Titulo:

Geographical information systems as a Tool to assist the electricity distribution Networks planning
.

Sumario:

ABSTRACT. In recent years, the population growth in urban areas of Latin American cities has resulted in an increase in demand for electricity in a dispersed manner, bringing challenges to the planning of distribution systems to supply this demand. In addition, incentives for the installation of distributed generation make it necessary to carry out analyzes with a spatial perspective to determine the places of impact in the electricity distribution networks. Geographic information systems are computational tools that allow the processing of data with geographic reference. These systems can collaborate in the visualization of the socioeconomic characteristics and the variables distributed in the zone of study, being able to provide informati... Ver más

Guardado en:

1794-1237

2463-0950

15

2018-04-30

71

85

Revista EIA - 2018

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_eia_revistaeia_10_article_1138
record_format ojs
spelling Geographical information systems as a Tool to assist the electricity distribution Networks planning
Geographical Information Systems as a Tool to Assist the Electricity Distribution Networks Planning
ABSTRACT. In recent years, the population growth in urban areas of Latin American cities has resulted in an increase in demand for electricity in a dispersed manner, bringing challenges to the planning of distribution systems to supply this demand. In addition, incentives for the installation of distributed generation make it necessary to carry out analyzes with a spatial perspective to determine the places of impact in the electricity distribution networks. Geographic information systems are computational tools that allow the processing of data with geographic reference. These systems can collaborate in the visualization of the socioeconomic characteristics and the variables distributed in the zone of study, being able to provide information to the distribution planners. This work shows computational tools that will help distribution utilities, using techniques available in geographic information systems to characterize the local factors in concession zone of the distribution utilities.
In recent years, the population growth in urban areas of Latin American cities has resulted in an increase in demand for electricity in a dispersed manner, bringing challenges to the planning of distribution systems to supply this demand. In addition, incentives for the installation of distributed generation make it necessary to carry out analyzes with a spatial perspective to determine the places of impact in the electricity distribution networks. Geographic information systems are computational tools that allow the processing of data with geographic reference. These systems can collaborate in the visualization of the socioeconomic characteristics and the variables distributed in the zone of study, being able to provide information to the distribution planners. This work shows computational tools that will help distribution utilities, using techniques available in geographic information systems to characterize the local factors in concession zone of the distribution utilities.
Mejia Alzate, Mario Andres
Melo Trujillo, Joel David
Padilha Feltrin, Antonio
Sánchez Zuleta, Carmen Cecilia
Fernández Gutiérrez, Juan Pablo
Planificación del Sistema de Distribución
Sistemas de Información Geográfica
Geo procesamiento
Análisis Espacial
Características Socioeconómicas
sistemas de distribución de energia eléctrica
15
29
Artículo de revista
Journal article
2018-04-30 00:00:00
2018-04-30 00:00:00
2018-04-30
application/pdf
Fondo Editorial EIA - Universidad EIA
Revista EIA
1794-1237
2463-0950
https://revistas.eia.edu.co/index.php/reveia/article/view/1138
10.24050/reia.v15i29.1138
https://doi.org/10.24050/reia.v15i29.1138
eng
https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista EIA - 2018
71
85
Bibliographic references
• Books
DIGGLE, P. and RIBEIRO, P. J. Model – based Geostatistics. Springer Series in Statistics. Editorial Springer., New York, 2007.
