Titulo:

Estudio de simulación de la eliminación de CR (VI) en aguas residualess
.

Sumario:

La adsorción es una técnica de superficie que es empleada para remover contaminantes como los metales pesados utilizando materiales orgánicos como bioadsorbentes. La mayoría de los estudios realizados de adsorción se han llevado a cabo a nivel de laboratorio por lo cual son muy pocos los estudios realizados que buscan predecir el comportamiento del proceso y la eficacia del adsorbente a nivel industrial. Por lo tanto, el objetivo del presente estudio es utilizar herramientas computacionales para modelar una columna de adsorción empacada a escala industrial para remover Cr (VI) en solución aprovechando la biomasa a base de Theobroma cacao L como material adsorbente. Para ello, se utilizó el software Aspen Adsorption para realizar varias simu... Ver más

Guardado en:

1794-1237

2463-0950

22

2025-01-01

4302 pp. 1

15

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Revista EIA - 2024

id metarevistapublica_eia_revistaeia_10-article-1842
record_format ojs
spelling Estudio de simulación de la eliminación de CR (VI) en aguas residualess
González-Delgado, Á.D., Tejada-Tovar, C. and Villabona-Ortíz, A. (2022) ‘Parametric Sensitivity Analysis of Chromium (Vi) Adsorption using Theobroma Cacao L Biomass via Process Simulation’, Chemical Engineering Transactions, 92(January), pp. 535–540. Available at: https://doi.org/10.3303/CET2292090.
Ministerio de Ambiente y Desarrollo Sostenible (2015) ‘Resolucion 631 de 2015 vertimientos minambiente.pdf’, p. 62. Nieva, A.D., Andres, J.C.S. and Gonzales, K.P. (2018) ‘Simulated biosorption of Cu2+ in aqueous solutions using Cucumis melo VAR. cantalupensis’, IOP Conference Series: Earth and Environmental Science, 191(1). Available at: https://doi.org/10.1088/1755-1315/191/1/012035.
Marcantonio, V., Bocci, E., Ouwelties, J.P., Del Zotto, L. and Monarca, D. (2020) ‘Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus’, International Journal of Hydrogen Energy, 45(11), pp. 6651–6662. Available at: https://doi.org/10.1016/j.ijhydene.2019.12.142.
Mansa, R.F., Ting, M.L. and Patrick, A.O. (2021) ‘Simulation of Lead Removal Using Palm Kernel Shell Activated Carbon in a Packed Bed Column’.
Lara, J. Tejada, C., Villabona, A., Arrieta, A. and Granados-Conde. C. (2016) ‘Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao’, Revista ION, 29(2), pp. 113–124. Available at: https://doi.org/: http://dx.doi.org/10.18273/revion.v29n2-2016009.
Koua, B.K., Koffi, P.M.E. and Gbaha, P. (2019) ‘Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans’, Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. Available at: https://doi.org/10.1016/j.jssas.2017.01.002.
Gupta, B., Mishra, A., Singh, R. and Thakur, I.S. (2021) ‘Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent’, Environmental Technology and Innovation, 21, p. 101278. Available at: https://doi.org/10.1016/j.eti.2020.101278.
Fouad, M.R. (2023) ‘Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil’, Current Chemistry Letters, 12(1), pp. 207–216. Available at: https://doi.org/10.5267/j.ccl.2022.8.003.
Oliveira, R.F., Pacheco-Nunes, K.G., Jurado, I.V., Benício-Amador, I.C., Estumano, D.C. and Féris, L.A. (2020) ‘Cr (VI) adsorption in batch and continuous scale: A mathematical and experimental approach for operational parameters prediction’, Environmental Technology and Innovation, 20, p. 101092. Available at: https://doi.org/10.1016/j.eti.2020.101092.
Durán, I., Rubiera, F. and Pevida, C. (2022) ‘Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures’, Chemical Engineering Journal, 428. Available at: https://doi.org/10.1016/j.cej.2021.132564.
Dixon, A.G. (1988) ‘Correlations for wall and particle shape effects on fixed bed bulk voidage’, The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. Available at: https://doi.org/10.1002/cjce.5450660501.
