Titulo:

Mortero geopolimérico para uso potencial como recubrimiento en concreto
.

Sumario:

Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos.  Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado endurecido (resistencia a la compresión y tracción, absorción, porosidad y conductividad térmica). Los resultados muestran la viabilidad de producir morteros Clase R1 y R2 en concordancia con la Norma EN 1504-3 en cuanto a las propiedades mecánicas y se evidencia que los sistemas geopoliméricos producidos presentan menor conductividad térmica comparada a los morteros basados en OPC sugiriendo comportamiento tipo aislante.   

Guardado en:

1794-1237

2463-0950

16

2019-01-20

159

170

Revista EIA - 2019

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1243
record_format ojs
spelling Mortero geopolimérico para uso potencial como recubrimiento en concreto
Mortero geopolimérico para uso potencial como recubrimiento en concreto
Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos.  Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado endurecido (resistencia a la compresión y tracción, absorción, porosidad y conductividad térmica). Los resultados muestran la viabilidad de producir morteros Clase R1 y R2 en concordancia con la Norma EN 1504-3 en cuanto a las propiedades mecánicas y se evidencia que los sistemas geopoliméricos producidos presentan menor conductividad térmica comparada a los morteros basados en OPC sugiriendo comportamiento tipo aislante.   
Oviedo-Sánchez, Katherine
Mejía de Gutiérrez, Ruby
Geopolímeros
Metacaolín
Polvo de Ladrillo
Recubrimientos
Materiales de Construcción
16
31
Artículo de revista
Journal article
2019-01-20 00:00:00
2019-01-20 00:00:00
2019-01-20
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1243
10.24050/reia.v16i31.1243
https://doi.org/10.24050/reia.v16i31.1243
spa
https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista EIA - 2019
159
170
Duan, P.; Yan, C.; Luo, W.; Zhou, W. (2016). Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater., 106, pp. 115-125. doi: 10.1016/j.conbuildmat.2015.12.095.
Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2014). Effect of Na/Al and Si/Al Ratios on Adhesion Strength of Geopolymers as Coating Material. Appl. Mech. Mater., 625, pp. 85-89. doi: 10.4028/www.scientific.net/AMM.625.85.
Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2015). Sodium silicate-free geopolymers as coating materials: Effects of Na/Al and water/solid ratios on adhesion strength. Ceram. Int., 41(2), pp. 2794-2805. doi: 10.4028/www.scientific.net/AMM.625.85.
Krivenko, P.V.; Guzii, S.G.; Bodnarova, L.; Valek, J.; Hela, R.; Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. J. Build. Eng., 8, pp. 14-19. doi: 10.1016/j.jobe.2016.09.003.
Lee, N.K.; Kim, E.M.; Lee, H.K. (2016). Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Constr. Build. Mater., 113, pp. 264-272. doi: 10.1016/j.conbuildmat.2016.03.055.
Liew, Y.M.; Heah, C.Y; Mohd Mustafa, A.B.; Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci., 83, pp. 595-629. doi: 10.1016/j.pmatsci.2016.08.002.
Mermerdaş, K.; Manguri, S.; Nassani, D.E.; Oleiwi, S.M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar.Eng. Sci. Technol. an Int. J., 20(6), pp. 1642-1652. doi: 10.1016/j.jestch.2017.11.009.
Mu, S.; Liu, J.; Lin, W.; Wang, Y.; Liu, J.; Shi, L.; Jiang, Q. (2017). Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr. Build. Mater., 148, pp. 846-856. doi: 10.1016/j.conbuildmat.2017.05.070.
Pacheco-Torgal, F.; Abdollahnejad, Z.; Miraldo, S.; Baklouti, S.; Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr. Build. Mater., 36, pp. 1053-1058. doi: 10.1016/j.conbuildmat.2012.07.003.
Robayo, R.A.; Mulford, A.; Munera, J.; and Mejía de Gutiérrez, R. (2016). Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater., 128, pp. 163-169. doi: 10.1016/j.conbuildmat.2016.10.023.
