Estudio de simulación de la eliminación de CR (VI) en aguas residualess
.
La adsorción es una técnica de superficie que es empleada para remover contaminantes como los metales pesados utilizando materiales orgánicos como bioadsorbentes. La mayoría de los estudios realizados de adsorción se han llevado a cabo a nivel de laboratorio por lo cual son muy pocos los estudios realizados que buscan predecir el comportamiento del proceso y la eficacia del adsorbente a nivel industrial. Por lo tanto, el objetivo del presente estudio es utilizar herramientas computacionales para modelar una columna de adsorción empacada a escala industrial para remover Cr (VI) en solución aprovechando la biomasa a base de Theobroma cacao L como material adsorbente. Para ello, se utilizó el software Aspen Adsorption para realizar varias simu... Ver más
1794-1237
2463-0950
22
2025-01-01
4302 pp. 1
15
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Revista EIA - 2024
id |
metarevistapublica_eia_revistaeia_10-article-1842 |
---|---|
record_format |
ojs |
spelling |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess González-Delgado, Á.D., Tejada-Tovar, C. and Villabona-Ortíz, A. (2022) ‘Parametric Sensitivity Analysis of Chromium (Vi) Adsorption using Theobroma Cacao L Biomass via Process Simulation’, Chemical Engineering Transactions, 92(January), pp. 535–540. Available at: https://doi.org/10.3303/CET2292090. Ministerio de Ambiente y Desarrollo Sostenible (2015) ‘Resolucion 631 de 2015 vertimientos minambiente.pdf’, p. 62. Nieva, A.D., Andres, J.C.S. and Gonzales, K.P. (2018) ‘Simulated biosorption of Cu2+ in aqueous solutions using Cucumis melo VAR. cantalupensis’, IOP Conference Series: Earth and Environmental Science, 191(1). Available at: https://doi.org/10.1088/1755-1315/191/1/012035. Marcantonio, V., Bocci, E., Ouwelties, J.P., Del Zotto, L. and Monarca, D. (2020) ‘Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus’, International Journal of Hydrogen Energy, 45(11), pp. 6651–6662. Available at: https://doi.org/10.1016/j.ijhydene.2019.12.142. Mansa, R.F., Ting, M.L. and Patrick, A.O. (2021) ‘Simulation of Lead Removal Using Palm Kernel Shell Activated Carbon in a Packed Bed Column’. Lara, J. Tejada, C., Villabona, A., Arrieta, A. and Granados-Conde. C. (2016) ‘Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao’, Revista ION, 29(2), pp. 113–124. Available at: https://doi.org/: http://dx.doi.org/10.18273/revion.v29n2-2016009. Koua, B.K., Koffi, P.M.E. and Gbaha, P. (2019) ‘Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans’, Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. Available at: https://doi.org/10.1016/j.jssas.2017.01.002. Gupta, B., Mishra, A., Singh, R. and Thakur, I.S. (2021) ‘Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent’, Environmental Technology and Innovation, 21, p. 101278. Available at: https://doi.org/10.1016/j.eti.2020.101278. Fouad, M.R. (2023) ‘Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil’, Current Chemistry Letters, 12(1), pp. 207–216. Available at: https://doi.org/10.5267/j.ccl.2022.8.003. Oliveira, R.F., Pacheco-Nunes, K.G., Jurado, I.V., Benício-Amador, I.C., Estumano, D.C. and Féris, L.A. (2020) ‘Cr (VI) adsorption in batch and continuous scale: A mathematical and experimental approach for operational parameters prediction’, Environmental Technology and Innovation, 20, p. 101092. Available at: https://doi.org/10.1016/j.eti.2020.101092. Durán, I., Rubiera, F. and Pevida, C. (2022) ‘Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures’, Chemical Engineering Journal, 428. Available at: https://doi.org/10.1016/j.cej.2021.132564. Dixon, A.G. (1988) ‘Correlations for wall and particle shape effects on fixed bed bulk voidage’, The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. Available at: https://doi.org/10.1002/cjce.5450660501. Benyahia, F. and O’Neill, K.E. (2005) ‘Enhanced voidage correlations for packed beds of various particle shapes and sizes’, Particulate Science and Technology, 23(2), pp. 169–177. Available at: https://doi.org/10.1080/02726350590922242. Bahrun, M.H.V., Kamin, Z., Anisuzzaman, S.M. and Bono, A. (2021) ‘Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column’, Journal of Engineering Science and Technology, 16(2), pp. 1213–1231. Babuji, P., Thirumalaisamy, S., Duraisamy, K. and Periyasamy, G. (2023) ‘Human Health Risks due to Exposure to Water Pollution: A Review’, Water 2023, Vol. 15, Page 2532, 15(14), p. 2532. Available at: https://doi.org/10.3390/W15142532. Agarwal, A., Upadhyay, U., Sreedhar, I. and Anitha, K.L. (2022) ‘Simulation studies of Cu (II) removal from aqueous solution using olive stone’, Cleaner Materials, 5, p. 100128. Available at: https://doi.org/10.1016/j.clema.2022.100128. Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. Nnaji, N.D. Onyeaka, H., Miri, T. and Ugwa, C. (2023) ‘Bioaccumulation for heavy metal removal: a review’, SN Applied Sciences, 5(5), pp. 1–12. Available at: https://doi.org/10.1007/S42452-023-05351-6/METRICS. Patel, H. (2020) ‘Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder’, Scientific Reports, 10(1), pp. 1–12. Available at: https://doi.org/10.1038/s41598-020-72583-6. https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/resource_type/c_2df8fbb1 Text http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess http://purl.org/coar/version/c_970fb48d4fbd8a85 info:eu-repo/semantics/publishedVersion http://purl.org/redcol/resource_type/ART http://purl.org/coar/resource_type/c_6501 Sánchez, A.P., Sánchez, E.J.P. and Silva, R.M.S. (2019) ‘Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator’, Ingeniare, 27(1), pp. 142–150. Available at: https://doi.org/10.4067/S0718-33052019000100142. info:eu-repo/semantics/article Wang, J. and Guo, X. (2020) ‘Adsorption isotherm models: Classification, physical meaning, application and solving method’, Chemosphere, 258, p. 127279. Available at: https://doi.org/10.1016/j.chemosphere.2020.127279. Upadhyay, U. Gupta, S., Agarwal, A., Sreedhar, I and Anitha, K. (2021) ‘Process Optimization at an Industrial Scale in the adsorptive removal of Cd2+ ions using Dolochar via Response Surface Methodology’, Environmental Science and Pollution Research, pp. 0–27. Available at: https://doi.org/10.1007/s11356-021-17216-9. Tovar, C.T., Ortiz, Á.V. and Villadiego, M.J. (2017) ‘Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente.’, Rev. U.D.C.A Act. & Div. Cient., 20(1), pp. 139–147. Tejada-Tovar, C., Villabona-Ortíz, A. and González-Delgado, A. (2022) ‘Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks’, Materials, 15(19). Available at: https://doi.org/10.3390/ma15196937. Sultana, S., Islam, K., Hasan, M.A., Khan, H.M.J., Khan, M.A.R., Deb, A., Al Raihan, M. and Rahman, M. (2022) ‘Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives’, Environmental Nanotechnology, Monitoring and Management, 17(May 2021), p. 100651. Available at: https://doi.org/10.1016/j.enmm.2022.100651. Selimin, M.A., Latif, A., Er, Y., Muhamad, M., Basri, H. and Lee, T. (2021) ‘Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal’, Materials Today: Proceedings [Preprint]. Available at: https://doi.org/10.1016/J.MATPR.2021.10.502. Revista EIA - 2024 Español https://revistas.eia.edu.co/index.php/reveia/article/view/1842 Núm. 43 , Año 2025 : Tabla de contenido Revista EIA No. 43 La adsorción es una técnica de superficie que es empleada para remover contaminantes como los metales pesados utilizando materiales orgánicos como bioadsorbentes. La mayoría de los estudios realizados de adsorción se han llevado a cabo a nivel de laboratorio por lo cual son muy pocos los estudios