Benyahia, F. and O’Neill, K.E. (2005) ‘Enhanced voidage correlations for packed beds of various particle shapes and sizes’, Particulate Science and Technology, 23(2), pp. 169–177. Available at: https://doi.org/10.1080/02726350590922242.
Bahrun, M.H.V., Kamin, Z., Anisuzzaman, S.M. and Bono, A. (2021) ‘Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column’, Journal of Engineering Science and Technology, 16(2), pp. 1213–1231.
Babuji, P., Thirumalaisamy, S., Duraisamy, K. and Periyasamy, G. (2023) ‘Human Health Risks due to Exposure to Water Pollution: A Review’, Water 2023, Vol. 15, Page 2532, 15(14), p. 2532. Available at: https://doi.org/10.3390/W15142532.
Agarwal, A., Upadhyay, U., Sreedhar, I. and Anitha, K.L. (2022) ‘Simulation studies of Cu (II) removal from aqueous solution using olive stone’, Cleaner Materials, 5, p. 100128. Available at: https://doi.org/10.1016/j.clema.2022.100128.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Nnaji, N.D. Onyeaka, H., Miri, T. and Ugwa, C. (2023) ‘Bioaccumulation for heavy metal removal: a review’, SN Applied Sciences, 5(5), pp. 1–12. Available at: https://doi.org/10.1007/S42452-023-05351-6/METRICS.
Patel, H. (2020) ‘Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder’, Scientific Reports, 10(1), pp. 1–12. Available at: https://doi.org/10.1038/s41598-020-72583-6.
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/resource_type/c_2df8fbb1
Text
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/publishedVersion
http://purl.org/redcol/resource_type/ART
http://purl.org/coar/resource_type/c_6501
Sánchez, A.P., Sánchez, E.J.P. and Silva, R.M.S. (2019) ‘Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator’, Ingeniare, 27(1), pp. 142–150. Available at: https://doi.org/10.4067/S0718-33052019000100142.
info:eu-repo/semantics/article
Wang, J. and Guo, X. (2020) ‘Adsorption isotherm models: Classification, physical meaning, application and solving method’, Chemosphere, 258, p. 127279. Available at: https://doi.org/10.1016/j.chemosphere.2020.127279.  
Upadhyay, U. Gupta, S., Agarwal, A., Sreedhar, I and Anitha, K. (2021) ‘Process Optimization at an Industrial Scale in the adsorptive removal of Cd2+ ions using Dolochar via Response Surface Methodology’, Environmental Science and Pollution Research, pp. 0–27. Available at: https://doi.org/10.1007/s11356-021-17216-9.
Tovar, C.T., Ortiz, Á.V. and Villadiego, M.J. (2017) ‘Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente.’, Rev. U.D.C.A Act. & Div. Cient., 20(1), pp. 139–147.
Tejada-Tovar, C., Villabona-Ortíz, A. and González-Delgado, A. (2022) ‘Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks’, Materials, 15(19). Available at: https://doi.org/10.3390/ma15196937.
Sultana, S., Islam, K., Hasan, M.A., Khan, H.M.J., Khan, M.A.R., Deb, A., Al Raihan, M. and Rahman, M. (2022) ‘Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives’, Environmental Nanotechnology, Monitoring and Management, 17(May 2021), p. 100651. Available at: https://doi.org/10.1016/j.enmm.2022.100651.
Selimin, M.A., Latif, A., Er, Y., Muhamad, M., Basri, H. and Lee, T. (2021) ‘Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal’, Materials Today: Proceedings [Preprint]. Available at: https://doi.org/10.1016/J.MATPR.2021.10.502.
Revista EIA - 2024
Español
https://revistas.eia.edu.co/index.php/reveia/article/view/1842
Núm. 43 , Año 2025 : Tabla de contenido Revista EIA No. 43
