Titulo:
Estados electrónicos de puntos cuánticos piramidales y cónicos
.
Sumario:
Los estados electrónicos confinados en un punto cuántico de GaAs, de forma piramidal y cónica, se han investigado a través del enfoque cuasi analítico válido para ángulos pequeños y el método exacto de elementos finitos para incluir todos los ángulos y alturas. Se han reportado los resultados de la energía de confinamiento en función de la forma y el tamaño de ambas estructuras y finalmente se han comparado los valores aproximados con los exactos provenientes del método de elementos finitos.
Guardado en:
1794-1237
2463-0950
15
2018-11-26
161
175
Revista EIA - 2018
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1257 |
---|---|
record_format |
ojs |
spelling |
Estados electrónicos de puntos cuánticos piramidales y cónicos Estados electrónicos de puntos cuánticos piramidales y cónicos Los estados electrónicos confinados en un punto cuántico de GaAs, de forma piramidal y cónica, se han investigado a través del enfoque cuasi analítico válido para ángulos pequeños y el método exacto de elementos finitos para incluir todos los ángulos y alturas. Se han reportado los resultados de la energía de confinamiento en función de la forma y el tamaño de ambas estructuras y finalmente se han comparado los valores aproximados con los exactos provenientes del método de elementos finitos. Gil Corrales, John Alexander Morales Aramburo, Alvaro Luis Duque Echeverri, Carlos Alberto Puntos cuánticos piramidales Puntos cuánticos cónicos Aproximación cuasianalítica GaAs Elementos finitos. 15 30 Artículo de revista Journal article 2018-11-26 00:00:00 2018-11-26 00:00:00 2018-11-26 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1257 10.24050/reia.v15i30.1257 https://doi.org/10.24050/reia.v15i30.1257 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ Revista EIA - 2018 161 175 Andrade C. G, Cabral Filho P. E., Tenório D. PL, Santos B. S., Beltrao E. IC, Fontes A., Carvalho L. B. (2013). Evaluation of Glycophenotype in Breast Cancer by Quantum Dot-lectin Histochemistry. Int. J. Nanomed. 8, pp 4623 – 4629. Bahramiyan H. (2018). Electric field y impurity effect on nonlinear optical rectification of a double cone like quantum dot. Opt. Mater 75, pp 187 - 195. Baier M. H., C. Constantin, Pelucchi E., y Kapon E. (2004). Electroluminescence from a single pyramidal quantum dot in a light-emitting diode. Appl. Phys. Lett. 84, pp 1967 - 1969. Bailey R. E., Smith A. M. y Shuming N. (2004). Quantum dots in biology and medicine. Physica E 25, pp 1 - 12. COMSOL Multiphysics, v. 5.2a. COMSOL AB, Stockholm, Sweden. Cunha C.R.A., Oliveira A.D.P.R., Firmino T.V.C., Tenório D.P.L.A., Pereira G., Carvalho L.B., Santos B.S., Correia M.T.S., Fontes A. (2018). Biomedical Applications fo Glyconanoparticles Based on Quantum Dots, Biochim. Biophys. Acta, 1862, pp 427 – 439. Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. y Monsalve-Calderón K. (2017). Electron Raman Scattering and Raman Gain in Pyramidal Semiconductor Quantum Dots, J. Nanosci. Nanotechno. 17, pp 1140- 1148. Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. (2017). Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots, Physica B 507, pp 76-83. Hayrapetyan D. B., Kazaryan E. M. y Sarkisyan H. A. (2016). Magneto-absorption in conical quantum dot ensemble: Possible applications for QD LED. Opt. Commun. 371, pp 138 - 143. Huggenberger A., Schneider C., Drescher C., Heckelmann S., Heindel T., Reitzenstein S., Kamp M., Hofling S., Worschech L. y Forchel A. (2011). Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices J. Cryst. Grown 323, pp 194 - 197. Jadupati Nag, Rawat K., Asokan K., Kanjilal D., Bohidar H.B. (2018). Zener diode behavior of nitrogen-doped graphene quantum dots. Physica E 17, pp 13181 - 13200. Jarlov C., Gallo P., Calic M., Dwir B., Rudra A. (2012). Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots. Appl. Phys. Lett. 101, pp 191101-1 191101-4. Khordad R. y Bahramiyan H. (2014). Optical Properties of a GaAs Cone-Like Quantum Dot: Second and Third Harmonic Generation. Opt. Spectrosc. 117, pp 447- 452. Khordad R., Bahramiyan H. y Mohammadi S.A. (2016). Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm. Chinese J. Phys. 54, pp 20 – 32. Lozovski V. y Piatnytsia V. (2011). The Analytical Study of Electronic and Optical Properties of Pyramid-Like and Cone-Like Quantum Dots. J. Comput. Theor. Nanos. 8, pp 1–9. Luhluh K. J., Boda A., Shankar I. V., Raju Ch. N. y Chatterjee A. (2018). Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers. Sci. Rep-Uk 8, pp 5073 - 5086. Manoj K. M., Hofsass H. C. y Vetter U. (2016). Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications. Intech., 298, pp 109 - 131. Norris D. J. y Bawendi M. G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B, 53, pp 16338 – 16346. Pickering S., Kshirsagar A., Ruzyllo J., and Xu J. (2012). Patterned mist deposition of tri- colour CdSe/ZnS quantum dot films toward RGB LED devices. Opto-Electron Rev. 20, pp 148 - 152. Ponnusamy B., Sharmistha S., y Avadhesha S. (2007). Sugar-Quantum Dot Conjugates for a Selective and Sensitive Detection of Lectins. Bioconjugate Chem. 18, pp 146 – 151. Safeera T.A., Khanal R., Medvedeva J. E., Martinez A. I., Vinitha G., Anila E.I. (2018). Low temperature synthesis and characterization of zinc gallate quantum dots for optoelectronic applications. J. Alloy Compd. 740, pp 567 - 589. Sagadevan S. y Dakshanamoorthy A. (2012). Nanomaterials for Nonlinear Optical (NLO) Applications: A Review. Rev. Adv. Mater. Sci. 30, pp 243–253. Yamaguchi M., Asano T., y Noda S. (2008). Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Opt. Express. 16, pp 18067 - 18081. Zrazhevskiy P. y Xiaohu G. (2009). Multifunctional quantum dots for personalized medicine. Nano Today. 4, pp 414 – 428. https://revistas.eia.edu.co/index.php/reveia/article/download/1257/1195 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Estados electrónicos de puntos cuánticos piramidales y cónicos |
spellingShingle |
Estados electrónicos de puntos cuánticos piramidales y cónicos Gil Corrales, John Alexander Morales Aramburo, Alvaro Luis Duque Echeverri, Carlos Alberto Puntos cuánticos piramidales Puntos cuánticos cónicos Aproximación cuasianalítica GaAs Elementos finitos. |
title_short |
Estados electrónicos de puntos cuánticos piramidales y cónicos |
title_full |
Estados electrónicos de puntos cuánticos piramidales y cónicos |
title_fullStr |
Estados electrónicos de puntos cuánticos piramidales y cónicos |
title_full_unstemmed |
Estados electrónicos de puntos cuánticos piramidales y cónicos |
title_sort |
estados electrónicos de puntos cuánticos piramidales y cónicos |
title_eng |
Estados electrónicos de puntos cuánticos piramidales y cónicos |
description |
Los estados electrónicos confinados en un punto cuántico de GaAs, de forma piramidal y cónica, se han investigado a través del enfoque cuasi analítico válido para ángulos pequeños y el método exacto de elementos finitos para incluir todos los ángulos y alturas. Se han reportado los resultados de la energía de confinamiento en función de la forma y el tamaño de ambas estructuras y finalmente se han comparado los valores aproximados con los exactos provenientes del método de elementos finitos.