realizados que buscan predecir el comportamiento del proceso y la eficacia del adsorbente a nivel industrial. Por lo tanto, el objetivo del presente estudio es utilizar herramientas computacionales para modelar una columna de adsorción empacada a escala industrial para remover Cr (VI) en solución aprovechando la biomasa a base de Theobroma cacao L como material adsorbente. Para ello, se utilizó el software Aspen Adsorption para realizar varias simulaciones de una columna de adsorción a escala industrial con diferentes configuraciones para obtener una evaluación paramétrica empleando los modelos isotérmicos Langmuir y Freundlich con el modelo cinético de Resistencia Global Lineal (LDF). Los resultados obtenidos muestran que, el modelo Langmuir-LDF presentó eficiencias de adsorción de hasta 96% mientras que, el modelo Freundlich-LDF hasta el 97%. Por otro lado, las condiciones de simulación de la columna de adsorción que presentaron los mejores resultados para ambos casos fueron una altura de la columna de 4 m, concentración inicial de Cr (VI) de 2000 mg/L, y caudal de entrada de 100 m3/día. Este estudio se presenta como una forma novedosa en el campo de la ingeniería sobre como las herramientas computaciones posee la capacidad de predecir el posible comportamiento de columnas de adsorción empacadas con biomasas a base de residuos orgánicos. Tejada Tovar, Candelaria Nahir Adsorción Biomateriales Cromo (VI) Cinética Curvas de ruptura Evaluación Parámetros Simulación Tratamiento de Aguas 22 43 Isotermas Artículo de revista application/pdf Revista EIA Fondo Editorial EIA - Universidad EIA Publication Simulation Evaluation Adsorption is a surface technique that is used to remove contaminants such as heavy metals using organic materials as bioadsorbents. Most of the adsorption studies have been carried out at the laboratory level, so there are very few studies that seek to predict the behavior of the process and the efficiency of the adsorbent at the industrial level. Therefore, the objective of the present study is to use computational tools to model an adsorption column packed at industrial scale to remove Cr (VI) in solution using Theobroma cacao L biomass as adsorbent material. For this purpose, Aspen Adsorption software was used to perform several simulations of an industrial scale adsorption column with different configurations to obtain a parametric evaluation using the Langmuir and Freundlich isothermal models with the Linear Global Resistance (LDF) kinetic model. The results obtained show that the Langmuir-LDF model presented adsorption efficiencies up to 96% while the Freundlich-LDF model up to 97%. On the other hand, the adsorption column simulation conditions that presented the best results for both cases were a column height of 4 m, initial Cr (VI) concentration of 2000 mg/L, and an inlet flow rate of 100 m3/day. This study is presented as a novel way in the engineering field on how computational tools have the ability to predict the possible behavior of adsorption columns packed with organic waste-based biomasses. Simulation study of CR (VI) removal from wastewater Adsorption Biomaterials Chromium (VI) Kinetics Breakthrough curve Isotherms Parameters Journal article Water Treatment 10.24050/reia.v22i43.1842 https://revistas.eia.edu.co/index.php/reveia/article/download/1842/1635 2463-0950 1794-1237 2025-01-01 10:43:22 4302 pp. 1 15 2025-01-01 10:43:22 https://doi.org/10.24050/reia.v22i43.1842 2025-01-01 |
institution |
UNIVERSIDAD EIA |
thumbnail |
https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png |
country_str |
Colombia |
collection |
Revista EIA |
title |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess |
