Titulo:

Visible Light Communication
.

Sumario:

This work presents a general and introductory review of visible light communication. Visible light communication or VLC refers to wireless communications using a spectral range from 380 to 780 nm for the transmission of information. This part of the optical-electromagnetic range presents some advantages to current wireless radio frequency technologies, as well as several challenges to its development and application. Different visible light communication systems have been developed for indoor, outdoor, domestic, and industrial fields where the luminaire performs two tasks: general lighting and data transmission, since this type of communication has important and valuable applications. Recently, research has been performed to improve each fu... Ver más

Guardado en:

2382-3399

2745-2220

10

2023-06-22

26

26

Universidad Ean - 2023

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

info:eu-repo/semantics/openAccess

http://purl.org/coar/access_right/c_abf2

id metarevistapublica_ean_revistaontare_54_article_3538
record_format ojs
institution UNIVERSIDAD EAN
thumbnail https://nuevo.metarevistas.org/UNIVERSIDADEAN/logo.png
country_str Colombia
collection Revista Ontare
title Visible Light Communication
spellingShingle Visible Light Communication
Gutiérrez, Juan Felipe
Quintero, Jesús María
Optical wireless communication
Visible Light Communication
Lighting emitting diode
photodiode
modulation
Optical wireless communication
Visible Light Communication
lighting emitting diode
photodiode
title_short Visible Light Communication
title_full Visible Light Communication
title_fullStr Visible Light Communication
title_full_unstemmed Visible Light Communication
title_sort visible light communication
title_eng Comunicación con luz visible
description This work presents a general and introductory review of visible light communication. Visible light communication or VLC refers to wireless communications using a spectral range from 380 to 780 nm for the transmission of information. This part of the optical-electromagnetic range presents some advantages to current wireless radio frequency technologies, as well as several challenges to its development and application. Different visible light communication systems have been developed for indoor, outdoor, domestic, and industrial fields where the luminaire performs two tasks: general lighting and data transmission, since this type of communication has important and valuable applications. Recently, research has been performed to improve each functional block’s performance that composes this kind of communication system. The incursion VLC poses challenges such as LED bandwidth limited by the carrier lifetime, the LED-Driver Linearity, it’s up-link; the general lighting infrastructure to the internet; and the dimming and general lighting performance. It is concluded that the incursion of Visible Light Communication into the already extended spectrum of wireless communications systems will complement and make it less harmful to our environment as international regulation has helped to improve this technology substantially. 
description_eng Este trabajo presenta una revisión general e introductoria de la comunicación de luz visible. La comunicación con luz visible o VLC (por sus siglas en inglés) se refiere a las comunicaciones inalámbricas que utilizan un rango espectral de 380 a 780 nm para la transmisión de información. Esta parte del rango óptico-electromagnético presentaalgunas ventajas para las tecnologías de radiofrecuencia inalámbrica actuales, así como varios desafíos para su desarrollo y aplicación. Se han desarrollado diferentes sistemas de comunicación de luz visible para el ámbito interior, exterior, doméstico e industrial, donde la luminaria realiza dos tareas: iluminación general y transmisión de datos, ya que este tipo de comunicación tiene importantes y valiosas aplicaciones. Recientemente, se han realizado investigaciones para mejorar el desempeño de cada bloque funcional que compone este tipo de sistema de comunicación. El VLC de incursión plantea desafíos como el ancho de banda de LED limitado por la vida útil del operador, la linealidad del controlador de LED, su enlace ascendente; la infraestructura de iluminación general a internet, y el rendimiento de la iluminación general y de atenuación. Se concluye que la incursión del VLC en el ya extendido espectro de los sistemas de comunicaciones inalámbricas complementará y hará menos nociva para nuestro medio ambiente, ya que la regulación internacional ha ayudado a mejorar sustancialmente esta tecnología.
author Gutiérrez, Juan Felipe
Quintero, Jesús María
author_facet Gutiérrez, Juan Felipe
Quintero, Jesús María