|
author |
Gil Corrales, John Alexander Morales Aramburo, Alvaro Luis Duque Echeverri, Carlos Alberto |
author_facet |
Gil Corrales, John Alexander Morales Aramburo, Alvaro Luis Duque Echeverri, Carlos Alberto |
topicspa_str_mv |
Puntos cuánticos piramidales Puntos cuánticos cónicos Aproximación cuasianalítica GaAs Elementos finitos. |
topic |
Puntos cuánticos piramidales Puntos cuánticos cónicos Aproximación cuasianalítica GaAs Elementos finitos. |
topic_facet |
Puntos cuánticos piramidales Puntos cuánticos cónicos Aproximación cuasianalítica GaAs Elementos finitos. |
citationvolume |
15 |
citationissue |
30 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1257 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Revista EIA - 2018 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
references |
Andrade C. G, Cabral Filho P. E., Tenório D. PL, Santos B. S., Beltrao E. IC, Fontes A., Carvalho L. B. (2013). Evaluation of Glycophenotype in Breast Cancer by Quantum Dot-lectin Histochemistry. Int. J. Nanomed. 8, pp 4623 – 4629. Bahramiyan H. (2018). Electric field y impurity effect on nonlinear optical rectification of a double cone like quantum dot. Opt. Mater 75, pp 187 - 195. Baier M. H., C. Constantin, Pelucchi E., y Kapon E. (2004). Electroluminescence from a single pyramidal quantum dot in a light-emitting diode. Appl. Phys. Lett. 84, pp 1967 - 1969. Bailey R. E., Smith A. M. y Shuming N. (2004). Quantum dots in biology and medicine. Physica E 25, pp 1 - 12. COMSOL Multiphysics, v. 5.2a. COMSOL AB, Stockholm, Sweden. Cunha C.R.A., Oliveira A.D.P.R., Firmino T.V.C., Tenório D.P.L.A., Pereira G., Carvalho L.B., Santos B.S., Correia M.T.S., Fontes A. (2018). Biomedical Applications fo Glyconanoparticles Based on Quantum Dots, Biochim. Biophys. Acta, 1862, pp 427 – 439. Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. y Monsalve-Calderón K. (2017). Electron Raman Scattering and Raman Gain in Pyramidal Semiconductor Quantum Dots, J. Nanosci. Nanotechno. 17, pp 1140- 1148. Duque C.A., Gil-Corrales A., Morales A.L., Restrepo R.L., Mora-Ramos M.E. (2017). Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots, Physica B 507, pp 76-83. Hayrapetyan D. B., Kazaryan E. M. y Sarkisyan H. A. (2016). Magneto-absorption in conical quantum dot ensemble: Possible applications for QD LED. Opt. Commun. 371, pp 138 - 143. Huggenberger A., Schneider C., Drescher C., Heckelmann S., Heindel T., Reitzenstein S., Kamp M., Hofling S., Worschech L. y Forchel A. (2011). Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices J. Cryst. Grown 323, pp 194 - 197. Jadupati Nag, Rawat K., Asokan K., Kanjilal D., Bohidar H.B. (2018). Zener diode behavior of nitrogen-doped graphene quantum dots. Physica E 17, pp 13181 - 13200. Jarlov C., Gallo P., Calic M., Dwir B., Rudra A. (2012). Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots. Appl. Phys. Lett. 101, pp 191101-1 191101-4. Khordad R. y Bahramiyan H. (2014). Optical Properties of a GaAs Cone-Like Quantum Dot: Second and Third Harmonic Generation. Opt. Spectrosc. 117, pp 447- 452. Khordad R., Bahramiyan H. y Mohammadi S.A. (2016). Influence of impurity on binding energy and optical properties of lens shaped quantum dots: Finite element method and Arnoldi algorithm. Chinese J. Phys. 54, pp 20 – 32. Lozovski V. y Piatnytsia V. (2011). The Analytical Study of Electronic and Optical Properties of Pyramid-Like and Cone-Like Quantum Dots. J. Comput. Theor. Nanos. 8, pp 1–9. Luhluh K. J., Boda A., Shankar I. V., Raju Ch. N. y Chatterjee A. (2018). Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers. Sci. Rep-Uk 8, pp 5073 - 5086. Manoj K. M., Hofsass H. C. y Vetter U. (2016). Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications. Intech., 298, pp 109 - 131. Norris D. J. y Bawendi M. G. (1996). Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B, 53, pp 16338 – 16346. Pickering S., Kshirsagar A., Ruzyllo J., and Xu J. (2012). Patterned mist deposition of tri- colour CdSe/ZnS quantum dot films toward RGB LED devices. Opto-Electron Rev. 20, pp 148 - 152. Ponnusamy B., Sharmistha S., y Avadhesha S. (2007). Sugar-Quantum Dot Conjugates for a Selective and Sensitive Detection of Lectins. Bioconjugate Chem. 18, pp 146 – 151. Safeera T.A., Khanal R., Medvedeva J. E., Martinez A. I., Vinitha G., Anila E.I. (2018). Low temperature synthesis and characterization of zinc gallate quantum dots for optoelectronic applications. J. Alloy Compd. 740, pp 567 - 589. Sagadevan S. y Dakshanamoorthy A. (2012). Nanomaterials for Nonlinear Optical (NLO) Applications: A Review. Rev. Adv. Mater. Sci. 30, pp 243–253. Yamaguchi M., Asano T., y Noda S. (2008). Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Opt. Express. 16, pp 18067 - 18081. Zrazhevskiy P. y Xiaohu G. (2009). Multifunctional quantum dots for personalized medicine. Nano Today. 4, pp 414 – 428. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2018-11-26 |
date_accessioned |
2018-11-26 00:00:00 |
date_available |
2018-11-26 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1257 |
url_doi |
https://doi.org/10.24050/reia.v15i30.1257 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v15i30.1257 |
citationstartpage |
161 |
citationendpage |
175 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1257/1195 |
_version_ |
1811200513372323840 |