spellingShingle |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess Tejada Tovar, Candelaria Nahir Adsorción Biomateriales Cromo (VI) Cinética Curvas de ruptura Evaluación Parámetros Simulación Tratamiento de Aguas Isotermas Simulation Evaluation Adsorption Biomaterials Chromium (VI) Kinetics Breakthrough curve Isotherms Parameters Water Treatment |
title_short |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess |
title_full |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess |
title_fullStr |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess |
title_full_unstemmed |
Estudio de simulación de la eliminación de CR (VI) en aguas residualess |
title_sort |
estudio de simulación de la eliminación de cr (vi) en aguas residualess |
title_eng |
Simulation study of CR (VI) removal from wastewater |
description |
La adsorción es una técnica de superficie que es empleada para remover contaminantes como los metales pesados utilizando materiales orgánicos como bioadsorbentes. La mayoría de los estudios realizados de adsorción se han llevado a cabo a nivel de laboratorio por lo cual son muy pocos los estudios realizados que buscan predecir el comportamiento del proceso y la eficacia del adsorbente a nivel industrial. Por lo tanto, el objetivo del presente estudio es utilizar herramientas computacionales para modelar una columna de adsorción empacada a escala industrial para remover Cr (VI) en solución aprovechando la biomasa a base de Theobroma cacao L como material adsorbente. Para ello, se utilizó el software Aspen Adsorption para realizar varias simulaciones de una columna de adsorción a escala industrial con diferentes configuraciones para obtener una evaluación paramétrica empleando los modelos isotérmicos Langmuir y Freundlich con el modelo cinético de Resistencia Global Lineal (LDF). Los resultados obtenidos muestran que, el modelo Langmuir-LDF presentó eficiencias de adsorción de hasta 96% mientras que, el modelo Freundlich-LDF hasta el 97%. Por otro lado, las condiciones de simulación de la columna de adsorción que presentaron los mejores resultados para ambos casos fueron una altura de la columna de 4 m, concentración inicial de Cr (VI) de 2000 mg/L, y caudal de entrada de 100 m3/día. Este estudio se presenta como una forma novedosa en el campo de la ingeniería sobre como las herramientas computaciones posee la capacidad de predecir el posible comportamiento de columnas de adsorción empacadas con biomasas a base de residuos orgánicos.
|
description_eng |
Adsorption is a surface technique that is used to remove contaminants such as heavy metals using organic materials as bioadsorbents. Most of the adsorption studies have been carried out at the laboratory level, so there are very few studies that seek to predict the behavior of the process and the efficiency of the adsorbent at the industrial level. Therefore, the objective of the present study is to use computational tools to model an adsorption column packed at industrial scale to remove Cr (VI) in solution using Theobroma cacao L biomass as adsorbent material. For this purpose, Aspen Adsorption software was used to perform several simulations of an industrial scale adsorption column with different configurations to obtain a parametric evaluation using the Langmuir and Freundlich isothermal models with the Linear Global Resistance (LDF) kinetic model. The results obtained show that the Langmuir-LDF model presented adsorption efficiencies up to 96% while the Freundlich-LDF model up to 97%. On the other hand, the adsorption column simulation conditions that presented the best results for both cases were a column height of 4 m, initial Cr (VI) concentration of 2000 mg/L, and an inlet flow rate of 100 m3/day. This study is presented as a novel way in the engineering field on how computational tools have the ability to predict the possible behavior of adsorption columns packed with organic waste-based biomasses.