topic Optical wireless communication
Visible Light Communication
Lighting emitting diode
photodiode
modulation
Optical wireless communication
Visible Light Communication
lighting emitting diode
photodiode
topic_facet Optical wireless communication
Visible Light Communication
Lighting emitting diode
photodiode
modulation
Optical wireless communication
Visible Light Communication
lighting emitting diode
photodiode
topicspa_str_mv Optical wireless communication
Visible Light Communication
lighting emitting diode
photodiode
citationvolume 10
citationissue 1
citationedition Núm. 1 , Año 2022 : Avances en tecnología e innovación: Investigaciones y aplicaciones actuales
publisher Universidad Ean
ispartofjournal Revista Ontare
source https://journal.universidadean.edu.co/index.php/Revistao/article/view/3538
language eng
format Article
rights http://creativecommons.org/licenses/by-nc-nd/4.0
Universidad Ean - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
references_eng Agrawal, G. P. (2003). Fiber-Optic communication systems. Wiley. Afzalan, M., & Jazizadeh, F. (2019). Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes. ACM Computing Surveys (CSUR), 52(2), 1-36. https://dl.acm.org/doi/10.1145/3299769 Allycan Mapunda, G., Ramogomana, R., Marata, L., & Basutli, B. (2020). Indoor Visible Light Communication: A Tutorial and Survey. Wireless Communications and Mobile Computing, 2022, Article ID 8881305. https://doi.org/10.1155/2020/8881305 Alsulami, O. Z., Alresheedi, M. T., & Elmirghani, J. M. (2019, August). Infrared uplink design for visible light communication (VLC) systems with beam steering. In 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (pp. 57-60). IEEE. https://doi.org/10.1109/CSE/EUC.2019.00020 Alsulami, O. Z., Saeed, S. O., Mohamed, S. H., El-Gorashi, T. E., Alresheedi, M. T., & Elmirghani, J. M. (2020, July). Shared optical wireless cells for in-cabin aircraft links. In 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1-5). IEEE. https://doi.org/10.1109/ICTON51198.2020.9203203 Bhalerao, M., Sonavane, S., & Kumar, V. (2013). A survey of wireless communication using visible light. International Journal of Advances in En-gineering & Technology, 5(2), 188-197. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.8028&rep=rep1&type=pdf Boubezari, R., Le Minh, H., Ghassemlooy, Z., & Bouridane, A. (2016). Smart-phone camera based visible light communication. Journal of Lightwave Technology, 34 (17), 4121-4127. Bradby, I. (2008). Practical experience in radio frequency induced ignition risk assessment for comah/dsear compliance. Institution of chemical engineer’s symposium series, 154, 1-15. https://www.icheme.org/media/9756/xx-paper-62.pdf Butala, P. M., Chau, J. C., & Little, T. D. (2012). Metameric modulation for di use visible light communications with constant ambient lighting. In Optical wireless communications (iwow), 2012 international workshop on (pp. 1{3). https://doi.org/10.1109/IWOW.2012.6349697 Chavez-Burbano, P., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2021). Flickering-free distance-independent modulation scheme for OCC. Electronics, 10(9), 1103. https://www.mdpi.com/2079-9292/10/9/1103 Chen, S.-H., & Chow, C.-W. (2014). Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photonics Journal, 6(6), 1-6. https://doi.org/10.1109/JPHOT.2014.2374612 Chi, N., Zhou, Y., Wei, Y., & Hu, F. (2020). Visible light communication in 6G: Advances, challenges, and prospects. IEEE Vehicular Technology Magazine, 15(4), 93-102. https://doi.org/10.1109/MVT.2020.3017153 Chow, B. (2015). Assessing the impact of Wi-Fi radio frequency interference on mobile application quality of experience [Unpublished master’s thesis, University of Victoria]. http://hdl.handle.net/1828/6961 The CAMP Vehicle Safety Communications Consortium (2005). Vehicle safety communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC. https://rosap.ntl.bts.gov/view/dot/3925 Deepa, T., & Mathur, H. (2019). Performance analysis of digitized orthogonal frequency division multiplexing system for future wireless communication. Wireless Personal Communications, 109(4), 2239-2250. https://www.springerprofessional.de/en/performance-analysis-of-digitized-orthogonal-frequency-division-/17100402 Dimitrov, S., & Haas, H. (2015). Principles of LED light communications: Towards networked Li-Fi. Cambridge University Press. https://doi.org/10.1017/CBO9781107278929 Durukan, F., Güney, B. M., & Özen, A. (2019, July). A novel CSK modulated OFDM system for visible light communication. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 647-650. https://doi.org/10.1109/TSP.2019.8768872 El Gamal, M. M., Maheswar, R., Fayed, H. A., Aly, M. H., Ismail, N. E., & Mokhtar, A. (2021). Dark light visible light communication positioning system with received signal strength technique. Optical and Quantum Electronics, 53(9), 1-16. https://www.springerprofessional.de/en/dark-light-visible-light-communication-positioning-system-with-r/19610196 Elgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: potential and state-of-the-art. IEEE Communications Magazine, 49 (9), 56-62. https://doi.org/10.1109/MCOM.2011.6011734 Elgala, H., Mesleh, R., Haas, H., & Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. 2007 IEEE 65th Vehiclar Technology Conference-VTC2007-Spring,007. Vtc2007-18. https://doi.org/10.1109/VETECS.2007.451 Fattal, D., Fiorentino, M., Tan, M., Houng, D., Wang, S., & Beausoleil, R. G. (2008). Design of an efficient light-emitting diode with 10 GHz modulation bandwidth. Applied Physics Letters, 93(24), 243501. https://doi.org/10.1063/1.3046100 Gao, S. (2013). Performance study for indoor visible light communication systems [Unpublished master’s thesis, University of Ottawa]. https://ruor.uottawa.ca/bitstream/10393/23986/1/Gao_Shuo_2013_Thesis.pdf Graeme, J. (1995). Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, Inc. Grubor, J., Randel, S., Langer, K.-D., & Walewski, J. (2008). Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes. 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. https://doi.org/10.1109/CSNDSP.2008.4610769 Guo, J. N., Zhang, J., Xin, G., & Li, L. (2020, December). Constant transmission efficiency dimming control scheme for VLC systems. Photonics, 8(1), 7. https://doi.org/10.3390/photonics8010007 Gutierrez, J. F. (2018). Diseño e implementación de dos sistemas de comunicación con luz visible mediante las modulaciones OOK y CSK para análisis de desempeño de transmisión de datos e iluminación. [Unpublished master’s thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69483 Halsall, F. (2006). Computer networking and the Internet. Pearson Education India. IEEE Standards Association. (2019). IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications (IEEE Std 802.15.7-2018, Revision of IEEE Std 802.15.7-2011) (pp. 1-407). https://ieeexplore.ieee.org/document/8697198 Jani, M., Garg, P., & Gupta, A. (2019). Performance analysis of a mixed cooperative PLC–VLC system for indoor communication systems. IEEE Systems Journal, 14(1), 469-476. https://doi.org/10.1109/JSYST.2019.2911717 Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE , 85(2), 265-298. https://ee.stanford.edu/~jmk/pubs/proc.ieee.2.97.pdf Khalid, A., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-GB/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465-1473. https://doi.org/10.1109/JPHOT.2012.2210397 Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978. https://doi.org/10.1016/j.ijleo.2021.166978 Lapinsky, S. E., & Easty, A. C. (2006). Electromagnetic interference in critical care. Journal of Critical Care, 21(3), 267-270. https://doi.org/10.1016/j.jcrc.2006.03.010 Le Minh, H., O’Brien, D., & Faulkner, G. (2010). A gigabit/s indoor optical wireless system for home access networks. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), 532-536. https://doi.org/10.1109/CSNDSP16145.2010.5580358 Lee, C., Zhang, C., Cantore, M., Farrell, R. M., Oh, S. H., Margalith, T., Speck, J. S., Shuji, N., Bowers, J. E. & DenBaars, S. P. (2015). 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Optics express, 23(12), 16232-16237. https://doi.org/10.1364/OE.23.016232 Lee, Y. C., Lai, J. L., & Yu, C. H. (2016, April). The LED driver IC of visible light communication with high data rate and high efficiency. 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 1-4. https://doi.org/10.1109/VLSI-DAT.2016.7482534 Li, Y., Ghassemlooy, Z., Tang, X., Lin, B., & Zhang, Y. (2018). A VLC smartphone camera based indoor positioning system. IEEE Photonics Technology Letters, 30(13), 1171-1174. https://doi.org/10.1109/LPT.2018.2834930 Lin, Z., Jiang, M., & Tan, H. Z. (2018, August). Constellation design for complex colour shift keying aided optical OFDM systems. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2018.8691040 Liu, Y., Zheng, C.-T., Li, Y.-T., & Ye, W.-L. (2012). Portable Mbps point-to-point OOK-NRZ visible light communication devices based on white light-emitting diode illuminant. Microwave and Optical Technology Letters, 54(10), 2248-2252. https://doi.org/10.1002/mop.27052 Lu, X., Lu, C., Yu, W., Qiao, L., Liang, S., Lau, A. P. T., & Chi, N. (2019). Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Optics express, 27(5), 7822-7833. https://doi.org/10.1364/oe.27.007822 Ma, H., Lampe, L., & Hranilovic, S. (2013). Integration of indoor visible light and power line communication systems. 