Titulo:

Machine learning and Deep learning applications in CAR-T research and development.
.

Guardado en:

2256-2877

2256-2915

10

2024-03-10

7

11

http://purl.org/coar/access_right/c_abf2

info:eu-repo/semantics/openAccess

Revista Colombiana de Hematología y Oncología - 2024

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

id metarevistapublica_acho_revistacolombianadehematologiayoncologia_27-article-671
record_format ojs
spelling Machine learning and Deep learning applications in CAR-T research and development.
2
Patiño Escobar, Bonell
Bogotá: Asociación Colombiana de Hematología y Oncología, 2012-
Artículo de revista
Núm. 2 , Año 2023 : Julio - Diciembre
Revista Colombiana de Hematología y Oncología
10
Journal article
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease [Internet]. Vol. 23, Nature Medicine. Nature Publishing Group; 2017. p. 18–27. Available from: https://www.nature.com/articles/nm.4241
Naghizadeh A, Tsao WC, Cho JH, Xu H, Mohamed M, Li D, et al. In vitro machine learning-based CAR T immunological synapse quality measurements correlate with patient clinical outcomes. PLoS Comput Biol [Internet]. 2022 Mar 1;18(3). Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009883
Text
Lee M, Lee YH, Song J, Kim G, Jo YJ, Min HS, et al. Deep-learning based three-dimensional 1 label-free tracking and analysis of immunological synapses of car-t cells. Elife [Internet]. 2020 Dec 1;9:1–53. Available from: https://elifesciences.org/articles/49023
Dannenfelser R, Allen GM, VanderSluis B, Koegel AK, Levinson S, Stark SR, et al. Discriminatory Power of Combinatorial Antigen Recognition in Cancer T Cell Therapies. Cell Syst [Internet]. 2020 Sep 23;11(3):215-228.e5. Available from: https://www.sciencedirect.com/science/article/pii/S2405471220302866
Patiño-Escobar B, Talbot A, Wiita AP. Overcoming proteasome inhibitor resistance in the immunotherapy era. Trends Pharmacol Sci [Internet]. 2023 Aug 1;44(8):507–18. Available from: https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(23)00111-6
Ferguson ID, Patiño-Escobar B, Tuomivaara ST, Lin YHT, Nix MA, Leung KK, et al. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun [Internet]. 2022 Dec 1;13(1). Available from: https://www.nature.com/articles/s41467-022-31810-6
Patino-Escobar B, Kasap C, Ferguson I, Hale M, Wiita A. P-103: Profiling the myeloma cell surface proteome reveals CCR10 as a potential immunotherapeutic target. Clin Lymphoma Myeloma Leuk [Internet]. 2021 Oct;21:S94–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2152265021022370
Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med [Internet]. 2015 Jun 9;21(6):581–90. Available from: https://www.nature.com/articles/nm.3838
Boucher JC, Li G, Kotani H, Cabral ML, Morrissey D, Lee SB, et al. CD28 costimulatory domain-targeted mutations enhance chimeric antigen receptor T-cell function. Cancer Immunol Res [Internet]. 2021 Jan 1;9(1):62–74. Available from: https://aacrjournals.org/cancerimmunolres/article/9/1/62/470226/CD28-Costimulatory-Domain-Targeted-Mutations
Daniels KG, Wang S, Simic MS, Bhargava HK, Capponi S, Tonai Y, et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning [Internet]. Available from: https://www.science.org/doi/abs/10.1126/science.abq0225?af=R&utm_source=sfmc&utm_medium=email&utm_campaign=1stRelease&utm_content=alert&et_rid=719334783&et_cid=4522378
Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies [Internet]. Available from: https://www.science.org/doi/10.1126/scitranslmed.aad5222
http://purl.org/coar/version/c_970fb48d4fbd8a85
https://revista.acho.info/index.php/acho/article/download/671/609
info:eu-repo/semantics/article
Choudhry P, Gugliemini O, Geng H, Sarin V, Sarah L, Paranjape N, et al. Functional multi-omics reveals genetic and pharmacologic regulation of surface CD38 in multiple myeloma. Available from: https://doi.org/10.1101/2021.08.04.455165
http://purl.org/coar/access_right/c_abf2
http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_b239
http://purl.org/redcol/resource_type/ARTEDIT