FOTHERINGHAM, A. S.; BRUNSDON, C. and CHARLTON M. Geographically Weighted Regression. The analysis of spatially varying relationships. Editorial WILEY, England, 2002.
GONEN, T. Electric power distribution system engineering. Boca Raton: CRC Press, 2014.
KAGAN, N. Redes elétricas inteligentes no Brasil: análise de custos e benefícios de um plano nacional de implantação. Rio de Janeiro: Synergia Editora, 2013. 260 pag.
GUTIERREZ, J. and GOULD, M. SIG: Sistemas de Información Geográfica. Editorial Síntesis S.A., Madrid, 1994.
CAMARA, G. E. A. Mapping Social Exclusion/Inclusion in Developing Countries: social Dynamics of São Paulo in th 1990s. In: GOODCHILD, M. F.; JANELLE, D. G. Spatially integrated social science. New York: : Oxford University Press, 2004. Cap. 11, p. 223-237.
MIRANDA, J. I. Fundamentos de sistemas de informações geográficas. 4a. ed. [S.l.]: [s.n.], 2015.
SILVA, A. D. B. Sistemas de informações geo-referenciadas: conceitos e fundamentos. [S.l.]: [s.n.], 2003.
SILVA LORA, E. E. e ADDAD, J. Geração distribuída: aspectos tecnológicos, ambientais e institucionais. Rio de Janeiro: Inter ciência, 2006.
• Dissertations
MEJIA ALZATE, M. Previsão Espaço-temporal de demanda incluindo alterações nos hábitos de consumidores residenciais. Disertação de Mestrado. Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Ilha Solteira, p. 78. 2017. Disponível em: <http://hdl.handle.net/11449/148538>
VILLAVICENCIO GASTELU, J. Análise Espacial do potencial fotovoltaico em telhados de residência usando modelagem hierárquica bayesiana. Disertação de Mestrado. Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Ilha Solteira, p. 101. 2016. Disponível em: <http://hdl.handle.net/11449/137801>.
• Articles
ACEVEDO, I. y VELÁSQUEZ, E. “Algunos conceptos de la econometría espacial y el análisis exploratorio de datos espaciales”. Ecos de Economía. Num 27. Medellín, Colombia 2008. Disponible en: <http://publicaciones.eafit.edu.co/index.php/ecos-economia/article/viewFile/705/627>
ARANEDA E. “Uso de Sistemas de Información Geográficos y análisis espacial en arqueología: Proyecciones y limitaciones”. Estudios Atacameños. Num. 22, pag. 59-75 Santiago, Chile 2002. Disponible en: < http://dx.doi.org/10.4067/S0718-10432002002200004 >
BUZAI, G. D. “Modelos de localización-asignación aplicados a servicios públicos urbanos: análisis espacial de Centros de Atención Primaria de Salud (caps) en la ciudad de Luján, Argentina”. Cuadernos de geografía: revista colombiana de geografía. Vol. 20, Num. 2, pag. 111 – 123 Bogotá, 2011.
COMBER, A. J.; BRUNSDON, C.; HARDY, J. and RADBURN, R. “Using a GIS–based network analysis and optimisation routines to evaluate service provision: a case study of the UK”. Post Office Applied Spatial Analysis and Policy. Vol. 2, Num. 1, pag. 47 – 64, 2009.
COMBER, A.; DICKIE, J.; JARVIS, C.; PHILLIPS, M. and TANSEY, K. “Locating bioenergy facilities using a modified GIS-based location-allocation-algorithm: considering the spatial distribution of resource supply, unpublishing submitted paper”. Department of Geography, University of Leicester, Leicester, LE1 7RH, UK (2015) Availavel in: <https://lra.le.ac.uk/bitstream/2381/32346/4/Comber_AE_submission_March_2015.pdf.>
COMBER, A. J.; SASAKI, S.; SUZUKI, H. and BRUNSDON, C. “A modified grouping genetic algorithm to select ambulance site locations”. International Journal of Geographical Information Science, Vol. 25, Num. 5, pag. 807 – 823, 2011.
CHURCH, R. and REVELLE, C. “The maximal covering location problem”. Papers in Regional Science, Vol. 32, Num. 1, pag. 101 – 118, 1974.
HAKIMI, S. “Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph”. Operations Research, Vol. 12, pag. 450 – 459, 1964.
HAMMONS, T. J. “Renewable energy alternatives for developed countries”. IEEE Transactions on Energy Conversion, Piscataway, Vol. 15, Num. 4, pag. 481-493, 2000.
HO, C. and K. C. “Impact of grid-connected residential PV systems on the Malaysia low voltage distribution network”. IEEE conference, Power engineering and optimization, Langkawi Island, Malaysia. pag. 670 – 675. , 2013.