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, 291-296. https://people.ece.ubc.ca/lampe/Preprints/2013-VLC-PLC.pdf Malacara, D. (2002). Color vision and colorimetry: theory and applications (Vol. 2). SPIE Press. Ministerio de Minas y Energía (2010). Reglamento técnico de iluminación y alumbrado público. Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 32(10), 2053-2060. https://doi.org/10.1109/JLT.2014.2314358 Morgan, D. (1994). A handbook for EMC testing and measurement (Vol. 8). The Institution of Engineering and Technology. NASA. (2013). Laser communication system sets record with data transmissions to and from moon. https://sservi.nasa.gov/articles/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from-moon/ Nguyen, D. T., Park, S., Chae, Y., & Park, Y. (2019). VLC/OCC hybrid optical wireless systems for versatile indoor applications. IEEE Access, 7, 22371-22376. https://doi.org/10.1109/ACCESS.2019.2898423 Ntogari, G., Kamalakis, T., Walewski, J., & Sphicopoulos, T. (2011). Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. Journal of Optical Communications and Networking, 3(1), 56-65. https://doi.org/10.1364/JOCN.3.000056 O’Brien, D. C., Faulkner, G., Le Minh, H., Bouchet, O., El Tabach, M., Wolf, M., Walewski, J. W., Randel, S., Nerreter, S. Franke, M. Langer, K.-D., Grubor, J., & Kamalakis, T. (2008). Home access networks using optical wireless trans-mission. 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://doi.org/10.1109/PIMRC.2008.4699864 O’Brien, D. C., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J. W., & Randel, S. (2008). Visible light communications: Challenges and possibilities. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://www.researchgate.net/profile/Walewski_Joachim/publication/224357544_Visible_light_communications_Challenges_and_possibilities/links/0912f50bf73fa1fa0e000000/Visible-light-communications-Challenges-and-possibilities.pdf Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047-2077. https://doi.org/10.1109/COMST.2015.2476474 Pham, N. Q., Rachim, V. P., & Chung, W. Y. (2019). High-accuracy VLC-based indoor positioning system using multi-level modulation. Optics Express, 27(5), 7568-7584. https://doi.org/10.1364/OE.27.007568 Rahman, M. S., Haque, M. M., & Kim, K.-D. (2011). Indoor positioning by led visible light communication and image sensors. International Journal of Electrical and Computer Engineering, 1(2), 161-170. http://dx.doi.org/10.11591/ijece.v1i2.165 Rahman, M. H., Sejan, M. A. S., & Chung, W. Y. (2021, February). Long-Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Modulation Technique. In Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea, November 24–26, 2020, Proceedings, Part II (pp. 53-62). Cham: Springer International Publishing. Rajagopal, S., Roberts, R. D., & Lim, S.-K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72-82. https://doi.org/10.1109/MCOM.2012.6163585 Saeed, N., Guo, S., Park, K. H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Optical camera communications: Survey, use cases, challenges, and future trends. Physical Communication, 37, 100900. https://doi.org/10.1016/j.phycom.2019.100900 Shaaban, K., Shamim, M. H. M., & Abdur-Rouf, K. (2021). Visible light communication for intelligent transportation systems: A review of the latest technologies. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 483-492. https://doi.org/10.1016/j.jtte.2021.04.005 Singh, R. (2015). Physical layer techniques for indoor wireless visible light com-munications [Unpublished doctoral dissertation, University of Sheffield]. https://etheses.whiterose.ac.uk/13818/ Tuo, J., Shams, H., & Corbett, B. (2012). Visible light communication by using commercial phosphor based white LEDs. IET Irish Signals and Systems Conference (ISSC 2012), 1-4. https://doi.org/10.1049/ic.2012.0227 Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (2016). Optical wireless communications: An emerging technology. Springer. https://doi.org/10.1007/978-3-319-30201-0 Uysal, M., & Nouri, H. (2014). Optical wireless communications: An emerging technology. 2014 16th International Conference on Transparent Optical Networks (ICTON), 1-7. https://doi.org/10.1109/ICTON.2014.6876267 VLCC. (2007). Visible light communications consortium 2007. http://www.vlcc.net Wang, X., & Shen, J. (2019, May). Machine learning and its applications in visible light communication based indoor positioning. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 274-277. https://doi.org/10.1109/HPBDIS.2019.8735490 Zadobrischi, E., Avătămănitei, S. A., Căilean, A. M., Dimian, M., & Negru, M. (2019, September). Toward a hybrid vehicle communication platform based on VLC and DSRC technologies. 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), 103-107. https://doi.org/10.1109/ICCP48234.2019.8959672 Zhang, D.-F., Zhu, Y.-J., & Zhang, Y.-Y. (2013a). Multi-LED phase-shifted OOK modulation based visible light communication systems. IEEE Photonics Technology Letters, 25(23), 2251-2254. https://doi.org/10.1109/LPT.2013.2283583 Zhang, W., & Kavehrad, M. (2013b, February). Comparison of VLC-based indoor positioning techniques. Broadband access communication technologies VII, 8645, 86450M. https://doi.org/10.1117/12.2001569 Zhang, X., Babar, Z., Petropoulos, P., Haas, H., & Hanzo, L. (2021). The evolution of optical OFDM. IEEE Communications Surveys & Tutorials, 23(3), 1430-1457. https://doi.org/10.1109/COMST.2021.3065907