|
author |
Tejada Tovar, Candelaria Nahir |
author_facet |
Tejada Tovar, Candelaria Nahir |
topicspa_str_mv |
Adsorción Biomateriales Cromo (VI) Cinética Curvas de ruptura Evaluación Parámetros Simulación Tratamiento de Aguas Isotermas |
topic |
Adsorción Biomateriales Cromo (VI) Cinética Curvas de ruptura Evaluación Parámetros Simulación Tratamiento de Aguas Isotermas Simulation Evaluation Adsorption Biomaterials Chromium (VI) Kinetics Breakthrough curve Isotherms Parameters Water Treatment |
topic_facet |
Adsorción Biomateriales Cromo (VI) Cinética Curvas de ruptura Evaluación Parámetros Simulación Tratamiento de Aguas Isotermas Simulation Evaluation Adsorption Biomaterials Chromium (VI) Kinetics Breakthrough curve Isotherms Parameters Water Treatment |
citationvolume |
22 |
citationissue |
43 |
citationedition |
Núm. 43 , Año 2025 : Tabla de contenido Revista EIA No. 43 |
publisher |
Fondo Editorial EIA - Universidad EIA |
ispartofjournal |
Revista EIA |
source |
https://revistas.eia.edu.co/index.php/reveia/article/view/1842 |
language |
Español |
format |
Article |
rights |
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0. https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Revista EIA - 2024 |
references |
González-Delgado, Á.D., Tejada-Tovar, C. and Villabona-Ortíz, A. (2022) ‘Parametric Sensitivity Analysis of Chromium (Vi) Adsorption using Theobroma Cacao L Biomass via Process Simulation’, Chemical Engineering Transactions, 92(January), pp. 535–540. Available at: https://doi.org/10.3303/CET2292090. Ministerio de Ambiente y Desarrollo Sostenible (2015) ‘Resolucion 631 de 2015 vertimientos minambiente.pdf’, p. 62. Nieva, A.D., Andres, J.C.S. and Gonzales, K.P. (2018) ‘Simulated biosorption of Cu2+ in aqueous solutions using Cucumis melo VAR. cantalupensis’, IOP Conference Series: Earth and Environmental Science, 191(1). Available at: https://doi.org/10.1088/1755-1315/191/1/012035. Marcantonio, V., Bocci, E., Ouwelties, J.P., Del Zotto, L. and Monarca, D. (2020) ‘Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus’, International Journal of Hydrogen Energy, 45(11), pp. 6651–6662. Available at: https://doi.org/10.1016/j.ijhydene.2019.12.142. Mansa, R.F., Ting, M.L. and Patrick, A.O. (2021) ‘Simulation of Lead Removal Using Palm Kernel Shell Activated Carbon in a Packed Bed Column’. Lara, J. Tejada, C., Villabona, A., Arrieta, A. and Granados-Conde. C. (2016) ‘Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao’, Revista ION, 29(2), pp. 113–124. Available at: https://doi.org/: http://dx.doi.org/10.18273/revion.v29n2-2016009. Koua, B.K., Koffi, P.M.E. and Gbaha, P. (2019) ‘Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans’, Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. Available at: https://doi.org/10.1016/j.jssas.2017.01.002. Gupta, B., Mishra, A., Singh, R. and Thakur, I.S. (2021) ‘Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent’, Environmental Technology and Innovation, 21, p. 101278. Available at: https://doi.org/10.1016/j.eti.2020.101278. Fouad, M.R. (2023) ‘Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil’, Current Chemistry Letters, 12(1), pp. 207–216. Available at: https://doi.org/10.5267/j.ccl.2022.8.003. Oliveira, R.F., Pacheco-Nunes, K.G., Jurado, I.V., Benício-Amador, I.C., Estumano, D.C. and Féris, L.A. (2020) ‘Cr (VI) adsorption in batch and continuous scale: A mathematical and experimental approach for operational parameters prediction’, Environmental Technology and Innovation, 20, p. 101092. Available at: https://doi.org/10.1016/j.eti.2020.101092. Durán, I., Rubiera, F. and Pevida, C. (2022) ‘Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures’, Chemical Engineering Journal, 428. Available at: https://doi.org/10.1016/j.cej.2021.132564. Dixon, A.G. (1988) ‘Correlations for wall and particle shape