Tamburini, S.; Natali, M.; Garbin, E.; Panizza, M.; Favaro, M.; Valluzzi, M.R. (2017). Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater., 141, pp. 542-552. doi: 10.1016/j.conbuildmat.2017.03.017.
Vejmelková, E.; Koňáková, D.; Čáchová, M.; Keppert, M.; Černý, R. (2012). Effect of hydrophobization on the properties of lime–metakaolin plasters. Constr. Build. Mater., 37, pp. 556-561. doi: 10.1016/j.conbuildmat.2012.07.097.
Villaquirán-Caicedo, M.A.; M. de Gutiérrez, R.; Sulekar, S.; Davis, C.; Nino, J.C. (2015). Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl. Clay Sci., 118, pp. 276-282. doi: 10.1016/j.clay.2015.10.005.
Wiyono, D.; Antoni; Hardjito, D. (2015). Improving the Durability of Pozzolan Concrete Using Alkaline Solution and Geopolymer Coating. Procedia Eng., 125, pp. 747-753. doi: 10.1016/j.proeng.2015.11.121.
Xu, H.; Van Deventer, J.S J. (2000). The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 59(3), pp. 247-266. doi: 10.1016/S0301-7516(99)00074-5.
Zhang, Z.; Wang, K.; Mo, B.; Li, X.; Cui, X.(2015). Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build., 87, pp. 220-225. doi: 10.1016/j.enbuild.2014.11.028.
Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W H.; Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod., 125, pp. 253-267. doi: 10.1016/j.jclepro.2016.03.019.
https://revistas.eia.edu.co/index.php/reveia/article/download/1243/1227
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Mortero geopolimérico para uso potencial como recubrimiento en concreto
spellingShingle Mortero geopolimérico para uso potencial como recubrimiento en concreto
Oviedo-Sánchez, Katherine
Mejía de Gutiérrez, Ruby
Geopolímeros
Metacaolín
Polvo de Ladrillo
Recubrimientos
Materiales de Construcción
title_short Mortero geopolimérico para uso potencial como recubrimiento en concreto
title_full Mortero geopolimérico para uso potencial como recubrimiento en concreto
title_fullStr Mortero geopolimérico para uso potencial como recubrimiento en concreto
title_full_unstemmed Mortero geopolimérico para uso potencial como recubrimiento en concreto
title_sort mortero geopolimérico para uso potencial como recubrimiento en concreto
title_eng Mortero geopolimérico para uso potencial como recubrimiento en concreto
description Se sintetizaron dos morteros geopoliméricos basados en Metacaolín y residuo de ladrillo, modificados con adiciones orgánicas e inorgánicas para ser utilizados como potenciales recubrimientos sobre concretos.  Se evaluaron sus propiedades en estado fresco (fluidez, tiempo de fraguado) y en estado endurecido (resistencia a la compresión y tracción, absorción, porosidad y conductividad térmica). Los resultados muestran la viabilidad de producir morteros Clase R1 y R2 en concordancia con la Norma EN 1504-3 en cuanto a las propiedades mecánicas y se evidencia que los sistemas geopoliméricos producidos presentan menor conductividad térmica comparada a los morteros basados en OPC sugiriendo comportamiento tipo aislante.   
author Oviedo-Sánchez, Katherine
Mejía de Gutiérrez, Ruby
author_facet Oviedo-Sánchez, Katherine
Mejía de Gutiérrez, Ruby
topicspa_str_mv Geopolímeros
Metacaolín
Polvo de Ladrillo
Recubrimientos
Materiales de Construcción
topic Geopolímeros
Metacaolín
Polvo de Ladrillo
Recubrimientos
Materiales de Construcción
topic_facet Geopolímeros
Metacaolín
Polvo de Ladrillo
Recubrimientos
Materiales de Construcción
citationvolume 16
citationissue 31
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1243
language spa
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista EIA - 2019
