ANÁLISIS DIMENSIONAL GENERALIZADO
.
El artículo comienza por definir los conceptos de medición, medida, magnitud, dimensión, ilustrándolos con ejemplos. Además se mencionan magnitudes así definidas que se pueden identificar en el mundo de las Ciencias Sociales, lasCiencias Naturales, las Ciencias Humanas, además de las magnitudes que usualmente se aceptan en las Ciencias Físicas. Se corrigen conceptos equivocados sobre las dimensiones de magnitudes físicas como Fuerza, Ángulo plano, Magnetismo y Entropía, y se presentan otros conceptos que suelen ser ignorados en los libros de Física y las muchas magnitudes que son simplemente ignoradas en Ciencias Sociales y en Ciencias Naturales.Se pone de presente la naturaleza de Espacio Vectorial que tiene la clase de las magnitudes que... Ver más
1794-1237
2463-0950
13
2016-10-25
13
27
Revista EIA - 2016
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
id |
metarevistapublica_eia_revistaeia_10_article_1014 |
---|---|
record_format |
ojs |
spelling |
ANÁLISIS DIMENSIONAL GENERALIZADO ANÁLISIS DIMENSIONAL GENERALIZADO El artículo comienza por definir los conceptos de medición, medida, magnitud, dimensión, ilustrándolos con ejemplos. Además se mencionan magnitudes así definidas que se pueden identificar en el mundo de las Ciencias Sociales, lasCiencias Naturales, las Ciencias Humanas, además de las magnitudes que usualmente se aceptan en las Ciencias Físicas. Se corrigen conceptos equivocados sobre las dimensiones de magnitudes físicas como Fuerza, Ángulo plano, Magnetismo y Entropía, y se presentan otros conceptos que suelen ser ignorados en los libros de Física y las muchas magnitudes que son simplemente ignoradas en Ciencias Sociales y en Ciencias Naturales.Se pone de presente la naturaleza de Espacio Vectorial que tiene la clase de las magnitudes que aparecen en todas estas ciencias frente a la operación de composición interna entre magnitudes, y la de composición externa con la clase de los números racionales, y con un ejemplo tomado de la teoría de la Evaluación de Proyectos, se muestra la gran utilidad que aportan estos conceptos a la disciplina del Análisis Dimensional, como ocurre con el algoritmo de Lord Kelvin para la deducción de leyes cuantitativas para los fenómenos físicos,sociales, económicos y otros que son susceptibles de analizar con el Teorema Pi de Buckingham-Varschy y Ostrogradsky. Poveda Ramos, Gabriel análisis dimensional medida magnitud medición dimensión Ciencias Físicas Ciencias Sociales Ciencias Naturales Teorema Pi 13 25 Artículo de revista Journal article 2016-10-25 00:00:00 2016-10-25 00:00:00 2016-10-25 application/pdf Fondo Editorial EIA - Universidad EIA Revista EIA 1794-1237 2463-0950 https://revistas.eia.edu.co/index.php/reveia/article/view/1014 10.24050/reia.v13i25.1014 https://doi.org/10.24050/reia.v13i25.1014 spa https://creativecommons.org/licenses/by-nc-sa/4.0/ Revista EIA - 2016 13 27 https://revistas.eia.edu.co/index.php/reveia/article/download/1014/972 info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/publishedVersion http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 Text Publication |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
ANÁLISIS DIMENSIONAL GENERALIZADO |
spellingShingle |
ANÁLISIS DIMENSIONAL GENERALIZADO Poveda Ramos, Gabriel análisis dimensional medida magnitud medición dimensión Ciencias Físicas Ciencias Sociales Ciencias Naturales Teorema Pi |
title_short |
ANÁLISIS DIMENSIONAL GENERALIZADO |
title_full |
ANÁLISIS DIMENSIONAL GENERALIZADO |
title_fullStr |
ANÁLISIS DIMENSIONAL GENERALIZADO |
title_full_unstemmed |
ANÁLISIS DIMENSIONAL GENERALIZADO |
title_sort |
análisis dimensional generalizado |
title_eng |
ANÁLISIS DIMENSIONAL GENERALIZADO |
description |
El artículo comienza por definir los conceptos de medición, medida, magnitud, dimensión, ilustrándolos con ejemplos. Además se mencionan magnitudes así definidas que se pueden identificar en el mundo de las Ciencias Sociales, lasCiencias Naturales, las Ciencias Humanas, además de las magnitudes que usualmente se aceptan en las Ciencias Físicas. Se corrigen conceptos equivocados sobre las dimensiones de magnitudes físicas como Fuerza, Ángulo plano, Magnetismo y Entropía, y se presentan otros conceptos que suelen ser ignorados en los libros de Física y las muchas magnitudes que son simplemente ignoradas en Ciencias Sociales y en Ciencias Naturales.Se pone de presente la naturaleza de Espacio Vectorial que tiene la clase de las magnitudes que aparecen en todas estas ciencias frente a la operación de composición interna entre magnitudes, y la de composición externa con la clase de los números racionales, y con un ejemplo tomado de la teoría de la Evaluación de Proyectos, se muestra la gran utilidad que aportan estos conceptos a la disciplina del Análisis Dimensional, como ocurre con el algoritmo de Lord Kelvin para la deducción de leyes cuantitativas para los fenómenos físicos,sociales, económicos y otros que son susceptibles de analizar con el Teorema Pi de Buckingham-Varschy y Ostrogradsky.
|
author |
Poveda Ramos, Gabriel |
author_facet |
Poveda Ramos, Gabriel |
topicspa_str_mv |
análisis dimensional medida magnitud medición dimensión Ciencias Físicas Ciencias Sociales Ciencias Naturales Teorema Pi |
topic |
análisis dimensional medida magnitud medición dimensión Ciencias Físicas Ciencias Sociales Ciencias Naturales Teorema Pi |
topic_facet |
análisis dimensional medida magnitud medición dimensión Ciencias Físicas Ciencias Sociales Ciencias Naturales Teorema Pi |
citationvolume |
13 |
citationissue |
25 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1014 |
language |
spa |
format |
Article |
rights |
https://creativecommons.org/licenses/by-nc-sa/4.0/ Revista EIA - 2016 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_6501 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2016-10-25 |
date_accessioned |
2016-10-25 00:00:00 |
date_available |
2016-10-25 00:00:00 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1014 |
url_doi |
https://doi.org/10.24050/reia.v13i25.1014 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v13i25.1014 |
citationstartpage |
13 |
citationendpage |
27 |
url2_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1014/972 |
_version_ |
1811200503086841856 |