1016/j.jclepro.2016.05.149. [Consultado 1 de octubre 2019].
Lin, K.L.; Chen, B.Y.; Chiou, C.S.; Cheng, A. (2010). Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research, 28, pp. 647-652. https://doi.org/10.1177/0734242X09355853
Liu, C.; Gao, J.; Chen, F.; Zhao, Y.; Chen, X.; He, Z. (2019). Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Construction and Building Materials, 216, pp. 93-100. https://doi.org/10.1016/j.conbuildmat.2019.05.001
Liu, T.; Teng, J.; Yan, G. (2012). The influence of sulfate attack on the dynamic properties of concrete column. Construction and Building Materials, 28, pp. 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036
Majhi, R.K.; Nayak, A.N. (2019). Bond, durability and microstructural characteristics of ground granulated blast furnace slag baased recycled aggregate concrete. Construction and Building Materials, 212, pp. 578-595. https://doi.org/10.1016/j.conbuildmat.2019.04.017
Mohammed S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review, Construction and Building Materials, 140, pp. 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078
Muduli, R.; Mukharjee, B.B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete, Journal of Cleaner Production. 209, pp. 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221
NRMCA (2004). CIP 37 – Self Consolidating Concrete (SCC). https://www.nrmca.org/aboutconcrete/cips/37p.pdf
Santhanam, M.; Cohen, M.D.; Olek, J. (2002). Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Cement and Concrete Research, 32, pp. 915 – 921. https://doi.org/10.1016/S0008-8846(02)00724-X
Santhanam, M.; Cohen, M.D.; Olek, J. (2003). Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms. Cement and Concrete Research, 33, pp. 341 – 346. https://doi.org/10.1016/S0008-8846(02)00958-4
Schackow, A.; Stringari, D.; Senff, L.; Correia, S.L.; Segadães, A.M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82–89. http://dx.doi.org/10.1016/j.cemconcomp.2015.04.019
Shaheen, F.; Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, pp. 73-86. https://doi.org/10.1016/j.cemconres.2016.10.008
Sikandar, M.A.; Ahmad, W.; Khan, M.H.; Ali, F.; Waseem, M. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Construction and Building Materials, 228, 116823. https://doi.org/10.1016/j.conbuildmat.2019.116823.
Silva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Nakamatsu, J.; Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, pp. 633-643. https://doi.org/10.1016/j.conbuildmat.2019.04.247
Silva, Y.F.; Izquierdo, S.R.; Delvasto, S. (2019). Effect of masonry residue on the hydration of Portland cement paste. Revista DYNA, 86(209), pp. 367-377. http://doi.org/10.15446/dyna.v86n209.77286
Skaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. (2013). Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cement & Concrete Composites, 36, pp. 267-275. https://doi.org/10.1016/j.cemconcomp.2013.01.007
Tang, Z.; Li, W.; Ke, G.; Zhou, J.L.; Tam, V.W.Y. (2019). Sulfate attack resistance of sustainable concrete incorporating various industrial solid waste. Journal of Cleaner Production, 218, pp. 810-822. https://doi.org/10.1016/j.jclepro.2019.01.337
Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J. (2018). Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 195, pp. 226-239. https://doi.org/10.1016/j.jclepro.2018.05.193
Zhang Y.; Luo W.; Wang J.; Wang Y.; Xu Y.; Xiao J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, pp. 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078
https://revistas.eia.edu.co/index.php/reveia/article/download/1361/1282
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
spellingShingle Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
Silva Urrego, Yimmy Fernando
Delvasto, Silvio
Residuo de mampostería
Concreto autocompactante
Sulfatos
Expansión
Etringita.
ceramico / materiales compuestos
Residue of masonry
Self-compacting concrete
Sulfates
Expansion
Ettringite
title_short Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
title_full Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
title_fullStr Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
title_full_unstemmed Influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
title_sort influencia del residuo de mampostería en la resistencia de concretos autocompactantes al ataque por sulfato de sodio
title_eng Influence of masonry residue on the resistance of self-compacting concrete to the sodium sulfate attack
description En este trabajo se presentan resultados de un estudio experimental sobre la resistencia al ataque externo de sulfato de sodio (Na2SO4) en concretos autocompactantes (CACs) con residuo de mampostería (RM).  Los CACs presentaban un contenido de agua constante de 202,5 kg/m3 y diferentes volúmenes de RM (0%, 25% Y 50%) como reemplazo parcial de cemento Portland (OPC) expuesto a una solución de sulfato de sodio al 5%. Las propiedades en estado fresco como fluidez, capacidad de paso y resistencia a la segregación se evaluaron mediante el flujo de asentamiento, embudo en V y caja en L. En estado endurecido, la resistencia a la compresión y expansión fueron determinadas. Por otra parte, técnicas de difracción de rayos X (DRX), microscopia electrónica de barrido (MEB) y espectroscopia de Infrarrojo con transformada de Fourier (FTIR) fueron aplicadas en pastas para investigar los efectos de los sulfatos sobre la microestructura.  Los resultados mostraron que todas las mezclas cumplen las propiedades en estado fresco, además se encontró que cuando los CACs son inmersos en la solución de sulfato de sodio, el RM puede mejorar la resistencia de los CACs al ataque por sulfatos en comparación con el CAC solo de OPC.