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references Duan, P.; Yan, C.; Luo, W.; Zhou, W. (2016). Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater., 106, pp. 115-125. doi: 10.1016/j.conbuildmat.2015.12.095.
Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2014). Effect of Na/Al and Si/Al Ratios on Adhesion Strength of Geopolymers as Coating Material. Appl. Mech. Mater., 625, pp. 85-89. doi: 10.4028/www.scientific.net/AMM.625.85.
Irfan Khan, M.; Azizli, K.; Sufian, S.;Man, Z. (2015). Sodium silicate-free geopolymers as coating materials: Effects of Na/Al and water/solid ratios on adhesion strength. Ceram. Int., 41(2), pp. 2794-2805. doi: 10.4028/www.scientific.net/AMM.625.85.
Krivenko, P.V.; Guzii, S.G.; Bodnarova, L.; Valek, J.; Hela, R.; Zach, J. (2016). Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete. J. Build. Eng., 8, pp. 14-19. doi: 10.1016/j.jobe.2016.09.003.
Lee, N.K.; Kim, E.M.; Lee, H.K. (2016). Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Constr. Build. Mater., 113, pp. 264-272. doi: 10.1016/j.conbuildmat.2016.03.055.
Liew, Y.M.; Heah, C.Y; Mohd Mustafa, A.B.; Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci., 83, pp. 595-629. doi: 10.1016/j.pmatsci.2016.08.002.
Mermerdaş, K.; Manguri, S.; Nassani, D.E.; Oleiwi, S.M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar.Eng. Sci. Technol. an Int. J., 20(6), pp. 1642-1652. doi: 10.1016/j.jestch.2017.11.009.
Mu, S.; Liu, J.; Lin, W.; Wang, Y.; Liu, J.; Shi, L.; Jiang, Q. (2017). Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr. Build. Mater., 148, pp. 846-856. doi: 10.1016/j.conbuildmat.2017.05.070.
Pacheco-Torgal, F.; Abdollahnejad, Z.; Miraldo, S.; Baklouti, S.; Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr. Build. Mater., 36, pp. 1053-1058. doi: 10.1016/j.conbuildmat.2012.07.003.
Robayo, R.A.; Mulford, A.; Munera, J.; and Mejía de Gutiérrez, R. (2016). Alternative cements based on alkali-activated red clay brick waste. Constr. Build. Mater., 128, pp. 163-169. doi: 10.1016/j.conbuildmat.2016.10.023.
Tamburini, S.; Natali, M.; Garbin, E.; Panizza, M.; Favaro, M.; Valluzzi, M.R. (2017). Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater., 141, pp. 542-552. doi: 10.1016/j.conbuildmat.2017.03.017.
Vejmelková, E.; Koňáková, D.; Čáchová, M.; Keppert, M.; Černý, R. (2012). Effect of hydrophobization on the properties of lime–metakaolin plasters. Constr. Build. Mater., 37, pp. 556-561. doi: 10.1016/j.conbuildmat.2012.07.097.
Villaquirán-Caicedo, M.A.; M. de Gutiérrez, R.; Sulekar, S.; Davis, C.; Nino, J.C. (2015). Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl. Clay Sci., 118, pp. 276-282. doi: 10.1016/j.clay.2015.10.005.
Wiyono, D.; Antoni; Hardjito, D. (2015). Improving the Durability of Pozzolan Concrete Using Alkaline Solution and Geopolymer Coating. Procedia Eng., 125, pp. 747-753. doi: 10.1016/j.proeng.2015.11.121.
Xu, H.; Van Deventer, J.S J. (2000). The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process., 59(3), pp. 247-266. doi: 10.1016/S0301-7516(99)00074-5.
Zhang, Z.; Wang, K.; Mo, B.; Li, X.; Cui, X.(2015). Preparation and characterization of a reflective and heat insulative coating based on geopolymers. Energy Build., 87, pp. 220-225. doi: 10.1016/j.enbuild.2014.11.028.
Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W H.; Wang, H. (2016). Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod., 125, pp. 253-267. doi: 10.1016/j.jclepro.2016.03.019.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2019-01-20
date_accessioned 2019-01-20 00:00:00
date_available 2019-01-20 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1243
url_doi https://doi.org/10.24050/reia.v16i31.1243
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v16i31.1243
citationstartpage 159
citationendpage 170
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1243/1227
_version_ 1811200509353132032