La adsorción es una técnica de superficie que es empleada para remover contaminantes como los metales pesados utilizando materiales orgánicos como bioadsorbentes. La mayoría de los estudios realizados de adsorción se han llevado a cabo a nivel de laboratorio por lo cual son muy pocos los estudios realizados que buscan predecir el comportamiento del proceso y la eficacia del adsorbente a nivel industrial. Por lo tanto, el objetivo del presente estudio es utilizar herramientas computacionales para modelar una columna de adsorción empacada a escala industrial para remover Cr (VI) en solución aprovechando la biomasa a base de Theobroma cacao L como material adsorbente. Para ello, se utilizó el software Aspen Adsorption para realizar varias simulaciones de una columna de adsorción a escala industrial con diferentes configuraciones para obtener una evaluación paramétrica empleando los modelos isotérmicos Langmuir y Freundlich con el modelo cinético de Resistencia Global Lineal (LDF). Los resultados obtenidos muestran que, el modelo Langmuir-LDF presentó eficiencias de adsorción de hasta 96% mientras que, el modelo Freundlich-LDF hasta el 97%. Por otro lado, las condiciones de simulación de la columna de adsorción que presentaron los mejores resultados para ambos casos fueron una altura de la columna de 4 m, concentración inicial de Cr (VI) de 2000 mg/L, y caudal de entrada de 100 m3/día. Este estudio se presenta como una forma novedosa en el campo de la ingeniería sobre como las herramientas computaciones posee la capacidad de predecir el posible comportamiento de columnas de adsorción empacadas con biomasas a base de residuos orgánicos.
Tejada Tovar, Candelaria Nahir
Adsorción
Biomateriales
Cromo (VI)
Cinética
Curvas de ruptura
Evaluación
Parámetros
Simulación
Tratamiento de Aguas
22
43
Isotermas
Artículo de revista
application/pdf
Revista EIA
Fondo Editorial EIA - Universidad EIA
Publication
Simulation
Evaluation
Adsorption is a surface technique that is used to remove contaminants such as heavy metals using organic materials as bioadsorbents. Most of the adsorption studies have been carried out at the laboratory level, so there are very few studies that seek to predict the behavior of the process and the efficiency of the adsorbent at the industrial level. Therefore, the objective of the present study is to use computational tools to model an adsorption column packed at industrial scale to remove Cr (VI) in solution using Theobroma cacao L biomass as adsorbent material. For this purpose, Aspen Adsorption software was used to perform several simulations of an industrial scale adsorption column with different configurations to obtain a parametric evaluation using the Langmuir and Freundlich isothermal models with the Linear Global Resistance (LDF) kinetic model. The results obtained show that the Langmuir-LDF model presented adsorption efficiencies up to 96% while the Freundlich-LDF model up to 97%. On the other hand, the adsorption column simulation conditions that presented the best results for both cases were a column height of 4 m, initial Cr (VI) concentration of 2000 mg/L, and an inlet flow rate of 100 m3/day. This study is presented as a novel way in the engineering field on how computational tools have the ability to predict the possible behavior of adsorption columns packed with organic waste-based biomasses.
Simulation study of CR (VI) removal from wastewater
Adsorption
Biomaterials
Chromium (VI)
Kinetics
Breakthrough curve
Isotherms
Parameters
Journal article
Water Treatment
10.24050/reia.v22i43.1842
https://revistas.eia.edu.co/index.php/reveia/article/download/1842/1635
2463-0950
1794-1237
2025-01-01 10:43:22
4302 pp. 1
15
2025-01-01 10:43:22
https://doi.org/10.24050/reia.v22i43.1842
2025-01-01
institution UNIVERSIDAD EIA
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEIA/logo.png
country_str Colombia
collection Revista EIA
title Estudio de simulación de la eliminación de CR (VI) en aguas residualess
spellingShingle Estudio de simulación de la eliminación de CR (VI) en aguas residualess
Tejada Tovar, Candelaria Nahir
Adsorción
Biomateriales