LEOU, R. C.; TENG, J. H. and SU, C. L. “Modelling and verifying the load behaviour of electric vehicle charging stations based on field measurements”. IET Generation, Transmission & Distribution , Vol. 9, Num. 11, pag. 1112 - 1119, August 2015.
MEJIA, M. A.; MELO, J. D.; ZAMBRANO-ASANZA, S. e FELTRIN, A. P. “Regressão Ponderada Geograficamente para estimar a distribuição espacial do potencial de mercado de um eletrodoméstico com alto consumo de energia elétrica”. Congresso Brasilero de Automatica [S.l.]: CBA. 2016.
MELO, J. D.; ZAMBRANO-ASANZA, S. and PADILHA-FELTRIN, A. “A local search algorithm to allocate loads predicted by spatial load forecasting studies”. Electric Power System Research, Vol. 146, pag. 206–217, May 2017.
OWEN, S. H., AND DASKIN, M. S. “Strategic facility location: A review”. European Journal of Operational Research, Vol. 111. Num. 3, pag. 423 - 447, 1998.
QUIROS-TORTOS, J.; VALVERDE, G.; ARGÜELLO, A. and OCHOA, L. N. “Geo-Information Is Power: Using Geographical Information Systems to Assess Rooftop Photovoltaics in Costa Rica”. IEEE Power and Energy Magazine, Vol. 15, Num. 2, pag. 48 - 56, March 2017. Available in: https://www.researchgate.net/publication/314200428_Geo-Information_Is_Power_Using_Geographical_Information_Systems_to_Assess_Rooftop_Photovoltaics_in_Costa_Rica
REVELLE, C. S. and SWAIN, R. W. “Central facilities location”. Geographic Analysis, Vol. 2, pag. 30 - 42, 1970. RUBIO BARROSO, A. y GUTIERREZ, J. “Los Sistemas de Información Geográficos: Origen y perspectivas”. Revista General de Información y Documentación, Vol. 7, Num. 1. Servicio de Publicaciones Universidad Complutense. Madrid. 1997 Disponible en: http://revistas.ucm.es/index.php/RGID/article/viewFile/RGID9797120093A/10990
SASAKI, S.; COMBER, A. J.; SUZUKI, H. and BRUNSDON, C. “Using genetic algorithms to optimise current and future health planning - the example of ambulance locations”. International Journal of Health Geographics, Vol. 9, pag. 4 - 12, 2010. Availavel in < doi:10.1186/1476-072X-9-4>
SASAKI, S.; IGARASHI, K.; FUJINO, Y.; COMBER, A. J.; BRUNSDON, C.; MULEYA, C. M. and SUZUKI, H. “The impact of community-based outreach immunization services on immunization coverage with GIS network accessibility analysis in peri-urban areas, Zambia”. Journal of Epidemiology and Community Health, Vol 65, pag. 1171-1178, 2011. Availavel in <doi:10.1136/jech.2009.104190>
SHU, J. A new method for spatial power network planning in complicated environments. IEEE Transactions on Power Systems , Vol. 27, Num. 1, pag. 381-389, Feb. 2012.
VILLAVICENCIO, J.; MELO, J. D. and FELTRIN, A. P. “Estimation of photovoltaic potential on residential rooftops using empirical Bayesian estimator”. IEEE PES Innovation Smart Grid Technologies Latin America – ISGT LATAM. [S.l.]: IEEE. 2015.
WATSON, J. D. “Impact of solar photovoltaics on the low-voltage distribution network in New Zealand”. IET Generation, Transmission & Distribution, Stevenage, Vol. 10, Num. 1, pag. 1-9, 2016.
WEI, W. “Expansion Planning of Urban Electrified Transportation Networks: A Mixed-Integer Convex Programming Approach”. IEEE Transactions on Transportation Electrification, Vol. 3, Num. 1, pag. 210 - 224, March 2017.
ZAHEDI, A. “Australian renewable energy progress”. Renewable and Sustainable Energy Reviews, Oxford, Vol. 14, Num. 8, pag. 2208–2213, 2010.
• Websites
RENEWABLES 2015 GLOBAL STATUS REPORT. Renewable energy policy network for the 21th century (REN21), 2015. Disponível em : <http://www.nrel.gov/docs/fy08osti/42306.pdf>. Acesso em: 10 jun. 2017.
https://revistas.eia.edu.co/index.php/reveia/article/download/1138/1177
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
http://purl.org/redcol/resource_type/ART
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Geographical information systems as a Tool to assist the electricity distribution Networks planning
spellingShingle Geographical information systems as a Tool to assist the electricity distribution Networks planning
Mejia Alzate, Mario Andres
Melo Trujillo, Joel David
Padilha Feltrin, Antonio
Sánchez Zuleta, Carmen Cecilia