effects on fixed bed bulk voidage’, The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. Available at: https://doi.org/10.1002/cjce.5450660501. Benyahia, F. and O’Neill, K.E. (2005) ‘Enhanced voidage correlations for packed beds of various particle shapes and sizes’, Particulate Science and Technology, 23(2), pp. 169–177. Available at: https://doi.org/10.1080/02726350590922242. Bahrun, M.H.V., Kamin, Z., Anisuzzaman, S.M. and Bono, A. (2021) ‘Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column’, Journal of Engineering Science and Technology, 16(2), pp. 1213–1231. Babuji, P., Thirumalaisamy, S., Duraisamy, K. and Periyasamy, G. (2023) ‘Human Health Risks due to Exposure to Water Pollution: A Review’, Water 2023, Vol. 15, Page 2532, 15(14), p. 2532. Available at: https://doi.org/10.3390/W15142532. Agarwal, A., Upadhyay, U., Sreedhar, I. and Anitha, K.L. (2022) ‘Simulation studies of Cu (II) removal from aqueous solution using olive stone’, Cleaner Materials, 5, p. 100128. Available at: https://doi.org/10.1016/j.clema.2022.100128. Nnaji, N.D. Onyeaka, H., Miri, T. and Ugwa, C. (2023) ‘Bioaccumulation for heavy metal removal: a review’, SN Applied Sciences, 5(5), pp. 1–12. Available at: https://doi.org/10.1007/S42452-023-05351-6/METRICS. Patel, H. (2020) ‘Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder’, Scientific Reports, 10(1), pp. 1–12. Available at: https://doi.org/10.1038/s41598-020-72583-6. Sánchez, A.P., Sánchez, E.J.P. and Silva, R.M.S. (2019) ‘Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator’, Ingeniare, 27(1), pp. 142–150. Available at: https://doi.org/10.4067/S0718-33052019000100142. Wang, J. and Guo, X. (2020) ‘Adsorption isotherm models: Classification, physical meaning, application and solving method’, Chemosphere, 258, p. 127279. Available at: https://doi.org/10.1016/j.chemosphere.2020.127279. Upadhyay, U. Gupta, S., Agarwal, A., Sreedhar, I and Anitha, K. (2021) ‘Process Optimization at an Industrial Scale in the adsorptive removal of Cd2+ ions using Dolochar via Response Surface Methodology’, Environmental Science and Pollution Research, pp. 0–27. Available at: https://doi.org/10.1007/s11356-021-17216-9. Tovar, C.T., Ortiz, Á.V. and Villadiego, M.J. (2017) ‘Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente.’, Rev. U.D.C.A Act. & Div. Cient., 20(1), pp. 139–147. Tejada-Tovar, C., Villabona-Ortíz, A. and González-Delgado, A. (2022) ‘Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks’, Materials, 15(19). Available at: https://doi.org/10.3390/ma15196937. Sultana, S., Islam, K., Hasan, M.A., Khan, H.M.J., Khan, M.A.R., Deb, A., Al Raihan, M. and Rahman, M. (2022) ‘Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives’, Environmental Nanotechnology, Monitoring and Management, 17(May 2021), p. 100651. Available at: https://doi.org/10.1016/j.enmm.2022.100651. Selimin, M.A., Latif, A., Er, Y., Muhamad, M., Basri, H. and Lee, T. (2021) ‘Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal’, Materials Today: Proceedings [Preprint]. Available at: https://doi.org/10.1016/J.MATPR.2021.10.502. |
type_driver |
info:eu-repo/semantics/article |
type_coar |
http://purl.org/coar/resource_type/c_2df8fbb1 |
type_version |
info:eu-repo/semantics/publishedVersion |
type_coarversion |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
type_content |
Text |
publishDate |
2025-01-01 |
date_accessioned |
2025-01-01 10:43:22 |
date_available |
2025-01-01 10:43:22 |
url |
https://revistas.eia.edu.co/index.php/reveia/article/view/1842 |
url_doi |
https://doi.org/10.24050/reia.v22i43.1842 |
issn |
1794-1237 |
eissn |
2463-0950 |
doi |
10.24050/reia.v22i43.1842 |
citationstartpage |
4302 pp. 1 |
citationendpage |
15 |
url3_str_mv |
https://revistas.eia.edu.co/index.php/reveia/article/download/1842/1635 |
_version_ |
1833343128592973824 |