description_eng In this paper are shown the results of an experimental study of self compacting concretes with residue of masonry about their resistance to external sulfate attack, they presented a constant content of water of 202,5 kg/m3 and different volumes of RM (0%, 25% Y 50%) as a partial replacement of Portland cement (OPC) exposed to a sulfate sodium solution at 5%. The properties in fresh state as fluidity, passing ability and resistance to segregation were evaluated through slump flow, V-funnel and L-box. In hard state, the compression strength and expansion were determinate. Besides, techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were applied to pastes in order to investigate the effects of sulfates on the microstructure. The results showed that all mixes have the properties onfresh state. Also, it was found that when CACs areexposed in a sodium sulfate solution, the RM can improve the resistance of CACs to the sulfates attack comparing with CAC only of OPC.
author Silva Urrego, Yimmy Fernando
Delvasto, Silvio
author_facet Silva Urrego, Yimmy Fernando
Delvasto, Silvio
topicspa_str_mv Residuo de mampostería
Concreto autocompactante
Sulfatos
Expansión
Etringita.
ceramico / materiales compuestos
topic Residuo de mampostería
Concreto autocompactante
Sulfatos
Expansión
Etringita.
ceramico / materiales compuestos
Residue of masonry
Self-compacting concrete
Sulfates
Expansion
Ettringite
topic_facet Residuo de mampostería
Concreto autocompactante
Sulfatos
Expansión
Etringita.
ceramico / materiales compuestos
Residue of masonry
Self-compacting concrete
Sulfates
Expansion
Ettringite
citationvolume 17
citationissue 33
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1361
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-nd/4.0
Revista EIA - 2020
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Abd Elaty, M.A.A.; Ghazy M.F. (2018). Fluidity evaluation of fiber reinforced-self compacting concrete based on buoyancy law. HBRC Journal, 14, pp. 368-378. https://doi.org/10.1016/j.hbrcj.2017.04.003.
Asensio de Lucas, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2016). Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Construction and Building Materials, 127, pp. 950-058. https://doi.org/10.1016/j.conbuildmat.2016.10.047.
Bonavetti, V.L.; Rahhal, V.F. (2006). Interacción de adiciones minerales en pastas de cemento. Revista de la Construccion, 52 (268), pp. 57-64. https://repositorio.uc.cl/handle/11534/11378
Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, pp. 59-74. https://doi.org/10.1016/j.jclepro.2015.03.012.
Bulatović, V.; Melešev, M.; Radeka, M.; Radonjanin, V.; Lukić, I. (2019). Evaluation of sulfate resistance of concrete with recycled and natural aggregates, Construction and Building Materials. 152, pp. 614-631. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.161.
Cai, R.; He, Z.; Tang, S.; Wu, T.; Chen, E. (2018). The early hydration of metakaolin blended cements by non-contact impedance measurement. Cement and Concrete Composites, 92, pp. 70-81. https://doi.org/10.1016/j.cemconcomp.2018.06.001.
Chen, F.; Gao, J.; Qi, B.; Shen, D. (2019). Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Construction and Building Materials, 154, pp. 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017.
Choudhary, H.K.; A.V. A.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015). Observation of phase transformations in cement during hydratation. Construction and Building Materials, 101, pp. 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027.
EFNARC (2002). Specification and guidelines for self-compacting concrete. European association for producers and applicators of specialist building products. http://www.efnarc.org/pdf/SandGforSCC.PDF
EPG (2005). BIBM, CEMBUREAU, ERMCO, EFCA, EFNARC. The European guidelines for self compacting concrete: specification, production and use. The Self-Compacting Concrete European Project Group. http://www.efca.info/download/european-guidelines-for-self-compacting-concrete-scc
Ercikdi, B.; Külekci, G.; Yılmaz, T. (2015). Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, 93, pp. 573–583. http://dx.doi.org/10.1016/j.conbuildmat.2015.06.042
Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. (2018). Construction and demolition waste best management practice in Europe. Resources, Conservation & Recycling, 136, pp. 166–178. https://doi.org/10.1016/j.resconrec.2018.04.016.
Gill, A.S.; Siddique, R. (2018). Durability properties of self compacting concrete incorporating metakaolin and rice husk ash. Construction and Building Materials, 176, pp. 323-332. https://doi.org/10.1016/j.conbuildmat.2018.05.054.