Cromo (VI)
Cinética
Curvas de ruptura
Evaluación
Parámetros
Simulación
Tratamiento de Aguas
Isotermas
Simulation
Evaluation
Adsorption
Biomaterials
Chromium (VI)
Kinetics
Breakthrough curve
Isotherms
Parameters
Water Treatment
title_short Estudio de simulación de la eliminación de CR (VI) en aguas residualess
title_full Estudio de simulación de la eliminación de CR (VI) en aguas residualess
title_fullStr Estudio de simulación de la eliminación de CR (VI) en aguas residualess
title_full_unstemmed Estudio de simulación de la eliminación de CR (VI) en aguas residualess
title_sort estudio de simulación de la eliminación de cr (vi) en aguas residualess
title_eng Simulation study of CR (VI) removal from wastewater
description La adsorción es una técnica de superficie que es empleada para remover contaminantes como los metales pesados utilizando materiales orgánicos como bioadsorbentes. La mayoría de los estudios realizados de adsorción se han llevado a cabo a nivel de laboratorio por lo cual son muy pocos los estudios realizados que buscan predecir el comportamiento del proceso y la eficacia del adsorbente a nivel industrial. Por lo tanto, el objetivo del presente estudio es utilizar herramientas computacionales para modelar una columna de adsorción empacada a escala industrial para remover Cr (VI) en solución aprovechando la biomasa a base de Theobroma cacao L como material adsorbente. Para ello, se utilizó el software Aspen Adsorption para realizar varias simulaciones de una columna de adsorción a escala industrial con diferentes configuraciones para obtener una evaluación paramétrica empleando los modelos isotérmicos Langmuir y Freundlich con el modelo cinético de Resistencia Global Lineal (LDF). Los resultados obtenidos muestran que, el modelo Langmuir-LDF presentó eficiencias de adsorción de hasta 96% mientras que, el modelo Freundlich-LDF hasta el 97%. Por otro lado, las condiciones de simulación de la columna de adsorción que presentaron los mejores resultados para ambos casos fueron una altura de la columna de 4 m, concentración inicial de Cr (VI) de 2000 mg/L, y caudal de entrada de 100 m3/día. Este estudio se presenta como una forma novedosa en el campo de la ingeniería sobre como las herramientas computaciones posee la capacidad de predecir el posible comportamiento de columnas de adsorción empacadas con biomasas a base de residuos orgánicos.
description_eng Adsorption is a surface technique that is used to remove contaminants such as heavy metals using organic materials as bioadsorbents. Most of the adsorption studies have been carried out at the laboratory level, so there are very few studies that seek to predict the behavior of the process and the efficiency of the adsorbent at the industrial level. Therefore, the objective of the present study is to use computational tools to model an adsorption column packed at industrial scale to remove Cr (VI) in solution using Theobroma cacao L biomass as adsorbent material. For this purpose, Aspen Adsorption software was used to perform several simulations of an industrial scale adsorption column with different configurations to obtain a parametric evaluation using the Langmuir and Freundlich isothermal models with the Linear Global Resistance (LDF) kinetic model. The results obtained show that the Langmuir-LDF model presented adsorption efficiencies up to 96% while the Freundlich-LDF model up to 97%. On the other hand, the adsorption column simulation conditions that presented the best results for both cases were a column height of 4 m, initial Cr (VI) concentration of 2000 mg/L, and an inlet flow rate of 100 m3/day. This study is presented as a novel way in the engineering field on how computational tools have the ability to predict the possible behavior of adsorption columns packed with organic waste-based biomasses.