Fernández Gutiérrez, Juan Pablo
Planificación del Sistema de Distribución
Sistemas de Información Geográfica
Geo procesamiento
Análisis Espacial
Características Socioeconómicas
sistemas de distribución de energia eléctrica
title_short Geographical information systems as a Tool to assist the electricity distribution Networks planning
title_full Geographical information systems as a Tool to assist the electricity distribution Networks planning
title_fullStr Geographical information systems as a Tool to assist the electricity distribution Networks planning
title_full_unstemmed Geographical information systems as a Tool to assist the electricity distribution Networks planning
title_sort geographical information systems as a tool to assist the electricity distribution networks planning
title_eng Geographical Information Systems as a Tool to Assist the Electricity Distribution Networks Planning
description ABSTRACT. In recent years, the population growth in urban areas of Latin American cities has resulted in an increase in demand for electricity in a dispersed manner, bringing challenges to the planning of distribution systems to supply this demand. In addition, incentives for the installation of distributed generation make it necessary to carry out analyzes with a spatial perspective to determine the places of impact in the electricity distribution networks. Geographic information systems are computational tools that allow the processing of data with geographic reference. These systems can collaborate in the visualization of the socioeconomic characteristics and the variables distributed in the zone of study, being able to provide information to the distribution planners. This work shows computational tools that will help distribution utilities, using techniques available in geographic information systems to characterize the local factors in concession zone of the distribution utilities.
description_eng In recent years, the population growth in urban areas of Latin American cities has resulted in an increase in demand for electricity in a dispersed manner, bringing challenges to the planning of distribution systems to supply this demand. In addition, incentives for the installation of distributed generation make it necessary to carry out analyzes with a spatial perspective to determine the places of impact in the electricity distribution networks. Geographic information systems are computational tools that allow the processing of data with geographic reference. These systems can collaborate in the visualization of the socioeconomic characteristics and the variables distributed in the zone of study, being able to provide information to the distribution planners. This work shows computational tools that will help distribution utilities, using techniques available in geographic information systems to characterize the local factors in concession zone of the distribution utilities.
author Mejia Alzate, Mario Andres
Melo Trujillo, Joel David
Padilha Feltrin, Antonio
Sánchez Zuleta, Carmen Cecilia
Fernández Gutiérrez, Juan Pablo
author_facet Mejia Alzate, Mario Andres
Melo Trujillo, Joel David
Padilha Feltrin, Antonio
Sánchez Zuleta, Carmen Cecilia
Fernández Gutiérrez, Juan Pablo
topicspa_str_mv Planificación del Sistema de Distribución
Sistemas de Información Geográfica
Geo procesamiento
Análisis Espacial
Características Socioeconómicas
sistemas de distribución de energia eléctrica
topic Planificación del Sistema de Distribución
Sistemas de Información Geográfica
Geo procesamiento
Análisis Espacial
Características Socioeconómicas
sistemas de distribución de energia eléctrica
topic_facet Planificación del Sistema de Distribución
Sistemas de Información Geográfica
Geo procesamiento
Análisis Espacial
Características Socioeconómicas
sistemas de distribución de energia eléctrica
citationvolume 15
citationissue 29
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1138
language eng
format Article
rights https://creativecommons.org/licenses/by-nc-sa/4.0/
Revista EIA - 2018
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Bibliographic references
• Books