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/openAccess
Hie BL, Shanker VR, Xu D, Bruun TUJ, Weidenbacher PA, Tang S, et al. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol [Internet]. 2023; Available from: https://www.nature.com/articles/s41587-023-01763-2
Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of Go without human knowledge. Nature [Internet]. 2017 Oct 18;550(7676):354–9. Available from: https://www.nature.com/articles/nature24270
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature [Internet]. 2021 Aug 26;596(7873):583–9. Available from: https://www.nature.com/articles/s41586-021-03819-2#citeas
https://revista.acho.info/index.php/acho/article/view/671
Immunotherapy
Machine Learning
Cell- and Tissue-Based Therapy
Adoptive Immunotherapy
2024-03-10 00:00:00
2024-03-10 00:00:00
2024-03-10
application/pdf
2256-2877
2256-2915
10.51643/22562915.671
He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. 2017 Mar 20; Available from: http://arxiv.org/abs/1703.06870
https://doi.org/10.51643/22562915.671
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista Colombiana de Hematología y Oncología - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
7
11
Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer [Internet]. Immunological Reviews. John Wiley and Sons Inc; 2023. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/imr.13245
Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language Models are Unsupervised Multitask Learners [Internet]. Available from: https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models are Few-Shot Learners. 2020 May 28 [cited 2023 Nov 7]; Available from: https://arxiv.org/abs/2005.14165v4
Publication
institution ASOCIACION COLOMBIANA DE HEMATOLOGIA Y ONCOLOGIA
thumbnail https://nuevo.metarevistas.org/ASOCIACIONCOLOMBIANADEHEMATOLOGIAYONCOLOGIA/logo.png
country_str Colombia
collection Revista Colombiana de Hematología y Oncología
title Machine learning and Deep learning applications in CAR-T research and development.
spellingShingle Machine learning and Deep learning applications in CAR-T research and development.
Patiño Escobar, Bonell
Immunotherapy
Machine Learning
Cell- and Tissue-Based Therapy
Adoptive Immunotherapy
title_short Machine learning and Deep learning applications in CAR-T research and development.
title_full Machine learning and Deep learning applications in CAR-T research and development.
title_fullStr Machine learning and Deep learning applications in CAR-T research and development.
title_full_unstemmed Machine learning and Deep learning applications in CAR-T research and development.
title_sort machine learning and deep learning applications in car-t research and development.
author Patiño Escobar, Bonell
author_facet Patiño Escobar, Bonell
topic Immunotherapy
Machine Learning
Cell- and Tissue-Based Therapy
Adoptive Immunotherapy
topic_facet Immunotherapy
Machine Learning
Cell- and Tissue-Based Therapy
Adoptive Immunotherapy
citationvolume 10
citationissue 2
citationedition Núm. 2 , Año 2023 : Julio - Diciembre
publisher Bogotá: Asociación Colombiana de Hematología y Oncología, 2012-
ispartofjournal Revista Colombiana de Hematología y Oncología
source https://revista.acho.info/index.php/acho/article/view/671
language
format Article
rights http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0
Revista Colombiana de Hematología y Oncología - 2024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
type_driver info:eu-repo/semantics/article
type_coar http://purl.org/coar/resource_type/c_6501
type_version info:eu-repo/semantics/publishedVersion
type_coarversion http://purl.org/coar/version/c_970fb48d4fbd8a85
type_content Text
publishDate 2024-03-10
date_accessioned 2024-03-10 00:00:00
date_available 2024-03-10 00:00:00
url https://revista.acho.info/index.php/acho/article/view/671
url_doi https://doi.org/10.51643/22562915.671
issn 2256-2877
eissn 2256-2915
doi 10.51643/22562915.671
citationstartpage 7
citationendpage 11
url2_str_mv https://revista.acho.info/index.php/acho/article/download/671/609
_version_ 1827726989434290176