author Tejada Tovar, Candelaria Nahir
author_facet Tejada Tovar, Candelaria Nahir
topicspa_str_mv Adsorción
Biomateriales
Cromo (VI)
Cinética
Curvas de ruptura
Evaluación
Parámetros
Simulación
Tratamiento de Aguas
Isotermas
topic Adsorción
Biomateriales
Cromo (VI)
Cinética
Curvas de ruptura
Evaluación
Parámetros
Simulación
Tratamiento de Aguas
Isotermas
Simulation
Evaluation
Adsorption
Biomaterials
Chromium (VI)
Kinetics
Breakthrough curve
Isotherms
Parameters
Water Treatment
topic_facet Adsorción
Biomateriales
Cromo (VI)
Cinética
Curvas de ruptura
Evaluación
Parámetros
Simulación
Tratamiento de Aguas
Isotermas
Simulation
Evaluation
Adsorption
Biomaterials
Chromium (VI)
Kinetics
Breakthrough curve
Isotherms
Parameters
Water Treatment
citationvolume 22
citationissue 43
citationedition Núm. 43 , Año 2025 : Tabla de contenido Revista EIA No. 43
publisher Fondo Editorial EIA - Universidad EIA
ispartofjournal Revista EIA
source https://revistas.eia.edu.co/index.php/reveia/article/view/1842
language Español
format Article
rights Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Revista EIA - 2024
references González-Delgado, Á.D., Tejada-Tovar, C. and Villabona-Ortíz, A. (2022) ‘Parametric Sensitivity Analysis of Chromium (Vi) Adsorption using Theobroma Cacao L Biomass via Process Simulation’, Chemical Engineering Transactions, 92(January), pp. 535–540. Available at: https://doi.org/10.3303/CET2292090.
Ministerio de Ambiente y Desarrollo Sostenible (2015) ‘Resolucion 631 de 2015 vertimientos minambiente.pdf’, p. 62. Nieva, A.D., Andres, J.C.S. and Gonzales, K.P. (2018) ‘Simulated biosorption of Cu2+ in aqueous solutions using Cucumis melo VAR. cantalupensis’, IOP Conference Series: Earth and Environmental Science, 191(1). Available at: https://doi.org/10.1088/1755-1315/191/1/012035.
Marcantonio, V., Bocci, E., Ouwelties, J.P., Del Zotto, L. and Monarca, D. (2020) ‘Evaluation of sorbents for high temperature removal of tars, hydrogen sulphide, hydrogen chloride and ammonia from biomass-derived syngas by using Aspen Plus’, International Journal of Hydrogen Energy, 45(11), pp. 6651–6662. Available at: https://doi.org/10.1016/j.ijhydene.2019.12.142.
Mansa, R.F., Ting, M.L. and Patrick, A.O. (2021) ‘Simulation of Lead Removal Using Palm Kernel Shell Activated Carbon in a Packed Bed Column’.
Lara, J. Tejada, C., Villabona, A., Arrieta, A. and Granados-Conde. C. (2016) ‘Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao’, Revista ION, 29(2), pp. 113–124. Available at: https://doi.org/: http://dx.doi.org/10.18273/revion.v29n2-2016009.
Koua, B.K., Koffi, P.M.E. and Gbaha, P. (2019) ‘Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans’, Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. Available at: https://doi.org/10.1016/j.jssas.2017.01.002.
Gupta, B., Mishra, A., Singh, R. and Thakur, I.S. (2021) ‘Fabrication of calcite based biocomposites for catalytic removal of heavy metals from electroplating industrial effluent’, Environmental Technology and Innovation, 21, p. 101278. Available at: https://doi.org/10.1016/j.eti.2020.101278.
Fouad, M.R. (2023) ‘Physical characteristics and Freundlich model of adsorption and desorption isotherm for fipronil in six types of Egyptian soil’, Current Chemistry Letters, 12(1), pp. 207–216. Available at: https://doi.org/10.5267/j.ccl.2022.8.003.
Oliveira, R.F., Pacheco-Nunes, K.G., Jurado, I.V., Benício-Amador, I.C., Estumano, D.C. and Féris, L.A. (2020) ‘Cr (VI) adsorption in batch and continuous scale: A mathematical and experimental approach for operational parameters prediction’, Environmental Technology and Innovation, 20, p. 101092. Available at: https://doi.org/10.1016/j.eti.2020.101092.
Durán, I., Rubiera, F. and Pevida, C. (2022) ‘Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures’, Chemical Engineering Journal, 428. Available at: https://doi.org/10.1016/j.cej.2021.132564.