DIGGLE, P. and RIBEIRO, P. J. Model – based Geostatistics. Springer Series in Statistics. Editorial Springer., New York, 2007.
FOTHERINGHAM, A. S.; BRUNSDON, C. and CHARLTON M. Geographically Weighted Regression. The analysis of spatially varying relationships. Editorial WILEY, England, 2002.
GONEN, T. Electric power distribution system engineering. Boca Raton: CRC Press, 2014.
KAGAN, N. Redes elétricas inteligentes no Brasil: análise de custos e benefícios de um plano nacional de implantação. Rio de Janeiro: Synergia Editora, 2013. 260 pag.
GUTIERREZ, J. and GOULD, M. SIG: Sistemas de Información Geográfica. Editorial Síntesis S.A., Madrid, 1994.
CAMARA, G. E. A. Mapping Social Exclusion/Inclusion in Developing Countries: social Dynamics of São Paulo in th 1990s. In: GOODCHILD, M. F.; JANELLE, D. G. Spatially integrated social science. New York: : Oxford University Press, 2004. Cap. 11, p. 223-237.
MIRANDA, J. I. Fundamentos de sistemas de informações geográficas. 4a. ed. [S.l.]: [s.n.], 2015.
SILVA, A. D. B. Sistemas de informações geo-referenciadas: conceitos e fundamentos. [S.l.]: [s.n.], 2003.
SILVA LORA, E. E. e ADDAD, J. Geração distribuída: aspectos tecnológicos, ambientais e institucionais. Rio de Janeiro: Inter ciência, 2006.
• Dissertations
MEJIA ALZATE, M. Previsão Espaço-temporal de demanda incluindo alterações nos hábitos de consumidores residenciais. Disertação de Mestrado. Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Ilha Solteira, p. 78. 2017. Disponível em: <http://hdl.handle.net/11449/148538>
VILLAVICENCIO GASTELU, J. Análise Espacial do potencial fotovoltaico em telhados de residência usando modelagem hierárquica bayesiana. Disertação de Mestrado. Universidade Estadual Paulista. Faculdade de Engenharia de Ilha Solteira. Ilha Solteira, p. 101. 2016. Disponível em: <http://hdl.handle.net/11449/137801>.
• Articles
ACEVEDO, I. y VELÁSQUEZ, E. “Algunos conceptos de la econometría espacial y el análisis exploratorio de datos espaciales”. Ecos de Economía. Num 27. Medellín, Colombia 2008. Disponible en: <http://publicaciones.eafit.edu.co/index.php/ecos-economia/article/viewFile/705/627>
ARANEDA E. “Uso de Sistemas de Información Geográficos y análisis espacial en arqueología: Proyecciones y limitaciones”. Estudios Atacameños. Num. 22, pag. 59-75 Santiago, Chile 2002. Disponible en: < http://dx.doi.org/10.4067/S0718-10432002002200004 >
BUZAI, G. D. “Modelos de localización-asignación aplicados a servicios públicos urbanos: análisis espacial de Centros de Atención Primaria de Salud (caps) en la ciudad de Luján, Argentina”. Cuadernos de geografía: revista colombiana de geografía. Vol. 20, Num. 2, pag. 111 – 123 Bogotá, 2011.
COMBER, A. J.; BRUNSDON, C.; HARDY, J. and RADBURN, R. “Using a GIS–based network analysis and optimisation routines to evaluate service provision: a case study of the UK”. Post Office Applied Spatial Analysis and Policy. Vol. 2, Num. 1, pag. 47 – 64, 2009.
COMBER, A.; DICKIE, J.; JARVIS, C.; PHILLIPS, M. and TANSEY, K. “Locating bioenergy facilities using a modified GIS-based location-allocation-algorithm: considering the spatial distribution of resource supply, unpublishing submitted paper”. Department of Geography, University of Leicester, Leicester, LE1 7RH, UK (2015) Availavel in: <https://lra.le.ac.uk/bitstream/2381/32346/4/Comber_AE_submission_March_2015.pdf.>
COMBER, A. J.; SASAKI, S.; SUZUKI, H. and BRUNSDON, C. “A modified grouping genetic algorithm to select ambulance site locations”. International Journal of Geographical Information Science, Vol. 25, Num. 5, pag. 807 – 823, 2011.
CHURCH, R. and REVELLE, C. “The maximal covering location problem”. Papers in Regional Science, Vol. 32, Num. 1, pag. 101 – 118, 1974.
HAKIMI, S. “Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph”. Operations Research, Vol. 12, pag. 450 – 459, 1964.
HAMMONS, T. J. “Renewable energy alternatives for developed countries”. IEEE Transactions on Energy Conversion, Piscataway, Vol. 15, Num. 4, pag. 481-493, 2000.
HO, C. and K. C. “Impact of grid-connected residential PV systems on the Malaysia low voltage distribution network”. IEEE conference, Power engineering and optimization, Langkawi Island, Malaysia. pag. 670 – 675. , 2013.