Gülsan, M.E.; Alzeebaree, R.; Rasheed, A. A.; Nis, A.; Kurtoğlu, A.E. (2019). Development of fly ash/slag based self compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, pp. 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228
Irbe, L.; Beddoe, R.E.; Heinz, D. (2019). The role of aluminium in C-A-S-H during sulfate attack on concrete. Cement and Concrete Research, 116, pp. 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012
Islam, R.; Nazifa, T.H.; Yuniarto, A.; Uddin, A.S.M.S.; Salmiati, S.; Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, pp. 10–21. https://doi.org/10.1016/j.wasman.2019.05.049
Kulkarni, N.G.; Rao, A.B. (2016). Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production, 135, pp. 1396-1406. https://doi.org/10.1016/j.jclepro.2016.06.152
Li, B.; Cao, R.; You, N.; Chen, C.; Zhang, Y. (2019). Products and properties of steam cured cement mortar containing lithium slag under partial immersion in sulfate solution. Construction and Building Materials, 220, pp. 596-606. https://doi.org/10.1016/j.conbuildmat.2019.06.062
Li, H.; Dong, L.; Jiang, Z., Yang, X.; Yang, Z. (2016). Study on utilization of red brick waste powder in the production of cement-based red decorative plaster for walls. Journal of Cleaner Production, 133, pp. 1017- 1026. [Online] Disponible en: https://doi.org/10.1016/j.jclepro.2016.05.149. [Consultado 1 de octubre 2019].
Lin, K.L.; Chen, B.Y.; Chiou, C.S.; Cheng, A. (2010). Waste brick’s potential for use as a pozzolan in blended Portland cement. Waste Management & Research, 28, pp. 647-652. https://doi.org/10.1177/0734242X09355853
Liu, C.; Gao, J.; Chen, F.; Zhao, Y.; Chen, X.; He, Z. (2019). Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Construction and Building Materials, 216, pp. 93-100. https://doi.org/10.1016/j.conbuildmat.2019.05.001
Liu, T.; Teng, J.; Yan, G. (2012). The influence of sulfate attack on the dynamic properties of concrete column. Construction and Building Materials, 28, pp. 201-207. https://doi.org/10.1016/j.conbuildmat.2011.08.036
Majhi, R.K.; Nayak, A.N. (2019). Bond, durability and microstructural characteristics of ground granulated blast furnace slag baased recycled aggregate concrete. Construction and Building Materials, 212, pp. 578-595. https://doi.org/10.1016/j.conbuildmat.2019.04.017
Mohammed S. (2017). Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review, Construction and Building Materials, 140, pp. 10–19. https://doi.org/10.1016/j.conbuildmat.2017.02.078
Muduli, R.; Mukharjee, B.B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete, Journal of Cleaner Production. 209, pp. 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221
NRMCA (2004). CIP 37 – Self Consolidating Concrete (SCC). https://www.nrmca.org/aboutconcrete/cips/37p.pdf
Santhanam, M.; Cohen, M.D.; Olek, J. (2002). Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Cement and Concrete Research, 32, pp. 915 – 921. https://doi.org/10.1016/S0008-8846(02)00724-X
Santhanam, M.; Cohen, M.D.; Olek, J. (2003). Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms. Cement and Concrete Research, 33, pp. 341 – 346. https://doi.org/10.1016/S0008-8846(02)00958-4
Schackow, A.; Stringari, D.; Senff, L.; Correia, S.L.; Segadães, A.M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites, 62, pp. 82–89. http://dx.doi.org/10.1016/j.cemconcomp.2015.04.019
Shaheen, F.; Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, pp. 73-86. https://doi.org/10.1016/j.cemconres.2016.10.008
Sikandar, M.A.; Ahmad, W.; Khan, M.H.; Ali, F.; Waseem, M. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes. Construction and Building Materials, 228, 116823. https://doi.org/10.1016/j.conbuildmat.2019.116823.
Silva, G.; Castañeda, D.; Kim, S.; Castañeda, A.; Bertolotti, B.; Ortega-San-Martin, L.; Nakamatsu, J.; Aguilar, R. (2019). Analysis of the production conditions of geopolymer matrices from natural pozzolana and fired clay brick wastes. Construction and Building Materials, 215, pp. 633-643. https://doi.org/10.1016/j.conbuildmat.2019.04.247
Silva, Y.F.; Izquierdo, S.R.; Delvasto, S. (2019). Effect of masonry residue on the hydration of Portland cement paste. Revista DYNA, 86(209), pp. 367-377. http://doi.org/10.15446/dyna.v86n209.77286
Skaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. (2013). Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cement & Concrete Composites, 36, pp. 267-275. https://doi.org/10.1016/j.cemconcomp.2013.01.007
Tang, Z.; Li, W.; Ke, G.; Zhou, J.L.; Tam, V.W.Y. (2019). Sulfate attack resistance of sustainable concrete incorporating various industrial solid waste. Journal of Cleaner Production, 218, pp. 810-822. https://doi.org/10.1016/j.jclepro.2019.01.337
Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J. (2018). Potential use of brick waste as alternate concrete-making materials: A review. Journal of Cleaner Production, 195, pp. 226-239. https://doi.org/10.1016/j.jclepro.2018.05.193
Zhang Y.; Luo W.; Wang J.; Wang Y.; Xu Y.; Xiao J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, pp. 115-125. https://doi.org/10.1016/j.conbuildmat.2019.03.078
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2020-02-03
date_accessioned 2020-02-03 00:00:00
date_available 2020-02-03 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1361
url_doi https://doi.org/10.24050/reia.v17i33.1361
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v17i33.1361
citationstartpage 33014 pp. 1
citationendpage 14
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1361/1282
_version_ 1811200518367739904