Dixon, A.G. (1988) ‘Correlations for wall and particle shape effects on fixed bed bulk voidage’, The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. Available at: https://doi.org/10.1002/cjce.5450660501.
Benyahia, F. and O’Neill, K.E. (2005) ‘Enhanced voidage correlations for packed beds of various particle shapes and sizes’, Particulate Science and Technology, 23(2), pp. 169–177. Available at: https://doi.org/10.1080/02726350590922242.
Bahrun, M.H.V., Kamin, Z., Anisuzzaman, S.M. and Bono, A. (2021) ‘Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column’, Journal of Engineering Science and Technology, 16(2), pp. 1213–1231.
Babuji, P., Thirumalaisamy, S., Duraisamy, K. and Periyasamy, G. (2023) ‘Human Health Risks due to Exposure to Water Pollution: A Review’, Water 2023, Vol. 15, Page 2532, 15(14), p. 2532. Available at: https://doi.org/10.3390/W15142532.
Agarwal, A., Upadhyay, U., Sreedhar, I. and Anitha, K.L. (2022) ‘Simulation studies of Cu (II) removal from aqueous solution using olive stone’, Cleaner Materials, 5, p. 100128. Available at: https://doi.org/10.1016/j.clema.2022.100128.
Nnaji, N.D. Onyeaka, H., Miri, T. and Ugwa, C. (2023) ‘Bioaccumulation for heavy metal removal: a review’, SN Applied Sciences, 5(5), pp. 1–12. Available at: https://doi.org/10.1007/S42452-023-05351-6/METRICS.
Patel, H. (2020) ‘Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder’, Scientific Reports, 10(1), pp. 1–12. Available at: https://doi.org/10.1038/s41598-020-72583-6.
Sánchez, A.P., Sánchez, E.J.P. and Silva, R.M.S. (2019) ‘Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator’, Ingeniare, 27(1), pp. 142–150. Available at: https://doi.org/10.4067/S0718-33052019000100142.
Wang, J. and Guo, X. (2020) ‘Adsorption isotherm models: Classification, physical meaning, application and solving method’, Chemosphere, 258, p. 127279. Available at: https://doi.org/10.1016/j.chemosphere.2020.127279.  
Upadhyay, U. Gupta, S., Agarwal, A., Sreedhar, I and Anitha, K. (2021) ‘Process Optimization at an Industrial Scale in the adsorptive removal of Cd2+ ions using Dolochar via Response Surface Methodology’, Environmental Science and Pollution Research, pp. 0–27. Available at: https://doi.org/10.1007/s11356-021-17216-9.
Tovar, C.T., Ortiz, Á.V. and Villadiego, M.J. (2017) ‘Remoción de cromo hexavalente sobre residuos de cacao pretratados químicamente.’, Rev. U.D.C.A Act. & Div. Cient., 20(1), pp. 139–147.
Tejada-Tovar, C., Villabona-Ortíz, A. and González-Delgado, A. (2022) ‘Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks’, Materials, 15(19). Available at: https://doi.org/10.3390/ma15196937.
Sultana, S., Islam, K., Hasan, M.A., Khan, H.M.J., Khan, M.A.R., Deb, A., Al Raihan, M. and Rahman, M. (2022) ‘Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives’, Environmental Nanotechnology, Monitoring and Management, 17(May 2021), p. 100651. Available at: https://doi.org/10.1016/j.enmm.2022.100651.
Selimin, M.A., Latif, A., Er, Y., Muhamad, M., Basri, H. and Lee, T. (2021) ‘Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal’, Materials Today: Proceedings [Preprint]. Available at: https://doi.org/10.1016/J.MATPR.2021.10.502.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_2df8fbb1
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2025-01-01
date_accessioned 2025-01-01 10:43:22
date_available 2025-01-01 10:43:22
url https://revistas.eia.edu.co/index.php/reveia/article/view/1842
url_doi https://doi.org/10.24050/reia.v22i43.1842
issn 1794-1237
eissn 2463-0950
doi 10.24050/reia.v22i43.1842
citationstartpage 4302 pp. 1
citationendpage 15
url3_str_mv https://revistas.eia.edu.co/index.php/reveia/article/download/1842/1635
_version_ 1833343128592973824