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2023-06-22
date_accessioned 2023-06-22T00:00:00Z
date_available 2023-06-22T00:00:00Z
url https://journal.universidadean.edu.co/index.php/Revistao/article/view/3538
url_doi https://doi.org/10.21158/23823399.v10.n1.2022.3538
issn 2382-3399
eissn 2745-2220
doi 10.21158/23823399.v10.n1.2022.3538
citationstartpage 26
citationendpage 26
url2_str_mv https://journal.universidadean.edu.co/index.php/Revistao/article/download/3538/2346
_version_ 1811200247438770176
spelling Visible Light Communication
Comunicación con luz visible
This work presents a general and introductory review of visible light communication. Visible light communication or VLC refers to wireless communications using a spectral range from 380 to 780 nm for the transmission of information. This part of the optical-electromagnetic range presents some advantages to current wireless radio frequency technologies, as well as several challenges to its development and application. Different visible light communication systems have been developed for indoor, outdoor, domestic, and industrial fields where the luminaire performs two tasks: general lighting and data transmission, since this type of communication has important and valuable applications. Recently, research has been performed to improve each functional block’s performance that composes this kind of communication system. The incursion VLC poses challenges such as LED bandwidth limited by the carrier lifetime, the LED-Driver Linearity, it’s up-link; the general lighting infrastructure to the internet; and the dimming and general lighting performance. It is concluded that the incursion of Visible Light Communication into the already extended spectrum of wireless communications systems will complement and make it less harmful to our environment as international regulation has helped to improve this technology substantially. 
Este trabajo presenta una revisión general e introductoria de la comunicación de luz visible. La comunicación con luz visible o VLC (por sus siglas en inglés) se refiere a las comunicaciones inalámbricas que utilizan un rango espectral de 380 a 780 nm para la transmisión de información. Esta parte del rango óptico-electromagnético presentaalgunas ventajas para las tecnologías de radiofrecuencia inalámbrica actuales, así como varios desafíos para su desarrollo y aplicación. Se han desarrollado diferentes sistemas de comunicación de luz visible para el ámbito interior, exterior, doméstico e industrial, donde la luminaria realiza dos tareas: iluminación general y transmisión de datos, ya que este tipo de comunicación tiene importantes y valiosas aplicaciones. Recientemente, se han realizado investigaciones para mejorar el desempeño de cada bloque funcional que compone este tipo de sistema de comunicación. El VLC de incursión plantea desafíos como el ancho de banda de LED limitado por la vida útil del operador, la linealidad del controlador de LED, su enlace ascendente; la infraestructura de iluminación general a internet, y el rendimiento de la iluminación general y de atenuación. Se concluye que la incursión del VLC en el ya extendido espectro de los sistemas de comunicaciones inalámbricas complementará y hará menos nociva para nuestro medio ambiente, ya que la regulación internacional ha ayudado a mejorar sustancialmente esta tecnología.
Gutiérrez, Juan Felipe
Quintero, Jesús María
Optical wireless communication
Visible Light Communication
VLC
Lighting emitting diode
photodiode
modulation
Optical wireless communication
Visible Light Communication
lighting emitting diode
photodiode
10
1
Núm. 1 , Año 2022 : Avances en tecnología e innovación: Investigaciones y aplicaciones actuales
Artículo de revista
Journal article
2023-06-22T00:00:00Z
2023-06-22T00:00:00Z
2023-06-22
application/pdf
Universidad Ean
Revista Ontare
2382-3399
2745-2220
https://journal.universidadean.edu.co/index.php/Revistao/article/view/3538
10.21158/23823399.v10.n1.2022.3538
https://doi.org/10.21158/23823399.v10.n1.2022.3538
eng
http://creativecommons.org/licenses/by-nc-nd/4.0
Universidad Ean - 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