LEOU, R. C.; TENG, J. H. and SU, C. L. “Modelling and verifying the load behaviour of electric vehicle charging stations based on field measurements”. IET Generation, Transmission & Distribution , Vol. 9, Num. 11, pag. 1112 - 1119, August 2015.
MEJIA, M. A.; MELO, J. D.; ZAMBRANO-ASANZA, S. e FELTRIN, A. P. “Regressão Ponderada Geograficamente para estimar a distribuição espacial do potencial de mercado de um eletrodoméstico com alto consumo de energia elétrica”. Congresso Brasilero de Automatica [S.l.]: CBA. 2016.
MELO, J. D.; ZAMBRANO-ASANZA, S. and PADILHA-FELTRIN, A. “A local search algorithm to allocate loads predicted by spatial load forecasting studies”. Electric Power System Research, Vol. 146, pag. 206–217, May 2017.
OWEN, S. H., AND DASKIN, M. S. “Strategic facility location: A review”. European Journal of Operational Research, Vol. 111. Num. 3, pag. 423 - 447, 1998.
QUIROS-TORTOS, J.; VALVERDE, G.; ARGÜELLO, A. and OCHOA, L. N. “Geo-Information Is Power: Using Geographical Information Systems to Assess Rooftop Photovoltaics in Costa Rica”. IEEE Power and Energy Magazine, Vol. 15, Num. 2, pag. 48 - 56, March 2017. Available in: https://www.researchgate.net/publication/314200428_Geo-Information_Is_Power_Using_Geographical_Information_Systems_to_Assess_Rooftop_Photovoltaics_in_Costa_Rica
REVELLE, C. S. and SWAIN, R. W. “Central facilities location”. Geographic Analysis, Vol. 2, pag. 30 - 42, 1970. RUBIO BARROSO, A. y GUTIERREZ, J. “Los Sistemas de Información Geográficos: Origen y perspectivas”. Revista General de Información y Documentación, Vol. 7, Num. 1. Servicio de Publicaciones Universidad Complutense. Madrid. 1997 Disponible en: http://revistas.ucm.es/index.php/RGID/article/viewFile/RGID9797120093A/10990
SASAKI, S.; COMBER, A. J.; SUZUKI, H. and BRUNSDON, C. “Using genetic algorithms to optimise current and future health planning - the example of ambulance locations”. International Journal of Health Geographics, Vol. 9, pag. 4 - 12, 2010. Availavel in < doi:10.1186/1476-072X-9-4>
SASAKI, S.; IGARASHI, K.; FUJINO, Y.; COMBER, A. J.; BRUNSDON, C.; MULEYA, C. M. and SUZUKI, H. “The impact of community-based outreach immunization services on immunization coverage with GIS network accessibility analysis in peri-urban areas, Zambia”. Journal of Epidemiology and Community Health, Vol 65, pag. 1171-1178, 2011. Availavel in <doi:10.1136/jech.2009.104190>
SHU, J. A new method for spatial power network planning in complicated environments. IEEE Transactions on Power Systems , Vol. 27, Num. 1, pag. 381-389, Feb. 2012.
VILLAVICENCIO, J.; MELO, J. D. and FELTRIN, A. P. “Estimation of photovoltaic potential on residential rooftops using empirical Bayesian estimator”. IEEE PES Innovation Smart Grid Technologies Latin America – ISGT LATAM. [S.l.]: IEEE. 2015.
WATSON, J. D. “Impact of solar photovoltaics on the low-voltage distribution network in New Zealand”. IET Generation, Transmission & Distribution, Stevenage, Vol. 10, Num. 1, pag. 1-9, 2016.
WEI, W. “Expansion Planning of Urban Electrified Transportation Networks: A Mixed-Integer Convex Programming Approach”. IEEE Transactions on Transportation Electrification, Vol. 3, Num. 1, pag. 210 - 224, March 2017.
ZAHEDI, A. “Australian renewable energy progress”. Renewable and Sustainable Energy Reviews, Oxford, Vol. 14, Num. 8, pag. 2208–2213, 2010.
• Websites
RENEWABLES 2015 GLOBAL STATUS REPORT. Renewable energy policy network for the 21th century (REN21), 2015. Disponível em : <http://www.nrel.gov/docs/fy08osti/42306.pdf>. Acesso em: 10 jun. 2017.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2018-04-30
date_accessioned 2018-04-30 00:00:00
date_available 2018-04-30 00:00:00
url https://revistas.eia.edu.co/index.php/reveia/article/view/1138
url_doi https://doi.org/10.24050/reia.v15i29.1138
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v15i29.1138
citationstartpage 71
citationendpage 85
url2_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1138/1177
_version_ 1811200505543655424