26
26
Agrawal, G. P. (2003). Fiber-Optic communication systems. Wiley. Afzalan, M., & Jazizadeh, F. (2019). Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes. ACM Computing Surveys (CSUR), 52(2), 1-36. https://dl.acm.org/doi/10.1145/3299769 Allycan Mapunda, G., Ramogomana, R., Marata, L., & Basutli, B. (2020). Indoor Visible Light Communication: A Tutorial and Survey. Wireless Communications and Mobile Computing, 2022, Article ID 8881305. https://doi.org/10.1155/2020/8881305 Alsulami, O. Z., Alresheedi, M. T., & Elmirghani, J. M. (2019, August). Infrared uplink design for visible light communication (VLC) systems with beam steering. In 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (pp. 57-60). IEEE. https://doi.org/10.1109/CSE/EUC.2019.00020 Alsulami, O. Z., Saeed, S. O., Mohamed, S. H., El-Gorashi, T. E., Alresheedi, M. T., & Elmirghani, J. M. (2020, July). Shared optical wireless cells for in-cabin aircraft links. In 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1-5). IEEE. https://doi.org/10.1109/ICTON51198.2020.9203203 Bhalerao, M., Sonavane, S., & Kumar, V. (2013). A survey of wireless communication using visible light. International Journal of Advances in En-gineering & Technology, 5(2), 188-197. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.8028&rep=rep1&type=pdf Boubezari, R., Le Minh, H., Ghassemlooy, Z., & Bouridane, A. (2016). Smart-phone camera based visible light communication. Journal of Lightwave Technology, 34 (17), 4121-4127. Bradby, I. (2008). Practical experience in radio frequency induced ignition risk assessment for comah/dsear compliance. Institution of chemical engineer’s symposium series, 154, 1-15. https://www.icheme.org/media/9756/xx-paper-62.pdf Butala, P. M., Chau, J. C., & Little, T. D. (2012). Metameric modulation for di use visible light communications with constant ambient lighting. In Optical wireless communications (iwow), 2012 international workshop on (pp. 1{3). https://doi.org/10.1109/IWOW.2012.6349697 Chavez-Burbano, P., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2021). Flickering-free distance-independent modulation scheme for OCC. Electronics, 10(9), 1103. https://www.mdpi.com/2079-9292/10/9/1103 Chen, S.-H., & Chow, C.-W. (2014). Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photonics Journal, 6(6), 1-6. https://doi.org/10.1109/JPHOT.2014.2374612 Chi, N., Zhou, Y., Wei, Y., & Hu, F. (2020). Visible light communication in 6G: Advances, challenges, and prospects. IEEE Vehicular Technology Magazine, 15(4), 93-102. https://doi.org/10.1109/MVT.2020.3017153 Chow, B. (2015). Assessing the impact of Wi-Fi radio frequency interference on mobile application quality of experience [Unpublished master’s thesis, University of Victoria]. http://hdl.handle.net/1828/6961 The CAMP Vehicle Safety Communications Consortium (2005). Vehicle safety communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC. https://rosap.ntl.bts.gov/view/dot/3925 Deepa, T., & Mathur, H. (2019). Performance analysis of digitized orthogonal frequency division multiplexing system for future wireless communication. Wireless Personal Communications, 109(4), 2239-2250. https://www.springerprofessional.de/en/performance-analysis-of-digitized-orthogonal-frequency-division-/17100402 Dimitrov, S., & Haas, H. (2015). Principles of LED light communications: Towards networked Li-Fi. Cambridge University Press. https://doi.org/10.1017/CBO9781107278929 Durukan, F., Güney, B. M., & Özen, A. (2019, July). A novel CSK modulated OFDM system for visible light communication. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 647-650. https://doi.org/10.1109/TSP.2019.8768872 El Gamal, M. M., Maheswar, R., Fayed, H. A., Aly, M. H., Ismail, N. E., & Mokhtar, A. (2021). Dark light visible light communication positioning system with received signal strength technique. Optical and Quantum Electronics, 53(9), 1-16. https://www.springerprofessional.de/en/dark-light-visible-light-communication-positioning-system-with-r/19610196 Elgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: potential and state-of-the-art. IEEE Communications Magazine, 49 (9), 56-62. https://doi.org/10.1109/MCOM.2011.6011734 Elgala, H., Mesleh, R., Haas, H., & Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. 2007 IEEE 65th Vehiclar Technology Conference-VTC2007-Spring,007. Vtc2007-18. https://doi.org/10.1109/VETECS.2007.451 Fattal, D., Fiorentino, M., Tan, M., Houng, D., Wang, S., & Beausoleil, R. G. (2008). Design of an efficient light-emitting diode with 10 GHz modulation bandwidth. Applied Physics Letters, 93(24), 243501. https://doi.org/10.1063/1.3046100 Gao, S. (2013). Performance study for indoor visible light communication systems [Unpublished master’s thesis, University of Ottawa]. https://ruor.uottawa.ca/bitstream/10393/23986/1/Gao_Shuo_2013_Thesis.pdf Graeme, J. (1995). Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, Inc. Grubor, J., Randel, S., Langer, K.-D., & Walewski, J. (2008). Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes. 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. https://doi.org/10.1109/CSNDSP.2008.4610769 Guo, J. N., Zhang, J., Xin, G., & Li, L. (2020, December). Constant transmission efficiency dimming control scheme for VLC systems. Photonics, 8(1), 7. https://doi.org/10.3390/photonics8010007 Gutierrez, J. F. (2018). Diseño e implementación de dos sistemas de comunicación con luz visible mediante las modulaciones OOK y CSK para análisis de desempeño de transmisión de datos e iluminación. [Unpublished master’s thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69483 Halsall, F. (2006). Computer networking and the Internet. Pearson Education India. IEEE Standards Association. (2019). IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications (IEEE Std 802.15.7-2018, Revision of IEEE Std 802.15.7-2011) (pp. 1-407). https://ieeexplore.ieee.org/document/8697198 Jani, M., Garg, P., & Gupta, A. (2019). Performance analysis of a mixed cooperative PLC–VLC system for indoor communication systems. IEEE Systems Journal, 14(1), 469-476. https://doi.org/10.1109/JSYST.2019.2911717 Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE , 85(2), 265-298. https://ee.stanford.edu/~jmk/pubs/proc.ieee.2.97.pdf Khalid, A., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-GB/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465-1473. https://doi.org/10.1109/JPHOT.2012.2210397 Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978. https://doi.org/10.1016/j.ijleo.2021.166978 Lapinsky, S. E., & Easty, A. C. (2006). Electromagnetic interference in critical care. Journal of Critical Care, 21(3), 267-270. https://doi.org/10.1016/j.jcrc.2006.03.010 Le Minh, H., O’Brien, D., & Faulkner, G. (2010). A gigabit/s indoor optical wireless system for home access networks. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), 532-536. https://doi.org/10.1109/CSNDSP16145.2010.5580358 Lee, C., Zhang, C., Cantore, M., Farrell, R. M., Oh, S. H., Margalith, T., Speck, J. S., Shuji, N., Bowers, J. E. & DenBaars, S. P. (2015). 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Optics express, 23(12), 16232-16237. https://doi.org/10.1364/OE.23.016232 Lee, Y. C., Lai, J. L., & Yu, C. H. (2016, April). The LED driver IC of visible light communication with high data rate and high efficiency. 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 1-4. https://doi.org/10.1109/VLSI-DAT.2016.7482534 Li, Y., Ghassemlooy, Z., Tang, X., Lin, B., & Zhang, Y. (2018). A VLC smartphone camera based indoor positioning system. IEEE Photonics Technology Letters, 30(13), 1171-1174. https://doi.org/10.1109/LPT.2018.2834930 Lin, Z., Jiang, M., & Tan, H. Z. (2018, August). Constellation design for complex colour shift keying aided optical OFDM systems. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2018.8691040 Liu, Y., Zheng, C.-T., Li, Y.-T., & Ye, W.-L. (2012). Portable Mbps point-to-point OOK-NRZ visible light communication devices based on white light-emitting diode illuminant. Microwave and Optical Technology Letters, 54(10), 2248-2252. https://doi.org/10.1002/mop.27052 Lu, X., Lu, C., Yu, W., Qiao, L., Liang, S., Lau, A. P. T., & Chi, N. (2019). Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Optics express, 27(5), 7822-7833. https://doi.org/10.1364/oe.27.007822 Ma, H., Lampe, L., & Hranilovic, S. (2013). Integration of indoor visible light and power line communication systems. 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, 291-296. https://people.ece.ubc.ca/lampe/Preprints/2013-VLC-PLC.pdf Malacara, D. (2002). Color vision and colorimetry: theory and applications (Vol. 2). SPIE Press. Ministerio de Minas y Energía (2010). Reglamento técnico de iluminación y alumbrado público. Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 32(10), 2053-2060. https://doi.org/10.1109/JLT.2014.2314358 Morgan, D. (1994). A handbook for EMC testing and measurement (Vol. 8). The Institution of Engineering and Technology. NASA. (2013). Laser communication system sets record with data transmissions to and from moon. https://sservi.nasa.gov/articles/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from-moon/ Nguyen, D. T., Park, S., Chae, Y., & Park, Y. (2019). VLC/OCC hybrid optical wireless systems for versatile indoor applications. IEEE Access, 7, 22371-22376. https://doi.org/10.1109/ACCESS.2019.2898423 Ntogari, G., Kamalakis, T., Walewski, J., & Sphicopoulos, T. (2011). Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. Journal of Optical Communications and Networking, 3(1), 56-65. https://doi.org/10.1364/JOCN.3.000056 O’Brien, D. C., Faulkner, G., Le Minh, H., Bouchet, O., El Tabach, M., Wolf, M., Walewski, J. W., Randel, S., Nerreter, S. Franke, M. Langer, K.-D., Grubor, J., & Kamalakis, T. (2008). Home access networks using optical wireless trans-mission. 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://doi.org/10.1109/PIMRC.2008.4699864 O’Brien, D. C., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J. W., & Randel, S. (2008). Visible light communications: Challenges and possibilities. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://www.researchgate.net/profile/Walewski_Joachim/publication/224357544_Visible_light_communications_Challenges_and_possibilities/links/0912f50bf73fa1fa0e000000/Visible-light-communications-Challenges-and-possibilities.pdf Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047-2077. https://doi.org/10.1109/COMST.2015.2476474 Pham, N. Q., Rachim, V. P., & Chung, W. Y. (2019). High-accuracy VLC-based indoor positioning system using multi-level modulation. Optics Express, 27(5), 7568-7584. https://doi.org/10.1364/OE.27.007568 Rahman, M. S., Haque, M. M., & Kim, K.-D. (2011). Indoor positioning by led visible light communication and image sensors. International Journal of Electrical and Computer Engineering, 1(2), 161-170. http://dx.doi.org/10.11591/ijece.v1i2.165 Rahman, M. H., Sejan, M. A. S., & Chung, W. Y. (2021, February). Long-Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Modulation Technique. In Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea, November 24–26, 2020, Proceedings, Part II (pp. 53-62). Cham: Springer International Publishing. Rajagopal, S., Roberts, R. D., & Lim, S.-K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72-82. https://doi.org/10.1109/MCOM.2012.6163585 Saeed, N., Guo, S., Park, K. H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Optical camera communications: Survey, use cases, challenges, and future trends. Physical Communication, 37, 100900. https://doi.org/10.1016/j.phycom.2019.100900 Shaaban, K., Shamim, M. H. M., & Abdur-Rouf, K. (2021). Visible light communication for intelligent transportation systems: A review of the latest technologies. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 483-492. https://doi.org/10.1016/j.jtte.2021.04.005 Singh, R. (2015). Physical layer techniques for indoor wireless visible light com-munications [Unpublished doctoral dissertation, University of Sheffield]. https://etheses.whiterose.ac.uk/13818/ Tuo, J., Shams, H., & Corbett, B. (2012). Visible light communication by using commercial phosphor based white LEDs. IET Irish Signals and Systems Conference (ISSC 2012), 1-4. https://doi.org/10.1049/ic.2012.0227 Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (2016). Optical wireless communications: An emerging technology. Springer. https://doi.org/10.1007/978-3-319-30201-0 Uysal, M., & Nouri, H. (2014). Optical wireless communications: An emerging technology. 2014 16th International Conference on Transparent Optical Networks (ICTON), 1-7. https://doi.org/10.1109/ICTON.2014.6876267 VLCC. (2007). Visible light communications consortium 2007. http://www.vlcc.net Wang, X., & Shen, J. (2019, May). Machine learning and its applications in visible light communication based indoor positioning. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 274-277. https://doi.org/10.1109/HPBDIS.2019.8735490 Zadobrischi, E., Avătămănitei, S. A., Căilean, A. M., Dimian, M., & Negru, M. (2019, September). Toward a hybrid vehicle communication platform based on VLC and DSRC technologies. 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), 103-107. https://doi.org/10.1109/ICCP48234.2019.8959672 Zhang, D.-F., Zhu, Y.-J., & Zhang, Y.-Y. (2013a). Multi-LED phase-shifted OOK modulation based visible light communication systems. IEEE Photonics Technology Letters, 25(23), 2251-2254. https://doi.org/10.1109/LPT.2013.2283583 Zhang, W., & Kavehrad, M. (2013b, February). Comparison of VLC-based indoor positioning techniques. Broadband access communication technologies VII, 8645, 86450M. https://doi.org/10.1117/12.2001569 Zhang, X., Babar, Z., Petropoulos, P., Haas, H., & Hanzo, L. (2021). The evolution of optical OFDM. IEEE Communications Surveys & Tutorials, 23(3), 1430-1457. https://doi.org/10.1109/COMST.2021.3065907
https://journal.universidadean.edu.co/index.php/Revistao/article/download/3538/2346
info:eu-repo/semantics/article
http://purl.org/coar/resource_type/c_6501
http://purl.org/redcol/resource_type/ARTREF
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/version/c_970fb48d4fbd8a85
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
Text
Publication